mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 10:02:22 +00:00
Remove scale_speed, make swish deriv more efficient.
This commit is contained in:
parent
cbe6b175d1
commit
6769087d70
@ -410,7 +410,6 @@ class RelPositionMultiheadAttention(nn.Module):
|
||||
embed_dim: int,
|
||||
num_heads: int,
|
||||
dropout: float = 0.0,
|
||||
scale_speed: float = 5.0
|
||||
) -> None:
|
||||
super(RelPositionMultiheadAttention, self).__init__()
|
||||
self.embed_dim = embed_dim
|
||||
@ -430,16 +429,15 @@ class RelPositionMultiheadAttention(nn.Module):
|
||||
# as described in "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context" Section 3.3
|
||||
self.pos_bias_u = nn.Parameter(torch.Tensor(num_heads, self.head_dim))
|
||||
self.pos_bias_v = nn.Parameter(torch.Tensor(num_heads, self.head_dim))
|
||||
self.scale_speed = scale_speed
|
||||
self.pos_bias_u_scale = nn.Parameter(torch.zeros(()).detach())
|
||||
self.pos_bias_v_scale = nn.Parameter(torch.zeros(()).detach())
|
||||
self._reset_parameters()
|
||||
|
||||
def _pos_bias_u(self):
|
||||
return self.pos_bias_u * (self.pos_bias_u_scale * self.scale_speed).exp()
|
||||
return self.pos_bias_u * self.pos_bias_u_scale.exp()
|
||||
|
||||
def _pos_bias_v(self):
|
||||
return self.pos_bias_v * (self.pos_bias_v_scale * self.scale_speed).exp()
|
||||
return self.pos_bias_v * self.pos_bias_v_scale.exp()
|
||||
|
||||
def _reset_parameters(self) -> None:
|
||||
nn.init.normal_(self.pos_bias_u, std=0.05)
|
||||
|
@ -19,7 +19,7 @@ import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch import Tensor
|
||||
from typing import Optional
|
||||
from scaling import ScaledConv1d, ScaledLinear
|
||||
from scaling import ScaledConv1d, ScaledLinear, ScaledEmbedding
|
||||
|
||||
|
||||
class Decoder(nn.Module):
|
||||
@ -103,139 +103,3 @@ class Decoder(nn.Module):
|
||||
embedding_out = embedding_out.permute(0, 2, 1)
|
||||
embedding_out = self.output_linear(F.relu(embedding_out))
|
||||
return embedding_out
|
||||
|
||||
|
||||
|
||||
class ScaledEmbedding(nn.Module):
|
||||
r"""A simple lookup table that stores embeddings of a fixed dictionary and size.
|
||||
|
||||
This module is often used to store word embeddings and retrieve them using indices.
|
||||
The input to the module is a list of indices, and the output is the corresponding
|
||||
word embeddings.
|
||||
|
||||
Args:
|
||||
num_embeddings (int): size of the dictionary of embeddings
|
||||
embedding_dim (int): the size of each embedding vector
|
||||
padding_idx (int, optional): If given, pads the output with the embedding vector at :attr:`padding_idx`
|
||||
(initialized to zeros) whenever it encounters the index.
|
||||
max_norm (float, optional): If given, each embedding vector with norm larger than :attr:`max_norm`
|
||||
is renormalized to have norm :attr:`max_norm`.
|
||||
norm_type (float, optional): The p of the p-norm to compute for the :attr:`max_norm` option. Default ``2``.
|
||||
scale_grad_by_freq (boolean, optional): If given, this will scale gradients by the inverse of frequency of
|
||||
the words in the mini-batch. Default ``False``.
|
||||
sparse (bool, optional): If ``True``, gradient w.r.t. :attr:`weight` matrix will be a sparse tensor.
|
||||
See Notes for more details regarding sparse gradients.
|
||||
|
||||
Attributes:
|
||||
weight (Tensor): the learnable weights of the module of shape (num_embeddings, embedding_dim)
|
||||
initialized from :math:`\mathcal{N}(0, 1)`
|
||||
|
||||
Shape:
|
||||
- Input: :math:`(*)`, LongTensor of arbitrary shape containing the indices to extract
|
||||
- Output: :math:`(*, H)`, where `*` is the input shape and :math:`H=\text{embedding\_dim}`
|
||||
|
||||
.. note::
|
||||
Keep in mind that only a limited number of optimizers support
|
||||
sparse gradients: currently it's :class:`optim.SGD` (`CUDA` and `CPU`),
|
||||
:class:`optim.SparseAdam` (`CUDA` and `CPU`) and :class:`optim.Adagrad` (`CPU`)
|
||||
|
||||
.. note::
|
||||
With :attr:`padding_idx` set, the embedding vector at
|
||||
:attr:`padding_idx` is initialized to all zeros. However, note that this
|
||||
vector can be modified afterwards, e.g., using a customized
|
||||
initialization method, and thus changing the vector used to pad the
|
||||
output. The gradient for this vector from :class:`~torch.nn.Embedding`
|
||||
is always zero.
|
||||
|
||||
Examples::
|
||||
|
||||
>>> # an Embedding module containing 10 tensors of size 3
|
||||
>>> embedding = nn.Embedding(10, 3)
|
||||
>>> # a batch of 2 samples of 4 indices each
|
||||
>>> input = torch.LongTensor([[1,2,4,5],[4,3,2,9]])
|
||||
>>> embedding(input)
|
||||
tensor([[[-0.0251, -1.6902, 0.7172],
|
||||
[-0.6431, 0.0748, 0.6969],
|
||||
[ 1.4970, 1.3448, -0.9685],
|
||||
[-0.3677, -2.7265, -0.1685]],
|
||||
|
||||
[[ 1.4970, 1.3448, -0.9685],
|
||||
[ 0.4362, -0.4004, 0.9400],
|
||||
[-0.6431, 0.0748, 0.6969],
|
||||
[ 0.9124, -2.3616, 1.1151]]])
|
||||
|
||||
|
||||
>>> # example with padding_idx
|
||||
>>> embedding = nn.Embedding(10, 3, padding_idx=0)
|
||||
>>> input = torch.LongTensor([[0,2,0,5]])
|
||||
>>> embedding(input)
|
||||
tensor([[[ 0.0000, 0.0000, 0.0000],
|
||||
[ 0.1535, -2.0309, 0.9315],
|
||||
[ 0.0000, 0.0000, 0.0000],
|
||||
[-0.1655, 0.9897, 0.0635]]])
|
||||
"""
|
||||
__constants__ = ['num_embeddings', 'embedding_dim', 'padding_idx',
|
||||
'scale_grad_by_freq', 'sparse']
|
||||
|
||||
num_embeddings: int
|
||||
embedding_dim: int
|
||||
padding_idx: int
|
||||
scale_grad_by_freq: bool
|
||||
weight: Tensor
|
||||
sparse: bool
|
||||
|
||||
def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None,
|
||||
scale_grad_by_freq: bool = False,
|
||||
sparse: bool = False,
|
||||
scale_speed: float = 5.0) -> None:
|
||||
super(ScaledEmbedding, self).__init__()
|
||||
self.num_embeddings = num_embeddings
|
||||
self.embedding_dim = embedding_dim
|
||||
if padding_idx is not None:
|
||||
if padding_idx > 0:
|
||||
assert padding_idx < self.num_embeddings, 'Padding_idx must be within num_embeddings'
|
||||
elif padding_idx < 0:
|
||||
assert padding_idx >= -self.num_embeddings, 'Padding_idx must be within num_embeddings'
|
||||
padding_idx = self.num_embeddings + padding_idx
|
||||
self.padding_idx = padding_idx
|
||||
self.scale_grad_by_freq = scale_grad_by_freq
|
||||
|
||||
self.scale_speed = scale_speed
|
||||
self.scale = nn.Parameter(torch.zeros(())) # see reset_parameters()
|
||||
self.sparse = sparse
|
||||
|
||||
self.weight = nn.Parameter(torch.Tensor(num_embeddings, embedding_dim))
|
||||
self.reset_parameters()
|
||||
|
||||
|
||||
|
||||
def reset_parameters(self) -> None:
|
||||
nn.init.normal_(self.weight, std=0.05)
|
||||
nn.init.constant_(self.scale, torch.tensor(1.0/0.05).log() / self.scale_speed)
|
||||
|
||||
if self.padding_idx is not None:
|
||||
with torch.no_grad():
|
||||
self.weight[self.padding_idx].fill_(0)
|
||||
|
||||
def forward(self, input: Tensor) -> Tensor:
|
||||
scale = (self.scale * self.scale_speed).exp()
|
||||
if input.numel() < self.num_embeddings:
|
||||
return F.embedding(
|
||||
input, self.weight, self.padding_idx,
|
||||
None, 2.0, # None, 2.0 relate to normalization
|
||||
self.scale_grad_by_freq, self.sparse) * scale
|
||||
else:
|
||||
return F.embedding(
|
||||
input, self.weight * scale, self.padding_idx,
|
||||
None, 2.0, # None, 2.0 relates to normalization
|
||||
self.scale_grad_by_freq, self.sparse)
|
||||
|
||||
def extra_repr(self) -> str:
|
||||
s = '{num_embeddings}, {embedding_dim}, scale_speed={scale_speed}, scale={scale}'
|
||||
if self.padding_idx is not None:
|
||||
s += ', padding_idx={padding_idx}'
|
||||
if self.scale_grad_by_freq is not False:
|
||||
s += ', scale_grad_by_freq={scale_grad_by_freq}'
|
||||
if self.sparse is not False:
|
||||
s += ', sparse=True'
|
||||
return s.format(**self.__dict__)
|
||||
|
@ -18,7 +18,7 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch import Tensor
|
||||
from typing import Tuple
|
||||
from typing import Tuple, Optional
|
||||
|
||||
|
||||
|
||||
@ -94,31 +94,25 @@ class BasicNorm(torch.nn.Module):
|
||||
to indicate the connection with conventional LayerNorm.
|
||||
learn_eps: if true, we learn epsilon; if false, we keep it
|
||||
at the initial value.
|
||||
eps_speed: a constant that determines how fast "eps" learns;
|
||||
with Adam and variants, this should probably be >= 1,
|
||||
e.g. 5.0. For SGD and variants, probably a value less than one,
|
||||
like 0.1, would be suitable, to prevent instability.
|
||||
"""
|
||||
def __init__(self,
|
||||
num_channels: int,
|
||||
channel_dim: int = -1, # CAUTION: see documentation.
|
||||
eps: float = 0.25,
|
||||
learn_eps: bool = True,
|
||||
eps_speed: float = 5.0):
|
||||
learn_eps: bool = True) -> None:
|
||||
super(BasicNorm, self).__init__()
|
||||
self.num_channels = num_channels
|
||||
self.channel_dim = channel_dim
|
||||
self.eps_speed = eps_speed
|
||||
if learn_eps:
|
||||
self.eps = nn.Parameter((torch.tensor(eps).log() / eps_speed).detach())
|
||||
self.eps = nn.Parameter(torch.tensor(eps).log().detach())
|
||||
else:
|
||||
self.register_buffer('eps', (torch.tensor(eps).log() / eps_speed).detach())
|
||||
self.register_buffer('eps', torch.tensor(eps).log().detach())
|
||||
|
||||
|
||||
def forward(self, x: Tensor) -> Tensor:
|
||||
assert x.shape[self.channel_dim] == self.num_channels
|
||||
scales = (torch.mean(x**2, dim=self.channel_dim, keepdim=True) +
|
||||
(self.eps * self.eps_speed).exp()) ** -0.5
|
||||
self.eps.exp()) ** -0.5
|
||||
return x * scales
|
||||
|
||||
|
||||
@ -128,16 +122,13 @@ class ScaledLinear(nn.Linear):
|
||||
"""
|
||||
A modified version of nn.Linear where the parameters are scaled before
|
||||
use, via:
|
||||
weight = self.weight * (self.weight_scale * self.scale_speed).exp()
|
||||
bias = self.bias * (self.bias_scale * self.scale_speed).exp()
|
||||
weight = self.weight * self.weight_scale.exp()
|
||||
bias = self.bias * self.bias_scale.exp()
|
||||
|
||||
Args:
|
||||
Accepts the standard args and kwargs that nn.Linear accepts
|
||||
e.g. in_features, out_features, bias=False.
|
||||
|
||||
scale_speed: a factor that affects how fast the weight_scale
|
||||
and bias_scale learn; this value is suitable for Adam-type
|
||||
optimizers.
|
||||
initial_scale: you can override this if you want to increase
|
||||
or decrease the initial magnitude of the module's output
|
||||
(affects the initialization of weight_scale and bias_scale).
|
||||
@ -149,13 +140,11 @@ class ScaledLinear(nn.Linear):
|
||||
may be larger than optimal.
|
||||
"""
|
||||
def __init__(self, *args,
|
||||
scale_speed: float = 5.0,
|
||||
initial_scale: float = 1.0,
|
||||
**kwargs):
|
||||
super(ScaledLinear, self).__init__(*args, **kwargs)
|
||||
initial_scale = (torch.tensor(initial_scale).log() / scale_speed)
|
||||
initial_scale = torch.tensor(initial_scale).log()
|
||||
self.weight_scale = nn.Parameter(initial_scale.clone().detach())
|
||||
self.scale_speed = scale_speed
|
||||
if self.bias is not None:
|
||||
self.bias_scale = nn.Parameter(initial_scale.clone().detach())
|
||||
else:
|
||||
@ -172,14 +161,14 @@ class ScaledLinear(nn.Linear):
|
||||
fan_in = self.weight.shape[1] * self.weight[0][0].numel()
|
||||
scale = fan_in ** -0.5 # 1/sqrt(fan_in)
|
||||
with torch.no_grad():
|
||||
self.weight_scale += (torch.tensor(scale / std).log() / self.scale_speed)
|
||||
self.weight_scale += torch.tensor(scale / std).log()
|
||||
|
||||
def get_weight(self):
|
||||
return self.weight * (self.weight_scale * self.scale_speed).exp()
|
||||
return self.weight * self.weight_scale.exp()
|
||||
|
||||
def get_bias(self):
|
||||
return (None if self.bias is None else
|
||||
self.bias * (self.bias_scale * self.scale_speed).exp())
|
||||
self.bias * self.bias_scale.exp())
|
||||
|
||||
def forward(self, input: Tensor) -> Tensor:
|
||||
return torch.nn.functional.linear(input, self.get_weight(),
|
||||
@ -187,11 +176,10 @@ class ScaledLinear(nn.Linear):
|
||||
|
||||
|
||||
class ScaledConv1d(nn.Conv1d):
|
||||
def __init__(self, *args, scale_speed = 5.0,
|
||||
def __init__(self, *args,
|
||||
initial_scale=1.0, **kwargs):
|
||||
super(ScaledConv1d, self).__init__(*args, **kwargs)
|
||||
self.scale_speed = scale_speed
|
||||
initial_scale = (torch.tensor(initial_scale).log() / scale_speed)
|
||||
initial_scale = torch.tensor(initial_scale).log()
|
||||
self.weight_scale = nn.Parameter(initial_scale.clone().detach())
|
||||
if self.bias is not None:
|
||||
self.bias_scale = nn.Parameter(initial_scale.clone().detach())
|
||||
@ -208,15 +196,15 @@ class ScaledConv1d(nn.Conv1d):
|
||||
fan_in = self.weight.shape[1] * self.weight[0][0].numel()
|
||||
scale = fan_in ** -0.5 # 1/sqrt(fan_in)
|
||||
with torch.no_grad():
|
||||
self.weight_scale += (torch.tensor(scale / std).log() / self.scale_speed)
|
||||
self.weight_scale += torch.tensor(scale / std).log()
|
||||
|
||||
|
||||
def get_weight(self):
|
||||
return self.weight * (self.weight_scale * self.scale_speed).exp()
|
||||
return self.weight * self.weight_scale.exp()
|
||||
|
||||
def get_bias(self):
|
||||
return (None if self.bias is None else
|
||||
self.bias * (self.bias_scale * self.scale_speed).exp())
|
||||
self.bias * self.bias_scale.exp())
|
||||
|
||||
def forward(self, input: Tensor) -> Tensor:
|
||||
F = torch.nn.functional
|
||||
@ -230,10 +218,9 @@ class ScaledConv1d(nn.Conv1d):
|
||||
|
||||
|
||||
class ScaledConv2d(nn.Conv2d):
|
||||
def __init__(self, *args, scale_speed=5.0, initial_scale=1.0, **kwargs):
|
||||
def __init__(self, *args, initial_scale=1.0, **kwargs):
|
||||
super(ScaledConv2d, self).__init__(*args, **kwargs)
|
||||
self.scale_speed = scale_speed
|
||||
initial_scale = (torch.tensor(initial_scale).log() / scale_speed)
|
||||
initial_scale = torch.tensor(initial_scale).log()
|
||||
self.weight_scale = nn.Parameter(initial_scale.clone().detach())
|
||||
if self.bias is not None:
|
||||
self.bias_scale = nn.Parameter(initial_scale.clone().detach())
|
||||
@ -250,15 +237,15 @@ class ScaledConv2d(nn.Conv2d):
|
||||
fan_in = self.weight.shape[1] * self.weight[0][0].numel()
|
||||
scale = fan_in ** -0.5 # 1/sqrt(fan_in)
|
||||
with torch.no_grad():
|
||||
self.weight_scale += (torch.tensor(scale / std).log() / self.scale_speed)
|
||||
self.weight_scale += torch.tensor(scale / std).log()
|
||||
|
||||
|
||||
def get_weight(self):
|
||||
return self.weight * (self.weight_scale * self.scale_speed).exp()
|
||||
return self.weight * self.weight_scale.exp()
|
||||
|
||||
def get_bias(self):
|
||||
return (None if self.bias is None else
|
||||
self.bias * (self.bias_scale * self.scale_speed).exp())
|
||||
self.bias * self.bias_scale.exp())
|
||||
|
||||
def _conv_forward(self, input, weight):
|
||||
F = torch.nn.functional
|
||||
@ -323,6 +310,16 @@ class ActivationBalancer(torch.nn.Module):
|
||||
self.max_factor, self.min_abs,
|
||||
self.max_abs)
|
||||
|
||||
# deriv of double_swish:
|
||||
# double_swish(x) = x * torch.sigmoid(x-1) [this is a definition, originally
|
||||
# motivated by its similarity to swish(swish(x),
|
||||
# where swish(x) = x *sigmoid(x)].
|
||||
# double_swish(x) = x * s, where s(x) = torch.sigmoid(x-1)
|
||||
# double_swish'(x) = d/dx double_swish(x) = x * s'(x) + x' * s(x) = x * s'(x) + s(x).
|
||||
# Now, s'(x) = s(x) * (1-s(x)).
|
||||
# double_swish'(x) = x * s'(x) + s(x).
|
||||
# = x * s(x) * (1-s(x)) + s(x).
|
||||
# = double_swish(x) * (1-s(x)) + s(x)
|
||||
|
||||
def _double_swish(x: Tensor) -> Tensor:
|
||||
# double-swish, implemented/approximated as offset-swish
|
||||
@ -331,18 +328,16 @@ def _double_swish(x: Tensor) -> Tensor:
|
||||
class DoubleSwishFunction(torch.autograd.Function):
|
||||
@staticmethod
|
||||
def forward(ctx, x: Tensor) -> Tensor:
|
||||
ctx.save_for_backward(x.detach())
|
||||
return _double_swish(x)
|
||||
x = x.detach()
|
||||
s = torch.sigmoid(x - 1.0)
|
||||
y = x * s
|
||||
ctx.save_for_backward(s, y)
|
||||
return y
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, y_grad: Tensor) -> Tensor:
|
||||
# TODO: can make this more efficient.
|
||||
x, = ctx.saved_tensors
|
||||
x.requires_grad = True
|
||||
with torch.enable_grad():
|
||||
y = _double_swish(x)
|
||||
y.backward(gradient=y_grad)
|
||||
return x.grad
|
||||
s, y = ctx.saved_tensors
|
||||
return (y * (1-s) + s) * y_grad
|
||||
|
||||
class DoubleSwish(torch.nn.Module):
|
||||
def forward(self, x: Tensor) -> Tensor:
|
||||
@ -353,6 +348,140 @@ class DoubleSwish(torch.nn.Module):
|
||||
|
||||
|
||||
|
||||
|
||||
class ScaledEmbedding(nn.Module):
|
||||
r"""A simple lookup table that stores embeddings of a fixed dictionary and size.
|
||||
|
||||
This module is often used to store word embeddings and retrieve them using indices.
|
||||
The input to the module is a list of indices, and the output is the corresponding
|
||||
word embeddings.
|
||||
|
||||
Args:
|
||||
num_embeddings (int): size of the dictionary of embeddings
|
||||
embedding_dim (int): the size of each embedding vector
|
||||
padding_idx (int, optional): If given, pads the output with the embedding vector at :attr:`padding_idx`
|
||||
(initialized to zeros) whenever it encounters the index.
|
||||
max_norm (float, optional): If given, each embedding vector with norm larger than :attr:`max_norm`
|
||||
is renormalized to have norm :attr:`max_norm`.
|
||||
norm_type (float, optional): The p of the p-norm to compute for the :attr:`max_norm` option. Default ``2``.
|
||||
scale_grad_by_freq (boolean, optional): If given, this will scale gradients by the inverse of frequency of
|
||||
the words in the mini-batch. Default ``False``.
|
||||
sparse (bool, optional): If ``True``, gradient w.r.t. :attr:`weight` matrix will be a sparse tensor.
|
||||
See Notes for more details regarding sparse gradients.
|
||||
|
||||
Attributes:
|
||||
weight (Tensor): the learnable weights of the module of shape (num_embeddings, embedding_dim)
|
||||
initialized from :math:`\mathcal{N}(0, 1)`
|
||||
|
||||
Shape:
|
||||
- Input: :math:`(*)`, LongTensor of arbitrary shape containing the indices to extract
|
||||
- Output: :math:`(*, H)`, where `*` is the input shape and :math:`H=\text{embedding\_dim}`
|
||||
|
||||
.. note::
|
||||
Keep in mind that only a limited number of optimizers support
|
||||
sparse gradients: currently it's :class:`optim.SGD` (`CUDA` and `CPU`),
|
||||
:class:`optim.SparseAdam` (`CUDA` and `CPU`) and :class:`optim.Adagrad` (`CPU`)
|
||||
|
||||
.. note::
|
||||
With :attr:`padding_idx` set, the embedding vector at
|
||||
:attr:`padding_idx` is initialized to all zeros. However, note that this
|
||||
vector can be modified afterwards, e.g., using a customized
|
||||
initialization method, and thus changing the vector used to pad the
|
||||
output. The gradient for this vector from :class:`~torch.nn.Embedding`
|
||||
is always zero.
|
||||
|
||||
Examples::
|
||||
|
||||
>>> # an Embedding module containing 10 tensors of size 3
|
||||
>>> embedding = nn.Embedding(10, 3)
|
||||
>>> # a batch of 2 samples of 4 indices each
|
||||
>>> input = torch.LongTensor([[1,2,4,5],[4,3,2,9]])
|
||||
>>> embedding(input)
|
||||
tensor([[[-0.0251, -1.6902, 0.7172],
|
||||
[-0.6431, 0.0748, 0.6969],
|
||||
[ 1.4970, 1.3448, -0.9685],
|
||||
[-0.3677, -2.7265, -0.1685]],
|
||||
|
||||
[[ 1.4970, 1.3448, -0.9685],
|
||||
[ 0.4362, -0.4004, 0.9400],
|
||||
[-0.6431, 0.0748, 0.6969],
|
||||
[ 0.9124, -2.3616, 1.1151]]])
|
||||
|
||||
|
||||
>>> # example with padding_idx
|
||||
>>> embedding = nn.Embedding(10, 3, padding_idx=0)
|
||||
>>> input = torch.LongTensor([[0,2,0,5]])
|
||||
>>> embedding(input)
|
||||
tensor([[[ 0.0000, 0.0000, 0.0000],
|
||||
[ 0.1535, -2.0309, 0.9315],
|
||||
[ 0.0000, 0.0000, 0.0000],
|
||||
[-0.1655, 0.9897, 0.0635]]])
|
||||
"""
|
||||
__constants__ = ['num_embeddings', 'embedding_dim', 'padding_idx',
|
||||
'scale_grad_by_freq', 'sparse']
|
||||
|
||||
num_embeddings: int
|
||||
embedding_dim: int
|
||||
padding_idx: int
|
||||
scale_grad_by_freq: bool
|
||||
weight: Tensor
|
||||
sparse: bool
|
||||
|
||||
def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None,
|
||||
scale_grad_by_freq: bool = False,
|
||||
sparse: bool = False) -> None:
|
||||
super(ScaledEmbedding, self).__init__()
|
||||
self.num_embeddings = num_embeddings
|
||||
self.embedding_dim = embedding_dim
|
||||
if padding_idx is not None:
|
||||
if padding_idx > 0:
|
||||
assert padding_idx < self.num_embeddings, 'Padding_idx must be within num_embeddings'
|
||||
elif padding_idx < 0:
|
||||
assert padding_idx >= -self.num_embeddings, 'Padding_idx must be within num_embeddings'
|
||||
padding_idx = self.num_embeddings + padding_idx
|
||||
self.padding_idx = padding_idx
|
||||
self.scale_grad_by_freq = scale_grad_by_freq
|
||||
|
||||
self.scale = nn.Parameter(torch.zeros(())) # see reset_parameters()
|
||||
self.sparse = sparse
|
||||
|
||||
self.weight = nn.Parameter(torch.Tensor(num_embeddings, embedding_dim))
|
||||
self.reset_parameters()
|
||||
|
||||
|
||||
|
||||
def reset_parameters(self) -> None:
|
||||
nn.init.normal_(self.weight, std=0.05)
|
||||
nn.init.constant_(self.scale, torch.tensor(1.0/0.05).log())
|
||||
|
||||
if self.padding_idx is not None:
|
||||
with torch.no_grad():
|
||||
self.weight[self.padding_idx].fill_(0)
|
||||
|
||||
def forward(self, input: Tensor) -> Tensor:
|
||||
scale = self.scale.exp()
|
||||
if input.numel() < self.num_embeddings:
|
||||
return F.embedding(
|
||||
input, self.weight, self.padding_idx,
|
||||
None, 2.0, # None, 2.0 relate to normalization
|
||||
self.scale_grad_by_freq, self.sparse) * scale
|
||||
else:
|
||||
return F.embedding(
|
||||
input, self.weight * scale, self.padding_idx,
|
||||
None, 2.0, # None, 2.0 relates to normalization
|
||||
self.scale_grad_by_freq, self.sparse)
|
||||
|
||||
def extra_repr(self) -> str:
|
||||
s = '{num_embeddings}, {embedding_dim}, scale={scale}'
|
||||
if self.padding_idx is not None:
|
||||
s += ', padding_idx={padding_idx}'
|
||||
if self.scale_grad_by_freq is not False:
|
||||
s += ', scale_grad_by_freq={scale_grad_by_freq}'
|
||||
if self.sparse is not False:
|
||||
s += ', sparse=True'
|
||||
return s.format(**self.__dict__)
|
||||
|
||||
|
||||
def _test_activation_balancer_sign():
|
||||
channel_dim = 0
|
||||
probs = torch.arange(0, 1, 0.01)
|
||||
@ -409,10 +538,15 @@ def _test_basic_norm():
|
||||
assert y_rms > 0.5 * x_rms
|
||||
|
||||
|
||||
|
||||
def _test_double_swish_deriv():
|
||||
x = torch.randn(10, 12, dtype=torch.double) * 0.5
|
||||
x.requires_grad = True
|
||||
m = DoubleSwish()
|
||||
torch.autograd.gradcheck(m, x)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
_test_activation_balancer_sign()
|
||||
_test_activation_balancer_magnitude()
|
||||
_test_basic_norm()
|
||||
_test_double_swish_deriv()
|
||||
|
Loading…
x
Reference in New Issue
Block a user