mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-16 20:52:18 +00:00
Merge branch 'k2-fsa:master' into master
This commit is contained in:
commit
662690aa8b
10
.github/workflows/run-yesno-recipe.yml
vendored
10
.github/workflows/run-yesno-recipe.yml
vendored
@ -21,11 +21,11 @@ on:
|
|||||||
branches:
|
branches:
|
||||||
- master
|
- master
|
||||||
pull_request:
|
pull_request:
|
||||||
branches:
|
types: [labeled]
|
||||||
- master
|
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
run-yesno-recipe:
|
run-yesno-recipe:
|
||||||
|
if: github.event.label.name == 'ready' || github.event_name == 'push'
|
||||||
runs-on: ${{ matrix.os }}
|
runs-on: ${{ matrix.os }}
|
||||||
strategy:
|
strategy:
|
||||||
matrix:
|
matrix:
|
||||||
@ -33,6 +33,8 @@ jobs:
|
|||||||
# TODO: enable macOS for CPU testing
|
# TODO: enable macOS for CPU testing
|
||||||
os: [ubuntu-18.04]
|
os: [ubuntu-18.04]
|
||||||
python-version: [3.8]
|
python-version: [3.8]
|
||||||
|
torch: ["1.8.1"]
|
||||||
|
k2-version: ["1.9.dev20210919"]
|
||||||
fail-fast: false
|
fail-fast: false
|
||||||
|
|
||||||
steps:
|
steps:
|
||||||
@ -54,10 +56,8 @@ jobs:
|
|||||||
|
|
||||||
- name: Install Python dependencies
|
- name: Install Python dependencies
|
||||||
run: |
|
run: |
|
||||||
python3 -m pip install --upgrade pip black flake8
|
|
||||||
python3 -m pip install -U pip
|
python3 -m pip install -U pip
|
||||||
python3 -m pip install k2==1.4.dev20210822+cpu.torch1.7.1 -f https://k2-fsa.org/nightly/
|
pip install k2==${{ matrix.k2-version }}+cpu.torch${{ matrix.torch }} -f https://k2-fsa.org/nightly/
|
||||||
python3 -m pip install torchaudio==0.7.2
|
|
||||||
python3 -m pip install git+https://github.com/lhotse-speech/lhotse
|
python3 -m pip install git+https://github.com/lhotse-speech/lhotse
|
||||||
|
|
||||||
# We are in ./icefall and there is a file: requirements.txt in it
|
# We are in ./icefall and there is a file: requirements.txt in it
|
||||||
|
21
.github/workflows/test.yml
vendored
21
.github/workflows/test.yml
vendored
@ -21,18 +21,19 @@ on:
|
|||||||
branches:
|
branches:
|
||||||
- master
|
- master
|
||||||
pull_request:
|
pull_request:
|
||||||
branches:
|
types: [labeled]
|
||||||
- master
|
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
test:
|
test:
|
||||||
|
if: github.event.label.name == 'ready' || github.event_name == 'push'
|
||||||
runs-on: ${{ matrix.os }}
|
runs-on: ${{ matrix.os }}
|
||||||
strategy:
|
strategy:
|
||||||
matrix:
|
matrix:
|
||||||
os: [ubuntu-18.04, macos-10.15]
|
os: [ubuntu-18.04, macos-10.15]
|
||||||
python-version: [3.6, 3.7, 3.8, 3.9]
|
python-version: [3.6, 3.7, 3.8, 3.9]
|
||||||
torch: ["1.8.1"]
|
torch: ["1.8.1"]
|
||||||
k2-version: ["1.4.dev20210822"]
|
k2-version: ["1.9.dev20210919"]
|
||||||
|
|
||||||
fail-fast: false
|
fail-fast: false
|
||||||
|
|
||||||
steps:
|
steps:
|
||||||
@ -52,6 +53,20 @@ jobs:
|
|||||||
# icefall requirements
|
# icefall requirements
|
||||||
pip install -r requirements.txt
|
pip install -r requirements.txt
|
||||||
|
|
||||||
|
- name: Install graphviz
|
||||||
|
if: startsWith(matrix.os, 'ubuntu')
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
python3 -m pip install -qq graphviz
|
||||||
|
sudo apt-get -qq install graphviz
|
||||||
|
|
||||||
|
- name: Install graphviz
|
||||||
|
if: startsWith(matrix.os, 'macos')
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
python3 -m pip install -qq graphviz
|
||||||
|
brew install -q graphviz
|
||||||
|
|
||||||
- name: Run tests
|
- name: Run tests
|
||||||
if: startsWith(matrix.os, 'ubuntu')
|
if: startsWith(matrix.os, 'ubuntu')
|
||||||
run: |
|
run: |
|
||||||
|
2
.gitignore
vendored
2
.gitignore
vendored
@ -4,4 +4,4 @@ path.sh
|
|||||||
exp
|
exp
|
||||||
exp*/
|
exp*/
|
||||||
*.pt
|
*.pt
|
||||||
download/
|
download
|
||||||
|
@ -16,7 +16,6 @@
|
|||||||
|
|
||||||
import sphinx_rtd_theme
|
import sphinx_rtd_theme
|
||||||
|
|
||||||
|
|
||||||
# -- Project information -----------------------------------------------------
|
# -- Project information -----------------------------------------------------
|
||||||
|
|
||||||
project = "icefall"
|
project = "icefall"
|
||||||
|
@ -56,7 +56,7 @@ organize your files in the following way:
|
|||||||
$ cd egs/foo/ASR
|
$ cd egs/foo/ASR
|
||||||
$ mkdir bar
|
$ mkdir bar
|
||||||
$ cd bar
|
$ cd bar
|
||||||
$ tourch README.md model.py train.py decode.py asr_datamodule.py pretrained.py
|
$ touch README.md model.py train.py decode.py asr_datamodule.py pretrained.py
|
||||||
|
|
||||||
For instance , the ``yesno`` recipe has a ``tdnn`` model and its directory structure
|
For instance , the ``yesno`` recipe has a ``tdnn`` model and its directory structure
|
||||||
looks like the following:
|
looks like the following:
|
||||||
|
1
docs/source/installation/images/k2-v1.9-blueviolet.svg
Normal file
1
docs/source/installation/images/k2-v1.9-blueviolet.svg
Normal file
@ -0,0 +1 @@
|
|||||||
|
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="58" height="20" role="img" aria-label="k2: v1.9"><title>k2: v1.9</title><linearGradient id="s" x2="0" y2="100%"><stop offset="0" stop-color="#bbb" stop-opacity=".1"/><stop offset="1" stop-opacity=".1"/></linearGradient><clipPath id="r"><rect width="58" height="20" rx="3" fill="#fff"/></clipPath><g clip-path="url(#r)"><rect width="23" height="20" fill="#555"/><rect x="23" width="35" height="20" fill="blueviolet"/><rect width="58" height="20" fill="url(#s)"/></g><g fill="#fff" text-anchor="middle" font-family="Verdana,Geneva,DejaVu Sans,sans-serif" text-rendering="geometricPrecision" font-size="110"><text aria-hidden="true" x="125" y="150" fill="#010101" fill-opacity=".3" transform="scale(.1)" textLength="130">k2</text><text x="125" y="140" transform="scale(.1)" fill="#fff" textLength="130">k2</text><text aria-hidden="true" x="395" y="150" fill="#010101" fill-opacity=".3" transform="scale(.1)" textLength="250">v1.9</text><text x="395" y="140" transform="scale(.1)" fill="#fff" textLength="250">v1.9</text></g></svg>
|
After Width: | Height: | Size: 1.1 KiB |
@ -7,6 +7,7 @@ Installation
|
|||||||
- |device|
|
- |device|
|
||||||
- |python_versions|
|
- |python_versions|
|
||||||
- |torch_versions|
|
- |torch_versions|
|
||||||
|
- |k2_versions|
|
||||||
|
|
||||||
.. |os| image:: ./images/os-Linux_macOS-ff69b4.svg
|
.. |os| image:: ./images/os-Linux_macOS-ff69b4.svg
|
||||||
:alt: Supported operating systems
|
:alt: Supported operating systems
|
||||||
@ -20,7 +21,10 @@ Installation
|
|||||||
.. |torch_versions| image:: ./images/torch-1.6.0_1.7.0_1.7.1_1.8.0_1.8.1_1.9.0-green.svg
|
.. |torch_versions| image:: ./images/torch-1.6.0_1.7.0_1.7.1_1.8.0_1.8.1_1.9.0-green.svg
|
||||||
:alt: Supported PyTorch versions
|
:alt: Supported PyTorch versions
|
||||||
|
|
||||||
icefall depends on `k2 <https://github.com/k2-fsa/k2>`_ and
|
.. |k2_versions| image:: ./images/k2-v1.9-blueviolet.svg
|
||||||
|
:alt: Supported k2 versions
|
||||||
|
|
||||||
|
``icefall`` depends on `k2 <https://github.com/k2-fsa/k2>`_ and
|
||||||
`lhotse <https://github.com/lhotse-speech/lhotse>`_.
|
`lhotse <https://github.com/lhotse-speech/lhotse>`_.
|
||||||
|
|
||||||
We recommend you to install ``k2`` first, as ``k2`` is bound to
|
We recommend you to install ``k2`` first, as ``k2`` is bound to
|
||||||
@ -31,13 +35,17 @@ installs its dependency PyTorch, which can be reused by ``lhotse``.
|
|||||||
(1) Install k2
|
(1) Install k2
|
||||||
--------------
|
--------------
|
||||||
|
|
||||||
Please refer to `<https://k2.readthedocs.io/en/latest/installation/index.html>`_
|
Please refer to `<https://k2-fsa.github.io/k2/installation/index.html>`_
|
||||||
to install `k2`.
|
to install ``k2``.
|
||||||
|
|
||||||
|
.. CAUTION::
|
||||||
|
|
||||||
|
You need to install ``k2`` with a version at least **v1.9**.
|
||||||
|
|
||||||
.. HINT::
|
.. HINT::
|
||||||
|
|
||||||
If you have already installed PyTorch and don't want to replace it,
|
If you have already installed PyTorch and don't want to replace it,
|
||||||
please install a version of k2 that is compiled against the version
|
please install a version of ``k2`` that is compiled against the version
|
||||||
of PyTorch you are using.
|
of PyTorch you are using.
|
||||||
|
|
||||||
(2) Install lhotse
|
(2) Install lhotse
|
||||||
@ -50,10 +58,15 @@ to install ``lhotse``.
|
|||||||
|
|
||||||
Install ``lhotse`` also installs its dependency `torchaudio <https://github.com/pytorch/audio>`_.
|
Install ``lhotse`` also installs its dependency `torchaudio <https://github.com/pytorch/audio>`_.
|
||||||
|
|
||||||
|
.. CAUTION::
|
||||||
|
|
||||||
|
If you have installed ``torchaudio``, please consider uninstalling it before
|
||||||
|
installing ``lhotse``. Otherwise, it may update your already installed PyTorch.
|
||||||
|
|
||||||
(3) Download icefall
|
(3) Download icefall
|
||||||
--------------------
|
--------------------
|
||||||
|
|
||||||
icefall is a collection of Python scripts, so you don't need to install it
|
``icefall`` is a collection of Python scripts, so you don't need to install it
|
||||||
and we don't provide a ``setup.py`` to install it.
|
and we don't provide a ``setup.py`` to install it.
|
||||||
|
|
||||||
What you need is to download it and set the environment variable ``PYTHONPATH``
|
What you need is to download it and set the environment variable ``PYTHONPATH``
|
||||||
@ -367,7 +380,7 @@ Now let us run the training part:
|
|||||||
|
|
||||||
.. CAUTION::
|
.. CAUTION::
|
||||||
|
|
||||||
We use ``export CUDA_VISIBLE_DEVICES=""`` so that icefall uses CPU
|
We use ``export CUDA_VISIBLE_DEVICES=""`` so that ``icefall`` uses CPU
|
||||||
even if there are GPUs available.
|
even if there are GPUs available.
|
||||||
|
|
||||||
The training log is given below:
|
The training log is given below:
|
||||||
|
@ -15,4 +15,3 @@ We may add recipes for other tasks as well in the future.
|
|||||||
yesno
|
yesno
|
||||||
|
|
||||||
librispeech
|
librispeech
|
||||||
|
|
||||||
|
@ -45,7 +45,7 @@ For example,
|
|||||||
|
|
||||||
.. code-block:: bash
|
.. code-block:: bash
|
||||||
|
|
||||||
$ cd egs/yesno/ASR
|
$ cd egs/librispeech/ASR
|
||||||
$ ./prepare.sh --stage 0 --stop-stage 0
|
$ ./prepare.sh --stage 0 --stop-stage 0
|
||||||
|
|
||||||
means to run only stage 0.
|
means to run only stage 0.
|
||||||
@ -171,7 +171,7 @@ The following options are used quite often:
|
|||||||
Pre-configured options
|
Pre-configured options
|
||||||
~~~~~~~~~~~~~~~~~~~~~~
|
~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
There are some training options, e.g., learning rate,
|
There are some training options, e.g., weight decay,
|
||||||
number of warmup steps, results dir, etc,
|
number of warmup steps, results dir, etc,
|
||||||
that are not passed from the commandline.
|
that are not passed from the commandline.
|
||||||
They are pre-configured by the function ``get_params()`` in
|
They are pre-configured by the function ``get_params()`` in
|
||||||
@ -303,7 +303,7 @@ The commonly used options are:
|
|||||||
|
|
||||||
- ``--lattice-score-scale``
|
- ``--lattice-score-scale``
|
||||||
|
|
||||||
It is used to scaled down lattice scores so that we can more unique
|
It is used to scale down lattice scores so that there are more unique
|
||||||
paths for rescoring.
|
paths for rescoring.
|
||||||
|
|
||||||
- ``--max-duration``
|
- ``--max-duration``
|
||||||
@ -314,7 +314,7 @@ The commonly used options are:
|
|||||||
Pre-trained Model
|
Pre-trained Model
|
||||||
-----------------
|
-----------------
|
||||||
|
|
||||||
We have uploaded the pre-trained model to
|
We have uploaded a pre-trained model to
|
||||||
`<https://huggingface.co/pkufool/icefall_asr_librispeech_conformer_ctc>`_.
|
`<https://huggingface.co/pkufool/icefall_asr_librispeech_conformer_ctc>`_.
|
||||||
|
|
||||||
We describe how to use the pre-trained model to transcribe a sound file or
|
We describe how to use the pre-trained model to transcribe a sound file or
|
||||||
@ -324,7 +324,7 @@ Install kaldifeat
|
|||||||
~~~~~~~~~~~~~~~~~
|
~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
`kaldifeat <https://github.com/csukuangfj/kaldifeat>`_ is used to
|
`kaldifeat <https://github.com/csukuangfj/kaldifeat>`_ is used to
|
||||||
extract features for a single sound file or multiple soundfiles
|
extract features for a single sound file or multiple sound files
|
||||||
at the same time.
|
at the same time.
|
||||||
|
|
||||||
Please refer to `<https://github.com/csukuangfj/kaldifeat>`_ for installation.
|
Please refer to `<https://github.com/csukuangfj/kaldifeat>`_ for installation.
|
||||||
@ -346,6 +346,10 @@ The following commands describe how to download the pre-trained model:
|
|||||||
|
|
||||||
You have to use ``git lfs`` to download the pre-trained model.
|
You have to use ``git lfs`` to download the pre-trained model.
|
||||||
|
|
||||||
|
.. CAUTION::
|
||||||
|
|
||||||
|
In order to use this pre-trained model, your k2 version has to be v1.7 or later.
|
||||||
|
|
||||||
After downloading, you will have the following files:
|
After downloading, you will have the following files:
|
||||||
|
|
||||||
.. code-block:: bash
|
.. code-block:: bash
|
||||||
@ -397,7 +401,7 @@ After downloading, you will have the following files:
|
|||||||
|
|
||||||
- ``data/lm/G_4_gram.pt``
|
- ``data/lm/G_4_gram.pt``
|
||||||
|
|
||||||
It is a 4-gram LM, useful for LM rescoring.
|
It is a 4-gram LM, used for n-gram LM rescoring.
|
||||||
|
|
||||||
- ``exp/pretrained.pt``
|
- ``exp/pretrained.pt``
|
||||||
|
|
||||||
@ -409,9 +413,9 @@ After downloading, you will have the following files:
|
|||||||
|
|
||||||
It contains some test sound files from LibriSpeech ``test-clean`` dataset.
|
It contains some test sound files from LibriSpeech ``test-clean`` dataset.
|
||||||
|
|
||||||
- `test_waves/trans.txt`
|
- ``test_waves/trans.txt``
|
||||||
|
|
||||||
It contains the reference transcripts for the sound files in `test_waves/`.
|
It contains the reference transcripts for the sound files in ``test_waves/``.
|
||||||
|
|
||||||
The information of the test sound files is listed below:
|
The information of the test sound files is listed below:
|
||||||
|
|
||||||
|
@ -153,10 +153,6 @@ Some commonly used options are:
|
|||||||
will save the averaged model to ``tdnn_lstm_ctc/exp/pretrained.pt``.
|
will save the averaged model to ``tdnn_lstm_ctc/exp/pretrained.pt``.
|
||||||
See :ref:`tdnn_lstm_ctc use a pre-trained model` for how to use it.
|
See :ref:`tdnn_lstm_ctc use a pre-trained model` for how to use it.
|
||||||
|
|
||||||
.. HINT::
|
|
||||||
|
|
||||||
There are several decoding methods provided in `tdnn_lstm_ctc/decode.py <https://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/tdnn_lstm_ctc/train.py>`_, you can change the decoding method by modifying ``method`` parameter in function ``get_params()``.
|
|
||||||
|
|
||||||
|
|
||||||
.. _tdnn_lstm_ctc use a pre-trained model:
|
.. _tdnn_lstm_ctc use a pre-trained model:
|
||||||
|
|
||||||
@ -168,6 +164,16 @@ We have uploaded the pre-trained model to
|
|||||||
|
|
||||||
The following shows you how to use the pre-trained model.
|
The following shows you how to use the pre-trained model.
|
||||||
|
|
||||||
|
|
||||||
|
Install kaldifeat
|
||||||
|
~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
|
`kaldifeat <https://github.com/csukuangfj/kaldifeat>`_ is used to
|
||||||
|
extract features for a single sound file or multiple sound files
|
||||||
|
at the same time.
|
||||||
|
|
||||||
|
Please refer to `<https://github.com/csukuangfj/kaldifeat>`_ for installation.
|
||||||
|
|
||||||
Download the pre-trained model
|
Download the pre-trained model
|
||||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
@ -183,6 +189,10 @@ Download the pre-trained model
|
|||||||
|
|
||||||
You have to use ``git lfs`` to download the pre-trained model.
|
You have to use ``git lfs`` to download the pre-trained model.
|
||||||
|
|
||||||
|
.. CAUTION::
|
||||||
|
|
||||||
|
In order to use this pre-trained model, your k2 version has to be v1.7 or later.
|
||||||
|
|
||||||
After downloading, you will have the following files:
|
After downloading, you will have the following files:
|
||||||
|
|
||||||
.. code-block:: bash
|
.. code-block:: bash
|
||||||
@ -212,13 +222,75 @@ After downloading, you will have the following files:
|
|||||||
|
|
||||||
6 directories, 10 files
|
6 directories, 10 files
|
||||||
|
|
||||||
|
**File descriptions**:
|
||||||
|
|
||||||
Download kaldifeat
|
- ``data/lang_phone/HLG.pt``
|
||||||
~~~~~~~~~~~~~~~~~~
|
|
||||||
|
It is the decoding graph.
|
||||||
|
|
||||||
|
- ``data/lang_phone/tokens.txt``
|
||||||
|
|
||||||
|
It contains tokens and their IDs.
|
||||||
|
|
||||||
|
- ``data/lang_phone/words.txt``
|
||||||
|
|
||||||
|
It contains words and their IDs.
|
||||||
|
|
||||||
|
- ``data/lm/G_4_gram.pt``
|
||||||
|
|
||||||
|
It is a 4-gram LM, useful for LM rescoring.
|
||||||
|
|
||||||
|
- ``exp/pretrained.pt``
|
||||||
|
|
||||||
|
It contains pre-trained model parameters, obtained by averaging
|
||||||
|
checkpoints from ``epoch-14.pt`` to ``epoch-19.pt``.
|
||||||
|
Note: We have removed optimizer ``state_dict`` to reduce file size.
|
||||||
|
|
||||||
|
- ``test_waves/*.flac``
|
||||||
|
|
||||||
|
It contains some test sound files from LibriSpeech ``test-clean`` dataset.
|
||||||
|
|
||||||
|
- ``test_waves/trans.txt``
|
||||||
|
|
||||||
|
It contains the reference transcripts for the sound files in ``test_waves/``.
|
||||||
|
|
||||||
|
The information of the test sound files is listed below:
|
||||||
|
|
||||||
|
.. code-block:: bash
|
||||||
|
|
||||||
|
$ soxi tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/*.flac
|
||||||
|
|
||||||
|
Input File : 'tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1089-134686-0001.flac'
|
||||||
|
Channels : 1
|
||||||
|
Sample Rate : 16000
|
||||||
|
Precision : 16-bit
|
||||||
|
Duration : 00:00:06.62 = 106000 samples ~ 496.875 CDDA sectors
|
||||||
|
File Size : 116k
|
||||||
|
Bit Rate : 140k
|
||||||
|
Sample Encoding: 16-bit FLAC
|
||||||
|
|
||||||
|
|
||||||
|
Input File : 'tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0001.flac'
|
||||||
|
Channels : 1
|
||||||
|
Sample Rate : 16000
|
||||||
|
Precision : 16-bit
|
||||||
|
Duration : 00:00:16.71 = 267440 samples ~ 1253.62 CDDA sectors
|
||||||
|
File Size : 343k
|
||||||
|
Bit Rate : 164k
|
||||||
|
Sample Encoding: 16-bit FLAC
|
||||||
|
|
||||||
|
|
||||||
|
Input File : 'tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0002.flac'
|
||||||
|
Channels : 1
|
||||||
|
Sample Rate : 16000
|
||||||
|
Precision : 16-bit
|
||||||
|
Duration : 00:00:04.83 = 77200 samples ~ 361.875 CDDA sectors
|
||||||
|
File Size : 105k
|
||||||
|
Bit Rate : 174k
|
||||||
|
Sample Encoding: 16-bit FLAC
|
||||||
|
|
||||||
|
Total Duration of 3 files: 00:00:28.16
|
||||||
|
|
||||||
`kaldifeat <https://github.com/csukuangfj/kaldifeat>`_ is used for extracting
|
|
||||||
features from a single or multiple sound files. Please refer to
|
|
||||||
`<https://github.com/csukuangfj/kaldifeat>`_ to install ``kaldifeat`` first.
|
|
||||||
|
|
||||||
Inference with a pre-trained model
|
Inference with a pre-trained model
|
||||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
@ -21,6 +21,32 @@ To get more unique paths, we scaled the lattice.scores with 0.5 (see https://git
|
|||||||
|test-clean|1.3|1.2|
|
|test-clean|1.3|1.2|
|
||||||
|test-other|1.2|1.1|
|
|test-other|1.2|1.1|
|
||||||
|
|
||||||
|
You can use the following commands to reproduce our results:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
git clone https://github.com/k2-fsa/icefall
|
||||||
|
cd icefall
|
||||||
|
|
||||||
|
# It was using ef233486, you may not need to switch to it
|
||||||
|
# git checkout ef233486
|
||||||
|
|
||||||
|
cd egs/librispeech/ASR
|
||||||
|
./prepare.sh
|
||||||
|
|
||||||
|
export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
||||||
|
python conformer_ctc/train.py --bucketing-sampler True \
|
||||||
|
--concatenate-cuts False \
|
||||||
|
--max-duration 200 \
|
||||||
|
--full-libri True \
|
||||||
|
--world-size 4
|
||||||
|
|
||||||
|
python conformer_ctc/decode.py --lattice-score-scale 0.5 \
|
||||||
|
--epoch 34 \
|
||||||
|
--avg 20 \
|
||||||
|
--method attention-decoder \
|
||||||
|
--max-duration 20 \
|
||||||
|
--num-paths 100
|
||||||
|
```
|
||||||
|
|
||||||
### LibriSpeech training results (Tdnn-Lstm)
|
### LibriSpeech training results (Tdnn-Lstm)
|
||||||
#### 2021-08-24
|
#### 2021-08-24
|
||||||
@ -43,4 +69,3 @@ We searched the lm_score_scale for best results, the scales that produced the WE
|
|||||||
|--|--|
|
|--|--|
|
||||||
|test-clean|0.8|
|
|test-clean|0.8|
|
||||||
|test-other|0.9|
|
|test-other|0.9|
|
||||||
|
|
||||||
|
@ -56,8 +56,6 @@ class Conformer(Transformer):
|
|||||||
cnn_module_kernel: int = 31,
|
cnn_module_kernel: int = 31,
|
||||||
normalize_before: bool = True,
|
normalize_before: bool = True,
|
||||||
vgg_frontend: bool = False,
|
vgg_frontend: bool = False,
|
||||||
is_espnet_structure: bool = False,
|
|
||||||
mmi_loss: bool = True,
|
|
||||||
use_feat_batchnorm: bool = False,
|
use_feat_batchnorm: bool = False,
|
||||||
) -> None:
|
) -> None:
|
||||||
super(Conformer, self).__init__(
|
super(Conformer, self).__init__(
|
||||||
@ -72,7 +70,6 @@ class Conformer(Transformer):
|
|||||||
dropout=dropout,
|
dropout=dropout,
|
||||||
normalize_before=normalize_before,
|
normalize_before=normalize_before,
|
||||||
vgg_frontend=vgg_frontend,
|
vgg_frontend=vgg_frontend,
|
||||||
mmi_loss=mmi_loss,
|
|
||||||
use_feat_batchnorm=use_feat_batchnorm,
|
use_feat_batchnorm=use_feat_batchnorm,
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -85,12 +82,10 @@ class Conformer(Transformer):
|
|||||||
dropout,
|
dropout,
|
||||||
cnn_module_kernel,
|
cnn_module_kernel,
|
||||||
normalize_before,
|
normalize_before,
|
||||||
is_espnet_structure,
|
|
||||||
)
|
)
|
||||||
self.encoder = ConformerEncoder(encoder_layer, num_encoder_layers)
|
self.encoder = ConformerEncoder(encoder_layer, num_encoder_layers)
|
||||||
self.normalize_before = normalize_before
|
self.normalize_before = normalize_before
|
||||||
self.is_espnet_structure = is_espnet_structure
|
if self.normalize_before:
|
||||||
if self.normalize_before and self.is_espnet_structure:
|
|
||||||
self.after_norm = nn.LayerNorm(d_model)
|
self.after_norm = nn.LayerNorm(d_model)
|
||||||
else:
|
else:
|
||||||
# Note: TorchScript detects that self.after_norm could be used inside forward()
|
# Note: TorchScript detects that self.after_norm could be used inside forward()
|
||||||
@ -103,7 +98,7 @@ class Conformer(Transformer):
|
|||||||
"""
|
"""
|
||||||
Args:
|
Args:
|
||||||
x:
|
x:
|
||||||
The model input. Its shape is [N, T, C].
|
The model input. Its shape is (N, T, C).
|
||||||
supervisions:
|
supervisions:
|
||||||
Supervision in lhotse format.
|
Supervision in lhotse format.
|
||||||
See https://github.com/lhotse-speech/lhotse/blob/master/lhotse/dataset/speech_recognition.py#L32 # noqa
|
See https://github.com/lhotse-speech/lhotse/blob/master/lhotse/dataset/speech_recognition.py#L32 # noqa
|
||||||
@ -125,7 +120,7 @@ class Conformer(Transformer):
|
|||||||
mask = mask.to(x.device)
|
mask = mask.to(x.device)
|
||||||
x = self.encoder(x, pos_emb, src_key_padding_mask=mask) # (T, B, F)
|
x = self.encoder(x, pos_emb, src_key_padding_mask=mask) # (T, B, F)
|
||||||
|
|
||||||
if self.normalize_before and self.is_espnet_structure:
|
if self.normalize_before:
|
||||||
x = self.after_norm(x)
|
x = self.after_norm(x)
|
||||||
|
|
||||||
return x, mask
|
return x, mask
|
||||||
@ -159,11 +154,10 @@ class ConformerEncoderLayer(nn.Module):
|
|||||||
dropout: float = 0.1,
|
dropout: float = 0.1,
|
||||||
cnn_module_kernel: int = 31,
|
cnn_module_kernel: int = 31,
|
||||||
normalize_before: bool = True,
|
normalize_before: bool = True,
|
||||||
is_espnet_structure: bool = False,
|
|
||||||
) -> None:
|
) -> None:
|
||||||
super(ConformerEncoderLayer, self).__init__()
|
super(ConformerEncoderLayer, self).__init__()
|
||||||
self.self_attn = RelPositionMultiheadAttention(
|
self.self_attn = RelPositionMultiheadAttention(
|
||||||
d_model, nhead, dropout=0.0, is_espnet_structure=is_espnet_structure
|
d_model, nhead, dropout=0.0
|
||||||
)
|
)
|
||||||
|
|
||||||
self.feed_forward = nn.Sequential(
|
self.feed_forward = nn.Sequential(
|
||||||
@ -436,7 +430,6 @@ class RelPositionMultiheadAttention(nn.Module):
|
|||||||
embed_dim: int,
|
embed_dim: int,
|
||||||
num_heads: int,
|
num_heads: int,
|
||||||
dropout: float = 0.0,
|
dropout: float = 0.0,
|
||||||
is_espnet_structure: bool = False,
|
|
||||||
) -> None:
|
) -> None:
|
||||||
super(RelPositionMultiheadAttention, self).__init__()
|
super(RelPositionMultiheadAttention, self).__init__()
|
||||||
self.embed_dim = embed_dim
|
self.embed_dim = embed_dim
|
||||||
@ -459,8 +452,6 @@ class RelPositionMultiheadAttention(nn.Module):
|
|||||||
|
|
||||||
self._reset_parameters()
|
self._reset_parameters()
|
||||||
|
|
||||||
self.is_espnet_structure = is_espnet_structure
|
|
||||||
|
|
||||||
def _reset_parameters(self) -> None:
|
def _reset_parameters(self) -> None:
|
||||||
nn.init.xavier_uniform_(self.in_proj.weight)
|
nn.init.xavier_uniform_(self.in_proj.weight)
|
||||||
nn.init.constant_(self.in_proj.bias, 0.0)
|
nn.init.constant_(self.in_proj.bias, 0.0)
|
||||||
@ -690,9 +681,6 @@ class RelPositionMultiheadAttention(nn.Module):
|
|||||||
_b = _b[_start:]
|
_b = _b[_start:]
|
||||||
v = nn.functional.linear(value, _w, _b)
|
v = nn.functional.linear(value, _w, _b)
|
||||||
|
|
||||||
if not self.is_espnet_structure:
|
|
||||||
q = q * scaling
|
|
||||||
|
|
||||||
if attn_mask is not None:
|
if attn_mask is not None:
|
||||||
assert (
|
assert (
|
||||||
attn_mask.dtype == torch.float32
|
attn_mask.dtype == torch.float32
|
||||||
@ -785,11 +773,6 @@ class RelPositionMultiheadAttention(nn.Module):
|
|||||||
) # (batch, head, time1, 2*time1-1)
|
) # (batch, head, time1, 2*time1-1)
|
||||||
matrix_bd = self.rel_shift(matrix_bd)
|
matrix_bd = self.rel_shift(matrix_bd)
|
||||||
|
|
||||||
if not self.is_espnet_structure:
|
|
||||||
attn_output_weights = (
|
|
||||||
matrix_ac + matrix_bd
|
|
||||||
) # (batch, head, time1, time2)
|
|
||||||
else:
|
|
||||||
attn_output_weights = (
|
attn_output_weights = (
|
||||||
matrix_ac + matrix_bd
|
matrix_ac + matrix_bd
|
||||||
) * scaling # (batch, head, time1, time2)
|
) * scaling # (batch, head, time1, time2)
|
||||||
|
@ -45,6 +45,7 @@ from icefall.utils import (
|
|||||||
get_texts,
|
get_texts,
|
||||||
setup_logger,
|
setup_logger,
|
||||||
store_transcripts,
|
store_transcripts,
|
||||||
|
str2bool,
|
||||||
write_error_stats,
|
write_error_stats,
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -107,7 +108,7 @@ def get_parser():
|
|||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--lattice-score-scale",
|
"--lattice-score-scale",
|
||||||
type=float,
|
type=float,
|
||||||
default=1.0,
|
default=0.5,
|
||||||
help="""The scale to be applied to `lattice.scores`.
|
help="""The scale to be applied to `lattice.scores`.
|
||||||
It's needed if you use any kinds of n-best based rescoring.
|
It's needed if you use any kinds of n-best based rescoring.
|
||||||
Used only when "method" is one of the following values:
|
Used only when "method" is one of the following values:
|
||||||
@ -116,6 +117,17 @@ def get_parser():
|
|||||||
""",
|
""",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--export",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="""When enabled, the averaged model is saved to
|
||||||
|
conformer_ctc/exp/pretrained.pt. Note: only model.state_dict() is saved.
|
||||||
|
pretrained.pt contains a dict {"model": model.state_dict()},
|
||||||
|
which can be loaded by `icefall.checkpoint.load_checkpoint()`.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
return parser
|
return parser
|
||||||
|
|
||||||
|
|
||||||
@ -125,15 +137,15 @@ def get_params() -> AttributeDict:
|
|||||||
"exp_dir": Path("conformer_ctc/exp"),
|
"exp_dir": Path("conformer_ctc/exp"),
|
||||||
"lang_dir": Path("data/lang_bpe"),
|
"lang_dir": Path("data/lang_bpe"),
|
||||||
"lm_dir": Path("data/lm"),
|
"lm_dir": Path("data/lm"),
|
||||||
|
# parameters for conformer
|
||||||
|
"subsampling_factor": 4,
|
||||||
|
"vgg_frontend": False,
|
||||||
|
"use_feat_batchnorm": True,
|
||||||
"feature_dim": 80,
|
"feature_dim": 80,
|
||||||
"nhead": 8,
|
"nhead": 8,
|
||||||
"attention_dim": 512,
|
"attention_dim": 512,
|
||||||
"subsampling_factor": 4,
|
|
||||||
"num_decoder_layers": 6,
|
"num_decoder_layers": 6,
|
||||||
"vgg_frontend": False,
|
# parameters for decoding
|
||||||
"is_espnet_structure": True,
|
|
||||||
"mmi_loss": False,
|
|
||||||
"use_feat_batchnorm": True,
|
|
||||||
"search_beam": 20,
|
"search_beam": 20,
|
||||||
"output_beam": 8,
|
"output_beam": 8,
|
||||||
"min_active_states": 30,
|
"min_active_states": 30,
|
||||||
@ -201,12 +213,12 @@ def decode_one_batch(
|
|||||||
feature = batch["inputs"]
|
feature = batch["inputs"]
|
||||||
assert feature.ndim == 3
|
assert feature.ndim == 3
|
||||||
feature = feature.to(device)
|
feature = feature.to(device)
|
||||||
# at entry, feature is [N, T, C]
|
# at entry, feature is (N, T, C)
|
||||||
|
|
||||||
supervisions = batch["supervisions"]
|
supervisions = batch["supervisions"]
|
||||||
|
|
||||||
nnet_output, memory, memory_key_padding_mask = model(feature, supervisions)
|
nnet_output, memory, memory_key_padding_mask = model(feature, supervisions)
|
||||||
# nnet_output is [N, T, C]
|
# nnet_output is (N, T, C)
|
||||||
|
|
||||||
supervision_segments = torch.stack(
|
supervision_segments = torch.stack(
|
||||||
(
|
(
|
||||||
@ -232,14 +244,19 @@ def decode_one_batch(
|
|||||||
# Note: You can also pass rescored lattices to it.
|
# Note: You can also pass rescored lattices to it.
|
||||||
# We choose the HLG decoded lattice for speed reasons
|
# We choose the HLG decoded lattice for speed reasons
|
||||||
# as HLG decoding is faster and the oracle WER
|
# as HLG decoding is faster and the oracle WER
|
||||||
# is slightly worse than that of rescored lattices.
|
# is only slightly worse than that of rescored lattices.
|
||||||
return nbest_oracle(
|
best_path = nbest_oracle(
|
||||||
lattice=lattice,
|
lattice=lattice,
|
||||||
num_paths=params.num_paths,
|
num_paths=params.num_paths,
|
||||||
ref_texts=supervisions["text"],
|
ref_texts=supervisions["text"],
|
||||||
word_table=word_table,
|
word_table=word_table,
|
||||||
scale=params.lattice_score_scale,
|
lattice_score_scale=params.lattice_score_scale,
|
||||||
|
oov="<UNK>",
|
||||||
)
|
)
|
||||||
|
hyps = get_texts(best_path)
|
||||||
|
hyps = [[word_table[i] for i in ids] for ids in hyps]
|
||||||
|
key = f"oracle_{params.num_paths}_lattice_score_scale_{params.lattice_score_scale}" # noqa
|
||||||
|
return {key: hyps}
|
||||||
|
|
||||||
if params.method in ["1best", "nbest"]:
|
if params.method in ["1best", "nbest"]:
|
||||||
if params.method == "1best":
|
if params.method == "1best":
|
||||||
@ -252,7 +269,7 @@ def decode_one_batch(
|
|||||||
lattice=lattice,
|
lattice=lattice,
|
||||||
num_paths=params.num_paths,
|
num_paths=params.num_paths,
|
||||||
use_double_scores=params.use_double_scores,
|
use_double_scores=params.use_double_scores,
|
||||||
scale=params.lattice_score_scale,
|
lattice_score_scale=params.lattice_score_scale,
|
||||||
)
|
)
|
||||||
key = f"no_rescore-scale-{params.lattice_score_scale}-{params.num_paths}" # noqa
|
key = f"no_rescore-scale-{params.lattice_score_scale}-{params.num_paths}" # noqa
|
||||||
|
|
||||||
@ -266,7 +283,8 @@ def decode_one_batch(
|
|||||||
"attention-decoder",
|
"attention-decoder",
|
||||||
]
|
]
|
||||||
|
|
||||||
lm_scale_list = [0.8, 0.9, 1.0, 1.1, 1.2, 1.3]
|
lm_scale_list = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]
|
||||||
|
lm_scale_list += [0.8, 0.9, 1.0, 1.1, 1.2, 1.3]
|
||||||
lm_scale_list += [1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0]
|
lm_scale_list += [1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0]
|
||||||
|
|
||||||
if params.method == "nbest-rescoring":
|
if params.method == "nbest-rescoring":
|
||||||
@ -275,17 +293,23 @@ def decode_one_batch(
|
|||||||
G=G,
|
G=G,
|
||||||
num_paths=params.num_paths,
|
num_paths=params.num_paths,
|
||||||
lm_scale_list=lm_scale_list,
|
lm_scale_list=lm_scale_list,
|
||||||
scale=params.lattice_score_scale,
|
lattice_score_scale=params.lattice_score_scale,
|
||||||
)
|
)
|
||||||
elif params.method == "whole-lattice-rescoring":
|
elif params.method == "whole-lattice-rescoring":
|
||||||
best_path_dict = rescore_with_whole_lattice(
|
best_path_dict = rescore_with_whole_lattice(
|
||||||
lattice=lattice, G_with_epsilon_loops=G, lm_scale_list=lm_scale_list
|
lattice=lattice,
|
||||||
|
G_with_epsilon_loops=G,
|
||||||
|
lm_scale_list=lm_scale_list,
|
||||||
)
|
)
|
||||||
elif params.method == "attention-decoder":
|
elif params.method == "attention-decoder":
|
||||||
# lattice uses a 3-gram Lm. We rescore it with a 4-gram LM.
|
# lattice uses a 3-gram Lm. We rescore it with a 4-gram LM.
|
||||||
rescored_lattice = rescore_with_whole_lattice(
|
rescored_lattice = rescore_with_whole_lattice(
|
||||||
lattice=lattice, G_with_epsilon_loops=G, lm_scale_list=None
|
lattice=lattice,
|
||||||
|
G_with_epsilon_loops=G,
|
||||||
|
lm_scale_list=None,
|
||||||
)
|
)
|
||||||
|
# TODO: pass `lattice` instead of `rescored_lattice` to
|
||||||
|
# `rescore_with_attention_decoder`
|
||||||
|
|
||||||
best_path_dict = rescore_with_attention_decoder(
|
best_path_dict = rescore_with_attention_decoder(
|
||||||
lattice=rescored_lattice,
|
lattice=rescored_lattice,
|
||||||
@ -295,16 +319,20 @@ def decode_one_batch(
|
|||||||
memory_key_padding_mask=memory_key_padding_mask,
|
memory_key_padding_mask=memory_key_padding_mask,
|
||||||
sos_id=sos_id,
|
sos_id=sos_id,
|
||||||
eos_id=eos_id,
|
eos_id=eos_id,
|
||||||
scale=params.lattice_score_scale,
|
lattice_score_scale=params.lattice_score_scale,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
assert False, f"Unsupported decoding method: {params.method}"
|
assert False, f"Unsupported decoding method: {params.method}"
|
||||||
|
|
||||||
ans = dict()
|
ans = dict()
|
||||||
|
if best_path_dict is not None:
|
||||||
for lm_scale_str, best_path in best_path_dict.items():
|
for lm_scale_str, best_path in best_path_dict.items():
|
||||||
hyps = get_texts(best_path)
|
hyps = get_texts(best_path)
|
||||||
hyps = [[word_table[i] for i in ids] for ids in hyps]
|
hyps = [[word_table[i] for i in ids] for ids in hyps]
|
||||||
ans[lm_scale_str] = hyps
|
ans[lm_scale_str] = hyps
|
||||||
|
else:
|
||||||
|
for lm_scale in lm_scale_list:
|
||||||
|
ans[lm_scale_str] = [[] * lattice.shape[0]]
|
||||||
return ans
|
return ans
|
||||||
|
|
||||||
|
|
||||||
@ -525,8 +553,6 @@ def main():
|
|||||||
subsampling_factor=params.subsampling_factor,
|
subsampling_factor=params.subsampling_factor,
|
||||||
num_decoder_layers=params.num_decoder_layers,
|
num_decoder_layers=params.num_decoder_layers,
|
||||||
vgg_frontend=params.vgg_frontend,
|
vgg_frontend=params.vgg_frontend,
|
||||||
is_espnet_structure=params.is_espnet_structure,
|
|
||||||
mmi_loss=params.mmi_loss,
|
|
||||||
use_feat_batchnorm=params.use_feat_batchnorm,
|
use_feat_batchnorm=params.use_feat_batchnorm,
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -541,6 +567,13 @@ def main():
|
|||||||
logging.info(f"averaging {filenames}")
|
logging.info(f"averaging {filenames}")
|
||||||
model.load_state_dict(average_checkpoints(filenames))
|
model.load_state_dict(average_checkpoints(filenames))
|
||||||
|
|
||||||
|
if params.export:
|
||||||
|
logging.info(f"Export averaged model to {params.exp_dir}/pretrained.pt")
|
||||||
|
torch.save(
|
||||||
|
{"model": model.state_dict()}, f"{params.exp_dir}/pretrained.pt"
|
||||||
|
)
|
||||||
|
return
|
||||||
|
|
||||||
model.to(device)
|
model.to(device)
|
||||||
model.eval()
|
model.eval()
|
||||||
num_param = sum([p.numel() for p in model.parameters()])
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
|
@ -173,17 +173,17 @@ def get_parser():
|
|||||||
def get_params() -> AttributeDict:
|
def get_params() -> AttributeDict:
|
||||||
params = AttributeDict(
|
params = AttributeDict(
|
||||||
{
|
{
|
||||||
|
"sample_rate": 16000,
|
||||||
|
# parameters for conformer
|
||||||
|
"subsampling_factor": 4,
|
||||||
|
"vgg_frontend": False,
|
||||||
|
"use_feat_batchnorm": True,
|
||||||
"feature_dim": 80,
|
"feature_dim": 80,
|
||||||
"nhead": 8,
|
"nhead": 8,
|
||||||
"num_classes": 5000,
|
"num_classes": 5000,
|
||||||
"sample_rate": 16000,
|
|
||||||
"attention_dim": 512,
|
"attention_dim": 512,
|
||||||
"subsampling_factor": 4,
|
|
||||||
"num_decoder_layers": 6,
|
"num_decoder_layers": 6,
|
||||||
"vgg_frontend": False,
|
# parameters for decoding
|
||||||
"is_espnet_structure": True,
|
|
||||||
"mmi_loss": False,
|
|
||||||
"use_feat_batchnorm": True,
|
|
||||||
"search_beam": 20,
|
"search_beam": 20,
|
||||||
"output_beam": 8,
|
"output_beam": 8,
|
||||||
"min_active_states": 30,
|
"min_active_states": 30,
|
||||||
@ -241,8 +241,6 @@ def main():
|
|||||||
subsampling_factor=params.subsampling_factor,
|
subsampling_factor=params.subsampling_factor,
|
||||||
num_decoder_layers=params.num_decoder_layers,
|
num_decoder_layers=params.num_decoder_layers,
|
||||||
vgg_frontend=params.vgg_frontend,
|
vgg_frontend=params.vgg_frontend,
|
||||||
is_espnet_structure=params.is_espnet_structure,
|
|
||||||
mmi_loss=params.mmi_loss,
|
|
||||||
use_feat_batchnorm=params.use_feat_batchnorm,
|
use_feat_batchnorm=params.use_feat_batchnorm,
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -338,7 +336,7 @@ def main():
|
|||||||
memory_key_padding_mask=memory_key_padding_mask,
|
memory_key_padding_mask=memory_key_padding_mask,
|
||||||
sos_id=params.sos_id,
|
sos_id=params.sos_id,
|
||||||
eos_id=params.eos_id,
|
eos_id=params.eos_id,
|
||||||
scale=params.lattice_score_scale,
|
lattice_score_scale=params.lattice_score_scale,
|
||||||
ngram_lm_scale=params.ngram_lm_scale,
|
ngram_lm_scale=params.ngram_lm_scale,
|
||||||
attention_scale=params.attention_decoder_scale,
|
attention_scale=params.attention_decoder_scale,
|
||||||
)
|
)
|
||||||
|
@ -22,8 +22,8 @@ import torch.nn as nn
|
|||||||
class Conv2dSubsampling(nn.Module):
|
class Conv2dSubsampling(nn.Module):
|
||||||
"""Convolutional 2D subsampling (to 1/4 length).
|
"""Convolutional 2D subsampling (to 1/4 length).
|
||||||
|
|
||||||
Convert an input of shape [N, T, idim] to an output
|
Convert an input of shape (N, T, idim) to an output
|
||||||
with shape [N, T', odim], where
|
with shape (N, T', odim), where
|
||||||
T' = ((T-1)//2 - 1)//2, which approximates T' == T//4
|
T' = ((T-1)//2 - 1)//2, which approximates T' == T//4
|
||||||
|
|
||||||
It is based on
|
It is based on
|
||||||
@ -34,10 +34,10 @@ class Conv2dSubsampling(nn.Module):
|
|||||||
"""
|
"""
|
||||||
Args:
|
Args:
|
||||||
idim:
|
idim:
|
||||||
Input dim. The input shape is [N, T, idim].
|
Input dim. The input shape is (N, T, idim).
|
||||||
Caution: It requires: T >=7, idim >=7
|
Caution: It requires: T >=7, idim >=7
|
||||||
odim:
|
odim:
|
||||||
Output dim. The output shape is [N, ((T-1)//2 - 1)//2, odim]
|
Output dim. The output shape is (N, ((T-1)//2 - 1)//2, odim)
|
||||||
"""
|
"""
|
||||||
assert idim >= 7
|
assert idim >= 7
|
||||||
super().__init__()
|
super().__init__()
|
||||||
@ -58,18 +58,18 @@ class Conv2dSubsampling(nn.Module):
|
|||||||
|
|
||||||
Args:
|
Args:
|
||||||
x:
|
x:
|
||||||
Its shape is [N, T, idim].
|
Its shape is (N, T, idim).
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
Return a tensor of shape [N, ((T-1)//2 - 1)//2, odim]
|
Return a tensor of shape (N, ((T-1)//2 - 1)//2, odim)
|
||||||
"""
|
"""
|
||||||
# On entry, x is [N, T, idim]
|
# On entry, x is (N, T, idim)
|
||||||
x = x.unsqueeze(1) # [N, T, idim] -> [N, 1, T, idim] i.e., [N, C, H, W]
|
x = x.unsqueeze(1) # (N, T, idim) -> (N, 1, T, idim) i.e., (N, C, H, W)
|
||||||
x = self.conv(x)
|
x = self.conv(x)
|
||||||
# Now x is of shape [N, odim, ((T-1)//2 - 1)//2, ((idim-1)//2 - 1)//2]
|
# Now x is of shape (N, odim, ((T-1)//2 - 1)//2, ((idim-1)//2 - 1)//2)
|
||||||
b, c, t, f = x.size()
|
b, c, t, f = x.size()
|
||||||
x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f))
|
x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f))
|
||||||
# Now x is of shape [N, ((T-1)//2 - 1))//2, odim]
|
# Now x is of shape (N, ((T-1)//2 - 1))//2, odim)
|
||||||
return x
|
return x
|
||||||
|
|
||||||
|
|
||||||
@ -80,8 +80,8 @@ class VggSubsampling(nn.Module):
|
|||||||
This paper is not 100% explicit so I am guessing to some extent,
|
This paper is not 100% explicit so I am guessing to some extent,
|
||||||
and trying to compare with other VGG implementations.
|
and trying to compare with other VGG implementations.
|
||||||
|
|
||||||
Convert an input of shape [N, T, idim] to an output
|
Convert an input of shape (N, T, idim) to an output
|
||||||
with shape [N, T', odim], where
|
with shape (N, T', odim), where
|
||||||
T' = ((T-1)//2 - 1)//2, which approximates T' = T//4
|
T' = ((T-1)//2 - 1)//2, which approximates T' = T//4
|
||||||
"""
|
"""
|
||||||
|
|
||||||
@ -93,10 +93,10 @@ class VggSubsampling(nn.Module):
|
|||||||
|
|
||||||
Args:
|
Args:
|
||||||
idim:
|
idim:
|
||||||
Input dim. The input shape is [N, T, idim].
|
Input dim. The input shape is (N, T, idim).
|
||||||
Caution: It requires: T >=7, idim >=7
|
Caution: It requires: T >=7, idim >=7
|
||||||
odim:
|
odim:
|
||||||
Output dim. The output shape is [N, ((T-1)//2 - 1)//2, odim]
|
Output dim. The output shape is (N, ((T-1)//2 - 1)//2, odim)
|
||||||
"""
|
"""
|
||||||
super().__init__()
|
super().__init__()
|
||||||
|
|
||||||
@ -149,10 +149,10 @@ class VggSubsampling(nn.Module):
|
|||||||
|
|
||||||
Args:
|
Args:
|
||||||
x:
|
x:
|
||||||
Its shape is [N, T, idim].
|
Its shape is (N, T, idim).
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
Return a tensor of shape [N, ((T-1)//2 - 1)//2, odim]
|
Return a tensor of shape (N, ((T-1)//2 - 1)//2, odim)
|
||||||
"""
|
"""
|
||||||
x = x.unsqueeze(1)
|
x = x.unsqueeze(1)
|
||||||
x = self.layers(x)
|
x = self.layers(x)
|
||||||
|
@ -16,9 +16,8 @@
|
|||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
from subsampling import Conv2dSubsampling
|
|
||||||
from subsampling import VggSubsampling
|
|
||||||
import torch
|
import torch
|
||||||
|
from subsampling import Conv2dSubsampling, VggSubsampling
|
||||||
|
|
||||||
|
|
||||||
def test_conv2d_subsampling():
|
def test_conv2d_subsampling():
|
||||||
|
@ -17,17 +17,16 @@
|
|||||||
|
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
from torch.nn.utils.rnn import pad_sequence
|
||||||
from transformer import (
|
from transformer import (
|
||||||
Transformer,
|
Transformer,
|
||||||
|
add_eos,
|
||||||
|
add_sos,
|
||||||
|
decoder_padding_mask,
|
||||||
encoder_padding_mask,
|
encoder_padding_mask,
|
||||||
generate_square_subsequent_mask,
|
generate_square_subsequent_mask,
|
||||||
decoder_padding_mask,
|
|
||||||
add_sos,
|
|
||||||
add_eos,
|
|
||||||
)
|
)
|
||||||
|
|
||||||
from torch.nn.utils.rnn import pad_sequence
|
|
||||||
|
|
||||||
|
|
||||||
def test_encoder_padding_mask():
|
def test_encoder_padding_mask():
|
||||||
supervisions = {
|
supervisions = {
|
||||||
|
@ -1,5 +1,6 @@
|
|||||||
#!/usr/bin/env python3
|
#!/usr/bin/env python3
|
||||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang,
|
||||||
|
# Wei Kang)
|
||||||
#
|
#
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
#
|
#
|
||||||
@ -111,15 +112,6 @@ def get_params() -> AttributeDict:
|
|||||||
- lang_dir: It contains language related input files such as
|
- lang_dir: It contains language related input files such as
|
||||||
"lexicon.txt"
|
"lexicon.txt"
|
||||||
|
|
||||||
- lr: It specifies the initial learning rate
|
|
||||||
|
|
||||||
- feature_dim: The model input dim. It has to match the one used
|
|
||||||
in computing features.
|
|
||||||
|
|
||||||
- weight_decay: The weight_decay for the optimizer.
|
|
||||||
|
|
||||||
- subsampling_factor: The subsampling factor for the model.
|
|
||||||
|
|
||||||
- best_train_loss: Best training loss so far. It is used to select
|
- best_train_loss: Best training loss so far. It is used to select
|
||||||
the model that has the lowest training loss. It is
|
the model that has the lowest training loss. It is
|
||||||
updated during the training.
|
updated during the training.
|
||||||
@ -138,23 +130,40 @@ def get_params() -> AttributeDict:
|
|||||||
|
|
||||||
- log_interval: Print training loss if batch_idx % log_interval` is 0
|
- log_interval: Print training loss if batch_idx % log_interval` is 0
|
||||||
|
|
||||||
|
- reset_interval: Reset statistics if batch_idx % reset_interval is 0
|
||||||
|
|
||||||
- valid_interval: Run validation if batch_idx % valid_interval is 0
|
- valid_interval: Run validation if batch_idx % valid_interval is 0
|
||||||
|
|
||||||
- reset_interval: Reset statistics if batch_idx % reset_interval is 0
|
- feature_dim: The model input dim. It has to match the one used
|
||||||
|
in computing features.
|
||||||
|
|
||||||
|
- subsampling_factor: The subsampling factor for the model.
|
||||||
|
|
||||||
|
- use_feat_batchnorm: Whether to do batch normalization for the
|
||||||
|
input features.
|
||||||
|
|
||||||
|
- attention_dim: Hidden dim for multi-head attention model.
|
||||||
|
|
||||||
|
- head: Number of heads of multi-head attention model.
|
||||||
|
|
||||||
|
- num_decoder_layers: Number of decoder layer of transformer decoder.
|
||||||
|
|
||||||
- beam_size: It is used in k2.ctc_loss
|
- beam_size: It is used in k2.ctc_loss
|
||||||
|
|
||||||
- reduction: It is used in k2.ctc_loss
|
- reduction: It is used in k2.ctc_loss
|
||||||
|
|
||||||
- use_double_scores: It is used in k2.ctc_loss
|
- use_double_scores: It is used in k2.ctc_loss
|
||||||
|
|
||||||
|
- weight_decay: The weight_decay for the optimizer.
|
||||||
|
|
||||||
|
- lr_factor: The lr_factor for Noam optimizer.
|
||||||
|
|
||||||
|
- warm_step: The warm_step for Noam optimizer.
|
||||||
"""
|
"""
|
||||||
params = AttributeDict(
|
params = AttributeDict(
|
||||||
{
|
{
|
||||||
"exp_dir": Path("conformer_ctc/exp"),
|
"exp_dir": Path("conformer_ctc/exp"),
|
||||||
"lang_dir": Path("data/lang_bpe"),
|
"lang_dir": Path("data/lang_bpe"),
|
||||||
"feature_dim": 80,
|
|
||||||
"weight_decay": 1e-6,
|
|
||||||
"subsampling_factor": 4,
|
|
||||||
"best_train_loss": float("inf"),
|
"best_train_loss": float("inf"),
|
||||||
"best_valid_loss": float("inf"),
|
"best_valid_loss": float("inf"),
|
||||||
"best_train_epoch": -1,
|
"best_train_epoch": -1,
|
||||||
@ -163,17 +172,20 @@ def get_params() -> AttributeDict:
|
|||||||
"log_interval": 10,
|
"log_interval": 10,
|
||||||
"reset_interval": 200,
|
"reset_interval": 200,
|
||||||
"valid_interval": 3000,
|
"valid_interval": 3000,
|
||||||
"beam_size": 10,
|
# parameters for conformer
|
||||||
"reduction": "sum",
|
"feature_dim": 80,
|
||||||
"use_double_scores": True,
|
"subsampling_factor": 4,
|
||||||
"accum_grad": 1,
|
"use_feat_batchnorm": True,
|
||||||
"att_rate": 0.7,
|
|
||||||
"attention_dim": 512,
|
"attention_dim": 512,
|
||||||
"nhead": 8,
|
"nhead": 8,
|
||||||
"num_decoder_layers": 6,
|
"num_decoder_layers": 6,
|
||||||
"is_espnet_structure": True,
|
# parameters for loss
|
||||||
"mmi_loss": False,
|
"beam_size": 10,
|
||||||
"use_feat_batchnorm": True,
|
"reduction": "sum",
|
||||||
|
"use_double_scores": True,
|
||||||
|
"att_rate": 0.7,
|
||||||
|
# parameters for Noam
|
||||||
|
"weight_decay": 1e-6,
|
||||||
"lr_factor": 5.0,
|
"lr_factor": 5.0,
|
||||||
"warm_step": 80000,
|
"warm_step": 80000,
|
||||||
}
|
}
|
||||||
@ -298,14 +310,14 @@ def compute_loss(
|
|||||||
"""
|
"""
|
||||||
device = graph_compiler.device
|
device = graph_compiler.device
|
||||||
feature = batch["inputs"]
|
feature = batch["inputs"]
|
||||||
# at entry, feature is [N, T, C]
|
# at entry, feature is (N, T, C)
|
||||||
assert feature.ndim == 3
|
assert feature.ndim == 3
|
||||||
feature = feature.to(device)
|
feature = feature.to(device)
|
||||||
|
|
||||||
supervisions = batch["supervisions"]
|
supervisions = batch["supervisions"]
|
||||||
with torch.set_grad_enabled(is_training):
|
with torch.set_grad_enabled(is_training):
|
||||||
nnet_output, encoder_memory, memory_mask = model(feature, supervisions)
|
nnet_output, encoder_memory, memory_mask = model(feature, supervisions)
|
||||||
# nnet_output is [N, T, C]
|
# nnet_output is (N, T, C)
|
||||||
|
|
||||||
# NOTE: We need `encode_supervisions` to sort sequences with
|
# NOTE: We need `encode_supervisions` to sort sequences with
|
||||||
# different duration in decreasing order, required by
|
# different duration in decreasing order, required by
|
||||||
@ -646,8 +658,6 @@ def run(rank, world_size, args):
|
|||||||
subsampling_factor=params.subsampling_factor,
|
subsampling_factor=params.subsampling_factor,
|
||||||
num_decoder_layers=params.num_decoder_layers,
|
num_decoder_layers=params.num_decoder_layers,
|
||||||
vgg_frontend=False,
|
vgg_frontend=False,
|
||||||
is_espnet_structure=params.is_espnet_structure,
|
|
||||||
mmi_loss=params.mmi_loss,
|
|
||||||
use_feat_batchnorm=params.use_feat_batchnorm,
|
use_feat_batchnorm=params.use_feat_batchnorm,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@ -41,7 +41,6 @@ class Transformer(nn.Module):
|
|||||||
dropout: float = 0.1,
|
dropout: float = 0.1,
|
||||||
normalize_before: bool = True,
|
normalize_before: bool = True,
|
||||||
vgg_frontend: bool = False,
|
vgg_frontend: bool = False,
|
||||||
mmi_loss: bool = True,
|
|
||||||
use_feat_batchnorm: bool = False,
|
use_feat_batchnorm: bool = False,
|
||||||
) -> None:
|
) -> None:
|
||||||
"""
|
"""
|
||||||
@ -70,7 +69,6 @@ class Transformer(nn.Module):
|
|||||||
If True, use pre-layer norm; False to use post-layer norm.
|
If True, use pre-layer norm; False to use post-layer norm.
|
||||||
vgg_frontend:
|
vgg_frontend:
|
||||||
True to use vgg style frontend for subsampling.
|
True to use vgg style frontend for subsampling.
|
||||||
mmi_loss:
|
|
||||||
use_feat_batchnorm:
|
use_feat_batchnorm:
|
||||||
True to use batchnorm for the input layer.
|
True to use batchnorm for the input layer.
|
||||||
"""
|
"""
|
||||||
@ -85,8 +83,8 @@ class Transformer(nn.Module):
|
|||||||
if subsampling_factor != 4:
|
if subsampling_factor != 4:
|
||||||
raise NotImplementedError("Support only 'subsampling_factor=4'.")
|
raise NotImplementedError("Support only 'subsampling_factor=4'.")
|
||||||
|
|
||||||
# self.encoder_embed converts the input of shape [N, T, num_classes]
|
# self.encoder_embed converts the input of shape (N, T, num_classes)
|
||||||
# to the shape [N, T//subsampling_factor, d_model].
|
# to the shape (N, T//subsampling_factor, d_model).
|
||||||
# That is, it does two things simultaneously:
|
# That is, it does two things simultaneously:
|
||||||
# (1) subsampling: T -> T//subsampling_factor
|
# (1) subsampling: T -> T//subsampling_factor
|
||||||
# (2) embedding: num_classes -> d_model
|
# (2) embedding: num_classes -> d_model
|
||||||
@ -122,11 +120,6 @@ class Transformer(nn.Module):
|
|||||||
)
|
)
|
||||||
|
|
||||||
if num_decoder_layers > 0:
|
if num_decoder_layers > 0:
|
||||||
if mmi_loss:
|
|
||||||
self.decoder_num_class = (
|
|
||||||
self.num_classes + 1
|
|
||||||
) # +1 for the sos/eos symbol
|
|
||||||
else:
|
|
||||||
self.decoder_num_class = (
|
self.decoder_num_class = (
|
||||||
self.num_classes
|
self.num_classes
|
||||||
) # bpe model already has sos/eos symbol
|
) # bpe model already has sos/eos symbol
|
||||||
@ -169,7 +162,7 @@ class Transformer(nn.Module):
|
|||||||
"""
|
"""
|
||||||
Args:
|
Args:
|
||||||
x:
|
x:
|
||||||
The input tensor. Its shape is [N, T, C].
|
The input tensor. Its shape is (N, T, C).
|
||||||
supervision:
|
supervision:
|
||||||
Supervision in lhotse format.
|
Supervision in lhotse format.
|
||||||
See https://github.com/lhotse-speech/lhotse/blob/master/lhotse/dataset/speech_recognition.py#L32 # noqa
|
See https://github.com/lhotse-speech/lhotse/blob/master/lhotse/dataset/speech_recognition.py#L32 # noqa
|
||||||
@ -178,17 +171,17 @@ class Transformer(nn.Module):
|
|||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
Return a tuple containing 3 tensors:
|
Return a tuple containing 3 tensors:
|
||||||
- CTC output for ctc decoding. Its shape is [N, T, C]
|
- CTC output for ctc decoding. Its shape is (N, T, C)
|
||||||
- Encoder output with shape [T, N, C]. It can be used as key and
|
- Encoder output with shape (T, N, C). It can be used as key and
|
||||||
value for the decoder.
|
value for the decoder.
|
||||||
- Encoder output padding mask. It can be used as
|
- Encoder output padding mask. It can be used as
|
||||||
memory_key_padding_mask for the decoder. Its shape is [N, T].
|
memory_key_padding_mask for the decoder. Its shape is (N, T).
|
||||||
It is None if `supervision` is None.
|
It is None if `supervision` is None.
|
||||||
"""
|
"""
|
||||||
if self.use_feat_batchnorm:
|
if self.use_feat_batchnorm:
|
||||||
x = x.permute(0, 2, 1) # [N, T, C] -> [N, C, T]
|
x = x.permute(0, 2, 1) # (N, T, C) -> (N, C, T)
|
||||||
x = self.feat_batchnorm(x)
|
x = self.feat_batchnorm(x)
|
||||||
x = x.permute(0, 2, 1) # [N, C, T] -> [N, T, C]
|
x = x.permute(0, 2, 1) # (N, C, T) -> (N, T, C)
|
||||||
encoder_memory, memory_key_padding_mask = self.run_encoder(
|
encoder_memory, memory_key_padding_mask = self.run_encoder(
|
||||||
x, supervision
|
x, supervision
|
||||||
)
|
)
|
||||||
@ -202,7 +195,7 @@ class Transformer(nn.Module):
|
|||||||
|
|
||||||
Args:
|
Args:
|
||||||
x:
|
x:
|
||||||
The model input. Its shape is [N, T, C].
|
The model input. Its shape is (N, T, C).
|
||||||
supervisions:
|
supervisions:
|
||||||
Supervision in lhotse format.
|
Supervision in lhotse format.
|
||||||
See https://github.com/lhotse-speech/lhotse/blob/master/lhotse/dataset/speech_recognition.py#L32 # noqa
|
See https://github.com/lhotse-speech/lhotse/blob/master/lhotse/dataset/speech_recognition.py#L32 # noqa
|
||||||
@ -213,8 +206,8 @@ class Transformer(nn.Module):
|
|||||||
padding mask for the decoder.
|
padding mask for the decoder.
|
||||||
Returns:
|
Returns:
|
||||||
Return a tuple with two tensors:
|
Return a tuple with two tensors:
|
||||||
- The encoder output, with shape [T, N, C]
|
- The encoder output, with shape (T, N, C)
|
||||||
- encoder padding mask, with shape [N, T].
|
- encoder padding mask, with shape (N, T).
|
||||||
The mask is None if `supervisions` is None.
|
The mask is None if `supervisions` is None.
|
||||||
It is used as memory key padding mask in the decoder.
|
It is used as memory key padding mask in the decoder.
|
||||||
"""
|
"""
|
||||||
@ -232,11 +225,11 @@ class Transformer(nn.Module):
|
|||||||
Args:
|
Args:
|
||||||
x:
|
x:
|
||||||
The output tensor from the transformer encoder.
|
The output tensor from the transformer encoder.
|
||||||
Its shape is [T, N, C]
|
Its shape is (T, N, C)
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
Return a tensor that can be used for CTC decoding.
|
Return a tensor that can be used for CTC decoding.
|
||||||
Its shape is [N, T, C]
|
Its shape is (N, T, C)
|
||||||
"""
|
"""
|
||||||
x = self.encoder_output_layer(x)
|
x = self.encoder_output_layer(x)
|
||||||
x = x.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
x = x.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
||||||
@ -254,7 +247,7 @@ class Transformer(nn.Module):
|
|||||||
"""
|
"""
|
||||||
Args:
|
Args:
|
||||||
memory:
|
memory:
|
||||||
It's the output of the encoder with shape [T, N, C]
|
It's the output of the encoder with shape (T, N, C)
|
||||||
memory_key_padding_mask:
|
memory_key_padding_mask:
|
||||||
The padding mask from the encoder.
|
The padding mask from the encoder.
|
||||||
token_ids:
|
token_ids:
|
||||||
@ -319,7 +312,7 @@ class Transformer(nn.Module):
|
|||||||
"""
|
"""
|
||||||
Args:
|
Args:
|
||||||
memory:
|
memory:
|
||||||
It's the output of the encoder with shape [T, N, C]
|
It's the output of the encoder with shape (T, N, C)
|
||||||
memory_key_padding_mask:
|
memory_key_padding_mask:
|
||||||
The padding mask from the encoder.
|
The padding mask from the encoder.
|
||||||
token_ids:
|
token_ids:
|
||||||
@ -661,13 +654,13 @@ class PositionalEncoding(nn.Module):
|
|||||||
def extend_pe(self, x: torch.Tensor) -> None:
|
def extend_pe(self, x: torch.Tensor) -> None:
|
||||||
"""Extend the time t in the positional encoding if required.
|
"""Extend the time t in the positional encoding if required.
|
||||||
|
|
||||||
The shape of `self.pe` is [1, T1, d_model]. The shape of the input x
|
The shape of `self.pe` is (1, T1, d_model). The shape of the input x
|
||||||
is [N, T, d_model]. If T > T1, then we change the shape of self.pe
|
is (N, T, d_model). If T > T1, then we change the shape of self.pe
|
||||||
to [N, T, d_model]. Otherwise, nothing is done.
|
to (N, T, d_model). Otherwise, nothing is done.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
x:
|
x:
|
||||||
It is a tensor of shape [N, T, C].
|
It is a tensor of shape (N, T, C).
|
||||||
Returns:
|
Returns:
|
||||||
Return None.
|
Return None.
|
||||||
"""
|
"""
|
||||||
@ -685,7 +678,7 @@ class PositionalEncoding(nn.Module):
|
|||||||
pe[:, 0::2] = torch.sin(position * div_term)
|
pe[:, 0::2] = torch.sin(position * div_term)
|
||||||
pe[:, 1::2] = torch.cos(position * div_term)
|
pe[:, 1::2] = torch.cos(position * div_term)
|
||||||
pe = pe.unsqueeze(0)
|
pe = pe.unsqueeze(0)
|
||||||
# Now pe is of shape [1, T, d_model], where T is x.size(1)
|
# Now pe is of shape (1, T, d_model), where T is x.size(1)
|
||||||
self.pe = pe.to(device=x.device, dtype=x.dtype)
|
self.pe = pe.to(device=x.device, dtype=x.dtype)
|
||||||
|
|
||||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||||
@ -694,10 +687,10 @@ class PositionalEncoding(nn.Module):
|
|||||||
|
|
||||||
Args:
|
Args:
|
||||||
x:
|
x:
|
||||||
Its shape is [N, T, C]
|
Its shape is (N, T, C)
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
Return a tensor of shape [N, T, C]
|
Return a tensor of shape (N, T, C)
|
||||||
"""
|
"""
|
||||||
self.extend_pe(x)
|
self.extend_pe(x)
|
||||||
x = x * self.xscale + self.pe[:, : x.size(1), :]
|
x = x * self.xscale + self.pe[:, : x.size(1), :]
|
||||||
|
@ -102,14 +102,14 @@ def compile_HLG(lang_dir: str) -> k2.Fsa:
|
|||||||
|
|
||||||
LG.labels[LG.labels >= first_token_disambig_id] = 0
|
LG.labels[LG.labels >= first_token_disambig_id] = 0
|
||||||
|
|
||||||
assert isinstance(LG.aux_labels, k2.RaggedInt)
|
assert isinstance(LG.aux_labels, k2.RaggedTensor)
|
||||||
LG.aux_labels.values()[LG.aux_labels.values() >= first_word_disambig_id] = 0
|
LG.aux_labels.values[LG.aux_labels.values >= first_word_disambig_id] = 0
|
||||||
|
|
||||||
LG = k2.remove_epsilon(LG)
|
LG = k2.remove_epsilon(LG)
|
||||||
logging.info(f"LG shape after k2.remove_epsilon: {LG.shape}")
|
logging.info(f"LG shape after k2.remove_epsilon: {LG.shape}")
|
||||||
|
|
||||||
LG = k2.connect(LG)
|
LG = k2.connect(LG)
|
||||||
LG.aux_labels = k2.ragged.remove_values_eq(LG.aux_labels, 0)
|
LG.aux_labels = LG.aux_labels.remove_values_eq(0)
|
||||||
|
|
||||||
logging.info("Arc sorting LG")
|
logging.info("Arc sorting LG")
|
||||||
LG = k2.arc_sort(LG)
|
LG = k2.arc_sort(LG)
|
||||||
|
@ -1,270 +0,0 @@
|
|||||||
|
|
||||||
# How to use a pre-trained model to transcribe a sound file or multiple sound files
|
|
||||||
|
|
||||||
(See the bottom of this document for the link to a colab notebook.)
|
|
||||||
|
|
||||||
You need to prepare 4 files:
|
|
||||||
|
|
||||||
- a model checkpoint file, e.g., epoch-20.pt
|
|
||||||
- HLG.pt, the decoding graph
|
|
||||||
- words.txt, the word symbol table
|
|
||||||
- a sound file, whose sampling rate has to be 16 kHz.
|
|
||||||
Supported formats are those supported by `torchaudio.load()`,
|
|
||||||
e.g., wav and flac.
|
|
||||||
|
|
||||||
Also, you need to install `kaldifeat`. Please refer to
|
|
||||||
<https://github.com/csukuangfj/kaldifeat> for installation.
|
|
||||||
|
|
||||||
```bash
|
|
||||||
./tdnn_lstm_ctc/pretrained.py --help
|
|
||||||
```
|
|
||||||
|
|
||||||
displays the help information.
|
|
||||||
|
|
||||||
## HLG decoding
|
|
||||||
|
|
||||||
Once you have the above files ready and have `kaldifeat` installed,
|
|
||||||
you can run:
|
|
||||||
|
|
||||||
```bash
|
|
||||||
./tdnn_lstm_ctc/pretrained.py \
|
|
||||||
--checkpoint /path/to/your/checkpoint.pt \
|
|
||||||
--words-file /path/to/words.txt \
|
|
||||||
--HLG /path/to/HLG.pt \
|
|
||||||
/path/to/your/sound.wav
|
|
||||||
```
|
|
||||||
|
|
||||||
and you will see the transcribed result.
|
|
||||||
|
|
||||||
If you want to transcribe multiple files at the same time, you can use:
|
|
||||||
|
|
||||||
```bash
|
|
||||||
./tdnn_lstm_ctc/pretrained.py \
|
|
||||||
--checkpoint /path/to/your/checkpoint.pt \
|
|
||||||
--words-file /path/to/words.txt \
|
|
||||||
--HLG /path/to/HLG.pt \
|
|
||||||
/path/to/your/sound1.wav \
|
|
||||||
/path/to/your/sound2.wav \
|
|
||||||
/path/to/your/sound3.wav
|
|
||||||
```
|
|
||||||
|
|
||||||
**Note**: This is the fastest decoding method.
|
|
||||||
|
|
||||||
## HLG decoding + LM rescoring
|
|
||||||
|
|
||||||
`./tdnn_lstm_ctc/pretrained.py` also supports `whole lattice LM rescoring`.
|
|
||||||
|
|
||||||
To use whole lattice LM rescoring, you also need the following files:
|
|
||||||
|
|
||||||
- G.pt, e.g., `data/lm/G_4_gram.pt` if you have run `./prepare.sh`
|
|
||||||
|
|
||||||
The command to run decoding with LM rescoring is:
|
|
||||||
|
|
||||||
```bash
|
|
||||||
./tdnn_lstm_ctc/pretrained.py \
|
|
||||||
--checkpoint /path/to/your/checkpoint.pt \
|
|
||||||
--words-file /path/to/words.txt \
|
|
||||||
--HLG /path/to/HLG.pt \
|
|
||||||
--method whole-lattice-rescoring \
|
|
||||||
--G data/lm/G_4_gram.pt \
|
|
||||||
--ngram-lm-scale 0.8 \
|
|
||||||
/path/to/your/sound1.wav \
|
|
||||||
/path/to/your/sound2.wav \
|
|
||||||
/path/to/your/sound3.wav
|
|
||||||
```
|
|
||||||
|
|
||||||
# Decoding with a pre-trained model in action
|
|
||||||
|
|
||||||
We have uploaded a pre-trained model to <https://huggingface.co/pkufool/icefall_asr_librispeech_tdnn-lstm_ctc>
|
|
||||||
|
|
||||||
The following shows the steps about the usage of the provided pre-trained model.
|
|
||||||
|
|
||||||
### (1) Download the pre-trained model
|
|
||||||
|
|
||||||
```bash
|
|
||||||
sudo apt-get install git-lfs
|
|
||||||
cd /path/to/icefall/egs/librispeech/ASR
|
|
||||||
git lfs install
|
|
||||||
mkdir tmp
|
|
||||||
cd tmp
|
|
||||||
git clone https://huggingface.co/pkufool/icefall_asr_librispeech_tdnn-lstm_ctc
|
|
||||||
```
|
|
||||||
|
|
||||||
**CAUTION**: You have to install `git-lfs` to download the pre-trained model.
|
|
||||||
|
|
||||||
You will find the following files:
|
|
||||||
|
|
||||||
```
|
|
||||||
tmp/
|
|
||||||
`-- icefall_asr_librispeech_tdnn-lstm_ctc
|
|
||||||
|-- README.md
|
|
||||||
|-- data
|
|
||||||
| |-- lang_phone
|
|
||||||
| | |-- HLG.pt
|
|
||||||
| | |-- tokens.txt
|
|
||||||
| | `-- words.txt
|
|
||||||
| `-- lm
|
|
||||||
| `-- G_4_gram.pt
|
|
||||||
|-- exp
|
|
||||||
| `-- pretrained.pt
|
|
||||||
`-- test_wavs
|
|
||||||
|-- 1089-134686-0001.flac
|
|
||||||
|-- 1221-135766-0001.flac
|
|
||||||
|-- 1221-135766-0002.flac
|
|
||||||
`-- trans.txt
|
|
||||||
|
|
||||||
6 directories, 10 files
|
|
||||||
```
|
|
||||||
|
|
||||||
**File descriptions**:
|
|
||||||
|
|
||||||
- `data/lang_phone/HLG.pt`
|
|
||||||
|
|
||||||
It is the decoding graph.
|
|
||||||
|
|
||||||
- `data/lang_phone/tokens.txt`
|
|
||||||
|
|
||||||
It contains tokens and their IDs.
|
|
||||||
|
|
||||||
- `data/lang_phone/words.txt`
|
|
||||||
|
|
||||||
It contains words and their IDs.
|
|
||||||
|
|
||||||
- `data/lm/G_4_gram.pt`
|
|
||||||
|
|
||||||
It is a 4-gram LM, useful for LM rescoring.
|
|
||||||
|
|
||||||
- `exp/pretrained.pt`
|
|
||||||
|
|
||||||
It contains pre-trained model parameters, obtained by averaging
|
|
||||||
checkpoints from `epoch-14.pt` to `epoch-19.pt`.
|
|
||||||
Note: We have removed optimizer `state_dict` to reduce file size.
|
|
||||||
|
|
||||||
- `test_waves/*.flac`
|
|
||||||
|
|
||||||
It contains some test sound files from LibriSpeech `test-clean` dataset.
|
|
||||||
|
|
||||||
- `test_waves/trans.txt`
|
|
||||||
|
|
||||||
It contains the reference transcripts for the sound files in `test_waves/`.
|
|
||||||
|
|
||||||
The information of the test sound files is listed below:
|
|
||||||
|
|
||||||
```
|
|
||||||
$ soxi tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/*.flac
|
|
||||||
|
|
||||||
Input File : 'tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1089-134686-0001.flac'
|
|
||||||
Channels : 1
|
|
||||||
Sample Rate : 16000
|
|
||||||
Precision : 16-bit
|
|
||||||
Duration : 00:00:06.62 = 106000 samples ~ 496.875 CDDA sectors
|
|
||||||
File Size : 116k
|
|
||||||
Bit Rate : 140k
|
|
||||||
Sample Encoding: 16-bit FLAC
|
|
||||||
|
|
||||||
|
|
||||||
Input File : 'tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0001.flac'
|
|
||||||
Channels : 1
|
|
||||||
Sample Rate : 16000
|
|
||||||
Precision : 16-bit
|
|
||||||
Duration : 00:00:16.71 = 267440 samples ~ 1253.62 CDDA sectors
|
|
||||||
File Size : 343k
|
|
||||||
Bit Rate : 164k
|
|
||||||
Sample Encoding: 16-bit FLAC
|
|
||||||
|
|
||||||
|
|
||||||
Input File : 'tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0002.flac'
|
|
||||||
Channels : 1
|
|
||||||
Sample Rate : 16000
|
|
||||||
Precision : 16-bit
|
|
||||||
Duration : 00:00:04.83 = 77200 samples ~ 361.875 CDDA sectors
|
|
||||||
File Size : 105k
|
|
||||||
Bit Rate : 174k
|
|
||||||
Sample Encoding: 16-bit FLAC
|
|
||||||
|
|
||||||
Total Duration of 3 files: 00:00:28.16
|
|
||||||
```
|
|
||||||
|
|
||||||
### (2) Use HLG decoding
|
|
||||||
|
|
||||||
```bash
|
|
||||||
cd /path/to/icefall/egs/librispeech/ASR
|
|
||||||
|
|
||||||
./tdnn_lstm_ctc/pretrained.py \
|
|
||||||
--checkpoint ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/exp/pretraind.pt \
|
|
||||||
--words-file ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/data/lang_phone/words.txt \
|
|
||||||
--HLG ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/data/lang_phone/HLG.pt \
|
|
||||||
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1089-134686-0001.flac \
|
|
||||||
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0001.flac \
|
|
||||||
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0002.flac
|
|
||||||
```
|
|
||||||
|
|
||||||
The output is given below:
|
|
||||||
|
|
||||||
```
|
|
||||||
2021-08-24 16:57:13,315 INFO [pretrained.py:168] device: cuda:0
|
|
||||||
2021-08-24 16:57:13,315 INFO [pretrained.py:170] Creating model
|
|
||||||
2021-08-24 16:57:18,331 INFO [pretrained.py:182] Loading HLG from ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/data/lang_phone/HLG.pt
|
|
||||||
2021-08-24 16:57:27,581 INFO [pretrained.py:199] Constructing Fbank computer
|
|
||||||
2021-08-24 16:57:27,584 INFO [pretrained.py:209] Reading sound files: ['./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1089-134686-0001.flac', './tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0001.flac', './tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0002.flac']
|
|
||||||
2021-08-24 16:57:27,599 INFO [pretrained.py:215] Decoding started
|
|
||||||
2021-08-24 16:57:27,791 INFO [pretrained.py:245] Use HLG decoding
|
|
||||||
2021-08-24 16:57:28,098 INFO [pretrained.py:266]
|
|
||||||
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1089-134686-0001.flac:
|
|
||||||
AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS
|
|
||||||
|
|
||||||
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0001.flac:
|
|
||||||
GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY CHILD WHOSE PLACE WAS ON THAT SAME DISHONORED BOSOM TO CONNECT HER PARENT FOREVER WITH THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN
|
|
||||||
|
|
||||||
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0002.flac:
|
|
||||||
YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION
|
|
||||||
|
|
||||||
|
|
||||||
2021-08-24 16:57:28,099 INFO [pretrained.py:268] Decoding Done
|
|
||||||
```
|
|
||||||
|
|
||||||
### (3) Use HLG decoding + LM rescoring
|
|
||||||
|
|
||||||
```bash
|
|
||||||
./tdnn_lstm_ctc/pretrained.py \
|
|
||||||
--checkpoint ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/exp/pretraind.pt \
|
|
||||||
--words-file ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/data/lang_phone/words.txt \
|
|
||||||
--HLG ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/data/lang_phone/HLG.pt \
|
|
||||||
--method whole-lattice-rescoring \
|
|
||||||
--G ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/data/lm/G_4_gram.pt \
|
|
||||||
--ngram-lm-scale 0.8 \
|
|
||||||
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1089-134686-0001.flac \
|
|
||||||
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0001.flac \
|
|
||||||
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0002.flac
|
|
||||||
```
|
|
||||||
|
|
||||||
The output is:
|
|
||||||
|
|
||||||
```
|
|
||||||
2021-08-24 16:39:24,725 INFO [pretrained.py:168] device: cuda:0
|
|
||||||
2021-08-24 16:39:24,725 INFO [pretrained.py:170] Creating model
|
|
||||||
2021-08-24 16:39:29,403 INFO [pretrained.py:182] Loading HLG from ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/data/lang_phone/HLG.pt
|
|
||||||
2021-08-24 16:39:40,631 INFO [pretrained.py:190] Loading G from ./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/data/lm/G_4_gram.pt
|
|
||||||
2021-08-24 16:39:53,098 INFO [pretrained.py:199] Constructing Fbank computer
|
|
||||||
2021-08-24 16:39:53,107 INFO [pretrained.py:209] Reading sound files: ['./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1089-134686-0001.flac', './tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0001.flac', './tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0002.flac']
|
|
||||||
2021-08-24 16:39:53,121 INFO [pretrained.py:215] Decoding started
|
|
||||||
2021-08-24 16:39:53,443 INFO [pretrained.py:250] Use HLG decoding + LM rescoring
|
|
||||||
2021-08-24 16:39:54,010 INFO [pretrained.py:266]
|
|
||||||
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1089-134686-0001.flac:
|
|
||||||
AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS
|
|
||||||
|
|
||||||
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0001.flac:
|
|
||||||
GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY CHILD WHOSE PLACE WAS ON THAT SAME DISHONORED BOSOM TO CONNECT HER PARENT FOREVER WITH THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN
|
|
||||||
|
|
||||||
./tmp/icefall_asr_librispeech_tdnn-lstm_ctc/test_wavs/1221-135766-0002.flac:
|
|
||||||
YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION
|
|
||||||
|
|
||||||
|
|
||||||
2021-08-24 16:39:54,010 INFO [pretrained.py:268] Decoding Done
|
|
||||||
```
|
|
||||||
|
|
||||||
**NOTE**: We provide a colab notebook for demonstration.
|
|
||||||
[](https://colab.research.google.com/drive/1kNmDXNMwREi0rZGAOIAOJo93REBuOTcd?usp=sharing)
|
|
||||||
|
|
||||||
Due to limited memory provided by Colab, you have to upgrade to Colab Pro to run `HLG decoding + LM rescoring`.
|
|
||||||
Otherwise, you can only run `HLG decoding` with Colab.
|
|
@ -82,14 +82,14 @@ class LibriSpeechAsrDataModule(DataModule):
|
|||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--max-duration",
|
"--max-duration",
|
||||||
type=int,
|
type=int,
|
||||||
default=500.0,
|
default=200.0,
|
||||||
help="Maximum pooled recordings duration (seconds) in a "
|
help="Maximum pooled recordings duration (seconds) in a "
|
||||||
"single batch. You can reduce it if it causes CUDA OOM.",
|
"single batch. You can reduce it if it causes CUDA OOM.",
|
||||||
)
|
)
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--bucketing-sampler",
|
"--bucketing-sampler",
|
||||||
type=str2bool,
|
type=str2bool,
|
||||||
default=False,
|
default=True,
|
||||||
help="When enabled, the batches will come from buckets of "
|
help="When enabled, the batches will come from buckets of "
|
||||||
"similar duration (saves padding frames).",
|
"similar duration (saves padding frames).",
|
||||||
)
|
)
|
||||||
|
@ -67,6 +67,47 @@ def get_parser():
|
|||||||
"consecutive checkpoints before the checkpoint specified by "
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
"'--epoch'. ",
|
"'--epoch'. ",
|
||||||
)
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--method",
|
||||||
|
type=str,
|
||||||
|
default="whole-lattice-rescoring",
|
||||||
|
help="""Decoding method.
|
||||||
|
Supported values are:
|
||||||
|
- (1) 1best. Extract the best path from the decoding lattice as the
|
||||||
|
decoding result.
|
||||||
|
- (2) nbest. Extract n paths from the decoding lattice; the path
|
||||||
|
with the highest score is the decoding result.
|
||||||
|
- (3) nbest-rescoring. Extract n paths from the decoding lattice,
|
||||||
|
rescore them with an n-gram LM (e.g., a 4-gram LM), the path with
|
||||||
|
the highest score is the decoding result.
|
||||||
|
- (4) whole-lattice-rescoring. Rescore the decoding lattice with an
|
||||||
|
n-gram LM (e.g., a 4-gram LM), the best path of rescored lattice
|
||||||
|
is the decoding result.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-paths",
|
||||||
|
type=int,
|
||||||
|
default=100,
|
||||||
|
help="""Number of paths for n-best based decoding method.
|
||||||
|
Used only when "method" is one of the following values:
|
||||||
|
nbest, nbest-rescoring
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--lattice-score-scale",
|
||||||
|
type=float,
|
||||||
|
default=0.5,
|
||||||
|
help="""The scale to be applied to `lattice.scores`.
|
||||||
|
It's needed if you use any kinds of n-best based rescoring.
|
||||||
|
Used only when "method" is one of the following values:
|
||||||
|
nbest, nbest-rescoring
|
||||||
|
A smaller value results in more unique paths.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--export",
|
"--export",
|
||||||
type=str2bool,
|
type=str2bool,
|
||||||
@ -93,14 +134,6 @@ def get_params() -> AttributeDict:
|
|||||||
"min_active_states": 30,
|
"min_active_states": 30,
|
||||||
"max_active_states": 10000,
|
"max_active_states": 10000,
|
||||||
"use_double_scores": True,
|
"use_double_scores": True,
|
||||||
# Possible values for method:
|
|
||||||
# - 1best
|
|
||||||
# - nbest
|
|
||||||
# - nbest-rescoring
|
|
||||||
# - whole-lattice-rescoring
|
|
||||||
"method": "whole-lattice-rescoring",
|
|
||||||
# num_paths is used when method is "nbest" and "nbest-rescoring"
|
|
||||||
"num_paths": 30,
|
|
||||||
}
|
}
|
||||||
)
|
)
|
||||||
return params
|
return params
|
||||||
@ -157,12 +190,12 @@ def decode_one_batch(
|
|||||||
feature = batch["inputs"]
|
feature = batch["inputs"]
|
||||||
assert feature.ndim == 3
|
assert feature.ndim == 3
|
||||||
feature = feature.to(device)
|
feature = feature.to(device)
|
||||||
# at entry, feature is [N, T, C]
|
# at entry, feature is (N, T, C)
|
||||||
|
|
||||||
feature = feature.permute(0, 2, 1) # now feature is [N, C, T]
|
feature = feature.permute(0, 2, 1) # now feature is (N, C, T)
|
||||||
|
|
||||||
nnet_output = model(feature)
|
nnet_output = model(feature)
|
||||||
# nnet_output is [N, T, C]
|
# nnet_output is (N, T, C)
|
||||||
|
|
||||||
supervisions = batch["supervisions"]
|
supervisions = batch["supervisions"]
|
||||||
|
|
||||||
@ -196,6 +229,7 @@ def decode_one_batch(
|
|||||||
lattice=lattice,
|
lattice=lattice,
|
||||||
num_paths=params.num_paths,
|
num_paths=params.num_paths,
|
||||||
use_double_scores=params.use_double_scores,
|
use_double_scores=params.use_double_scores,
|
||||||
|
lattice_score_scale=params.lattice_score_scale,
|
||||||
)
|
)
|
||||||
key = f"no_rescore-{params.num_paths}"
|
key = f"no_rescore-{params.num_paths}"
|
||||||
hyps = get_texts(best_path)
|
hyps = get_texts(best_path)
|
||||||
@ -204,7 +238,8 @@ def decode_one_batch(
|
|||||||
|
|
||||||
assert params.method in ["nbest-rescoring", "whole-lattice-rescoring"]
|
assert params.method in ["nbest-rescoring", "whole-lattice-rescoring"]
|
||||||
|
|
||||||
lm_scale_list = [0.8, 0.9, 1.0, 1.1, 1.2, 1.3]
|
lm_scale_list = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]
|
||||||
|
lm_scale_list += [0.8, 0.9, 1.0, 1.1, 1.2, 1.3]
|
||||||
lm_scale_list += [1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0]
|
lm_scale_list += [1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0]
|
||||||
|
|
||||||
if params.method == "nbest-rescoring":
|
if params.method == "nbest-rescoring":
|
||||||
@ -213,10 +248,13 @@ def decode_one_batch(
|
|||||||
G=G,
|
G=G,
|
||||||
num_paths=params.num_paths,
|
num_paths=params.num_paths,
|
||||||
lm_scale_list=lm_scale_list,
|
lm_scale_list=lm_scale_list,
|
||||||
|
lattice_score_scale=params.lattice_score_scale,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
best_path_dict = rescore_with_whole_lattice(
|
best_path_dict = rescore_with_whole_lattice(
|
||||||
lattice=lattice, G_with_epsilon_loops=G, lm_scale_list=lm_scale_list
|
lattice=lattice,
|
||||||
|
G_with_epsilon_loops=G,
|
||||||
|
lm_scale_list=lm_scale_list,
|
||||||
)
|
)
|
||||||
|
|
||||||
ans = dict()
|
ans = dict()
|
||||||
@ -424,6 +462,7 @@ def main():
|
|||||||
torch.save(
|
torch.save(
|
||||||
{"model": model.state_dict()}, f"{params.exp_dir}/pretrained.pt"
|
{"model": model.state_dict()}, f"{params.exp_dir}/pretrained.pt"
|
||||||
)
|
)
|
||||||
|
return
|
||||||
|
|
||||||
model.to(device)
|
model.to(device)
|
||||||
model.eval()
|
model.eval()
|
||||||
|
4
egs/librispeech/ASR/tdnn_lstm_ctc/pretrained.py
Normal file → Executable file
4
egs/librispeech/ASR/tdnn_lstm_ctc/pretrained.py
Normal file → Executable file
@ -218,11 +218,11 @@ def main():
|
|||||||
features = pad_sequence(
|
features = pad_sequence(
|
||||||
features, batch_first=True, padding_value=math.log(1e-10)
|
features, batch_first=True, padding_value=math.log(1e-10)
|
||||||
)
|
)
|
||||||
features = features.permute(0, 2, 1) # now features is [N, C, T]
|
features = features.permute(0, 2, 1) # now features is (N, C, T)
|
||||||
|
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
nnet_output = model(features)
|
nnet_output = model(features)
|
||||||
# nnet_output is [N, T, C]
|
# nnet_output is (N, T, C)
|
||||||
|
|
||||||
batch_size = nnet_output.shape[0]
|
batch_size = nnet_output.shape[0]
|
||||||
supervision_segments = torch.tensor(
|
supervision_segments = torch.tensor(
|
||||||
|
@ -290,14 +290,14 @@ def compute_loss(
|
|||||||
"""
|
"""
|
||||||
device = graph_compiler.device
|
device = graph_compiler.device
|
||||||
feature = batch["inputs"]
|
feature = batch["inputs"]
|
||||||
# at entry, feature is [N, T, C]
|
# at entry, feature is (N, T, C)
|
||||||
feature = feature.permute(0, 2, 1) # now feature is [N, C, T]
|
feature = feature.permute(0, 2, 1) # now feature is (N, C, T)
|
||||||
assert feature.ndim == 3
|
assert feature.ndim == 3
|
||||||
feature = feature.to(device)
|
feature = feature.to(device)
|
||||||
|
|
||||||
with torch.set_grad_enabled(is_training):
|
with torch.set_grad_enabled(is_training):
|
||||||
nnet_output = model(feature)
|
nnet_output = model(feature)
|
||||||
# nnet_output is [N, T, C]
|
# nnet_output is (N, T, C)
|
||||||
|
|
||||||
# NOTE: We need `encode_supervisions` to sort sequences with
|
# NOTE: We need `encode_supervisions` to sort sequences with
|
||||||
# different duration in decreasing order, required by
|
# different duration in decreasing order, required by
|
||||||
|
@ -80,14 +80,14 @@ def compile_HLG(lang_dir: str) -> k2.Fsa:
|
|||||||
|
|
||||||
LG.labels[LG.labels >= first_token_disambig_id] = 0
|
LG.labels[LG.labels >= first_token_disambig_id] = 0
|
||||||
|
|
||||||
assert isinstance(LG.aux_labels, k2.RaggedInt)
|
assert isinstance(LG.aux_labels, k2.RaggedTensor)
|
||||||
LG.aux_labels.values()[LG.aux_labels.values() >= first_word_disambig_id] = 0
|
LG.aux_labels.values[LG.aux_labels.values >= first_word_disambig_id] = 0
|
||||||
|
|
||||||
LG = k2.remove_epsilon(LG)
|
LG = k2.remove_epsilon(LG)
|
||||||
logging.info(f"LG shape after k2.remove_epsilon: {LG.shape}")
|
logging.info(f"LG shape after k2.remove_epsilon: {LG.shape}")
|
||||||
|
|
||||||
LG = k2.connect(LG)
|
LG = k2.connect(LG)
|
||||||
LG.aux_labels = k2.ragged.remove_values_eq(LG.aux_labels, 0)
|
LG.aux_labels = LG.aux_labels.remove_values_eq(0)
|
||||||
|
|
||||||
logging.info("Arc sorting LG")
|
logging.info("Arc sorting LG")
|
||||||
LG = k2.arc_sort(LG)
|
LG = k2.arc_sort(LG)
|
||||||
|
@ -111,10 +111,10 @@ def decode_one_batch(
|
|||||||
feature = batch["inputs"]
|
feature = batch["inputs"]
|
||||||
assert feature.ndim == 3
|
assert feature.ndim == 3
|
||||||
feature = feature.to(device)
|
feature = feature.to(device)
|
||||||
# at entry, feature is [N, T, C]
|
# at entry, feature is (N, T, C)
|
||||||
|
|
||||||
nnet_output = model(feature)
|
nnet_output = model(feature)
|
||||||
# nnet_output is [N, T, C]
|
# nnet_output is (N, T, C)
|
||||||
|
|
||||||
batch_size = nnet_output.shape[0]
|
batch_size = nnet_output.shape[0]
|
||||||
supervision_segments = torch.tensor(
|
supervision_segments = torch.tensor(
|
||||||
@ -296,6 +296,7 @@ def main():
|
|||||||
torch.save(
|
torch.save(
|
||||||
{"model": model.state_dict()}, f"{params.exp_dir}/pretrained.pt"
|
{"model": model.state_dict()}, f"{params.exp_dir}/pretrained.pt"
|
||||||
)
|
)
|
||||||
|
return
|
||||||
|
|
||||||
model.to(device)
|
model.to(device)
|
||||||
model.eval()
|
model.eval()
|
||||||
|
@ -268,13 +268,13 @@ def compute_loss(
|
|||||||
"""
|
"""
|
||||||
device = graph_compiler.device
|
device = graph_compiler.device
|
||||||
feature = batch["inputs"]
|
feature = batch["inputs"]
|
||||||
# at entry, feature is [N, T, C]
|
# at entry, feature is (N, T, C)
|
||||||
assert feature.ndim == 3
|
assert feature.ndim == 3
|
||||||
feature = feature.to(device)
|
feature = feature.to(device)
|
||||||
|
|
||||||
with torch.set_grad_enabled(is_training):
|
with torch.set_grad_enabled(is_training):
|
||||||
nnet_output = model(feature)
|
nnet_output = model(feature)
|
||||||
# nnet_output is [N, T, C]
|
# nnet_output is (N, T, C)
|
||||||
|
|
||||||
# NOTE: We need `encode_supervisions` to sort sequences with
|
# NOTE: We need `encode_supervisions` to sort sequences with
|
||||||
# different duration in decreasing order, required by
|
# different duration in decreasing order, required by
|
||||||
|
1043
icefall/decode.py
1043
icefall/decode.py
File diff suppressed because it is too large
Load Diff
@ -106,7 +106,7 @@ class CtcTrainingGraphCompiler(object):
|
|||||||
word_ids_list = []
|
word_ids_list = []
|
||||||
for text in texts:
|
for text in texts:
|
||||||
word_ids = []
|
word_ids = []
|
||||||
for word in text.split(" "):
|
for word in text.split():
|
||||||
if word in self.word_table:
|
if word in self.word_table:
|
||||||
word_ids.append(self.word_table[word])
|
word_ids.append(self.word_table[word])
|
||||||
else:
|
else:
|
||||||
|
@ -157,7 +157,7 @@ class BpeLexicon(Lexicon):
|
|||||||
lang_dir / "lexicon.txt"
|
lang_dir / "lexicon.txt"
|
||||||
)
|
)
|
||||||
|
|
||||||
def convert_lexicon_to_ragged(self, filename: str) -> k2.RaggedInt:
|
def convert_lexicon_to_ragged(self, filename: str) -> k2.RaggedTensor:
|
||||||
"""Read a BPE lexicon from file and convert it to a
|
"""Read a BPE lexicon from file and convert it to a
|
||||||
k2 ragged tensor.
|
k2 ragged tensor.
|
||||||
|
|
||||||
@ -200,19 +200,18 @@ class BpeLexicon(Lexicon):
|
|||||||
)
|
)
|
||||||
values = torch.tensor(token_ids, dtype=torch.int32)
|
values = torch.tensor(token_ids, dtype=torch.int32)
|
||||||
|
|
||||||
return k2.RaggedInt(shape, values)
|
return k2.RaggedTensor(shape, values)
|
||||||
|
|
||||||
def words_to_piece_ids(self, words: List[str]) -> k2.RaggedInt:
|
def words_to_piece_ids(self, words: List[str]) -> k2.RaggedTensor:
|
||||||
"""Convert a list of words to a ragged tensor contained
|
"""Convert a list of words to a ragged tensor contained
|
||||||
word piece IDs.
|
word piece IDs.
|
||||||
"""
|
"""
|
||||||
word_ids = [self.word_table[w] for w in words]
|
word_ids = [self.word_table[w] for w in words]
|
||||||
word_ids = torch.tensor(word_ids, dtype=torch.int32)
|
word_ids = torch.tensor(word_ids, dtype=torch.int32)
|
||||||
|
|
||||||
ragged, _ = k2.ragged.index(
|
ragged, _ = self.ragged_lexicon.index(
|
||||||
self.ragged_lexicon,
|
|
||||||
indexes=word_ids,
|
indexes=word_ids,
|
||||||
need_value_indexes=False,
|
|
||||||
axis=0,
|
axis=0,
|
||||||
|
need_value_indexes=False,
|
||||||
)
|
)
|
||||||
return ragged
|
return ragged
|
||||||
|
@ -26,7 +26,6 @@ from pathlib import Path
|
|||||||
from typing import Dict, Iterable, List, TextIO, Tuple, Union
|
from typing import Dict, Iterable, List, TextIO, Tuple, Union
|
||||||
|
|
||||||
import k2
|
import k2
|
||||||
import k2.ragged as k2r
|
|
||||||
import kaldialign
|
import kaldialign
|
||||||
import torch
|
import torch
|
||||||
import torch.distributed as dist
|
import torch.distributed as dist
|
||||||
@ -147,12 +146,20 @@ def get_env_info():
|
|||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
# See
|
|
||||||
# https://stackoverflow.com/questions/4984647/accessing-dict-keys-like-an-attribute # noqa
|
|
||||||
class AttributeDict(dict):
|
class AttributeDict(dict):
|
||||||
__slots__ = ()
|
def __getattr__(self, key):
|
||||||
__getattr__ = dict.__getitem__
|
if key in self:
|
||||||
__setattr__ = dict.__setitem__
|
return self[key]
|
||||||
|
raise AttributeError(f"No such attribute '{key}'")
|
||||||
|
|
||||||
|
def __setattr__(self, key, value):
|
||||||
|
self[key] = value
|
||||||
|
|
||||||
|
def __delattr__(self, key):
|
||||||
|
if key in self:
|
||||||
|
del self[key]
|
||||||
|
return
|
||||||
|
raise AttributeError(f"No such attribute '{key}'")
|
||||||
|
|
||||||
|
|
||||||
def encode_supervisions(
|
def encode_supervisions(
|
||||||
@ -187,7 +194,9 @@ def encode_supervisions(
|
|||||||
return supervision_segments, texts
|
return supervision_segments, texts
|
||||||
|
|
||||||
|
|
||||||
def get_texts(best_paths: k2.Fsa) -> List[List[int]]:
|
def get_texts(
|
||||||
|
best_paths: k2.Fsa, return_ragged: bool = False
|
||||||
|
) -> Union[List[List[int]], k2.RaggedTensor]:
|
||||||
"""Extract the texts (as word IDs) from the best-path FSAs.
|
"""Extract the texts (as word IDs) from the best-path FSAs.
|
||||||
Args:
|
Args:
|
||||||
best_paths:
|
best_paths:
|
||||||
@ -195,30 +204,35 @@ def get_texts(best_paths: k2.Fsa) -> List[List[int]]:
|
|||||||
containing multiple FSAs, which is expected to be the result
|
containing multiple FSAs, which is expected to be the result
|
||||||
of k2.shortest_path (otherwise the returned values won't
|
of k2.shortest_path (otherwise the returned values won't
|
||||||
be meaningful).
|
be meaningful).
|
||||||
|
return_ragged:
|
||||||
|
True to return a ragged tensor with two axes [utt][word_id].
|
||||||
|
False to return a list-of-list word IDs.
|
||||||
Returns:
|
Returns:
|
||||||
Returns a list of lists of int, containing the label sequences we
|
Returns a list of lists of int, containing the label sequences we
|
||||||
decoded.
|
decoded.
|
||||||
"""
|
"""
|
||||||
if isinstance(best_paths.aux_labels, k2.RaggedInt):
|
if isinstance(best_paths.aux_labels, k2.RaggedTensor):
|
||||||
# remove 0's and -1's.
|
# remove 0's and -1's.
|
||||||
aux_labels = k2r.remove_values_leq(best_paths.aux_labels, 0)
|
aux_labels = best_paths.aux_labels.remove_values_leq(0)
|
||||||
aux_shape = k2r.compose_ragged_shapes(
|
# TODO: change arcs.shape() to arcs.shape
|
||||||
best_paths.arcs.shape(), aux_labels.shape()
|
aux_shape = best_paths.arcs.shape().compose(aux_labels.shape)
|
||||||
)
|
|
||||||
|
|
||||||
# remove the states and arcs axes.
|
# remove the states and arcs axes.
|
||||||
aux_shape = k2r.remove_axis(aux_shape, 1)
|
aux_shape = aux_shape.remove_axis(1)
|
||||||
aux_shape = k2r.remove_axis(aux_shape, 1)
|
aux_shape = aux_shape.remove_axis(1)
|
||||||
aux_labels = k2.RaggedInt(aux_shape, aux_labels.values())
|
aux_labels = k2.RaggedTensor(aux_shape, aux_labels.values)
|
||||||
else:
|
else:
|
||||||
# remove axis corresponding to states.
|
# remove axis corresponding to states.
|
||||||
aux_shape = k2r.remove_axis(best_paths.arcs.shape(), 1)
|
aux_shape = best_paths.arcs.shape().remove_axis(1)
|
||||||
aux_labels = k2.RaggedInt(aux_shape, best_paths.aux_labels)
|
aux_labels = k2.RaggedTensor(aux_shape, best_paths.aux_labels)
|
||||||
# remove 0's and -1's.
|
# remove 0's and -1's.
|
||||||
aux_labels = k2r.remove_values_leq(aux_labels, 0)
|
aux_labels = aux_labels.remove_values_leq(0)
|
||||||
|
|
||||||
assert aux_labels.num_axes() == 2
|
assert aux_labels.num_axes == 2
|
||||||
return k2r.to_list(aux_labels)
|
if return_ragged:
|
||||||
|
return aux_labels
|
||||||
|
else:
|
||||||
|
return aux_labels.tolist()
|
||||||
|
|
||||||
|
|
||||||
def store_transcripts(
|
def store_transcripts(
|
||||||
|
@ -16,9 +16,10 @@
|
|||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
from icefall.bpe_graph_compiler import BpeCtcTrainingGraphCompiler
|
from icefall.bpe_graph_compiler import BpeCtcTrainingGraphCompiler
|
||||||
from icefall.lexicon import BpeLexicon
|
from icefall.lexicon import BpeLexicon
|
||||||
from pathlib import Path
|
|
||||||
|
|
||||||
|
|
||||||
def test():
|
def test():
|
||||||
|
62
test/test_decode.py
Normal file
62
test/test_decode.py
Normal file
@ -0,0 +1,62 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
"""
|
||||||
|
You can run this file in one of the two ways:
|
||||||
|
|
||||||
|
(1) cd icefall; pytest test/test_decode.py
|
||||||
|
(2) cd icefall; ./test/test_decode.py
|
||||||
|
"""
|
||||||
|
|
||||||
|
import k2
|
||||||
|
from icefall.decode import Nbest
|
||||||
|
|
||||||
|
|
||||||
|
def test_nbest_from_lattice():
|
||||||
|
s = """
|
||||||
|
0 1 1 10 0.1
|
||||||
|
0 1 5 10 0.11
|
||||||
|
0 1 2 20 0.2
|
||||||
|
1 2 3 30 0.3
|
||||||
|
1 2 4 40 0.4
|
||||||
|
2 3 -1 -1 0.5
|
||||||
|
3
|
||||||
|
"""
|
||||||
|
lattice = k2.Fsa.from_str(s, acceptor=False)
|
||||||
|
lattice = k2.Fsa.from_fsas([lattice, lattice])
|
||||||
|
|
||||||
|
nbest = Nbest.from_lattice(
|
||||||
|
lattice=lattice,
|
||||||
|
num_paths=10,
|
||||||
|
use_double_scores=True,
|
||||||
|
lattice_score_scale=0.5,
|
||||||
|
)
|
||||||
|
# each lattice has only 4 distinct paths that have different word sequences:
|
||||||
|
# 10->30
|
||||||
|
# 10->40
|
||||||
|
# 20->30
|
||||||
|
# 20->40
|
||||||
|
#
|
||||||
|
# So there should be only 4 paths for each lattice in the Nbest object
|
||||||
|
assert nbest.fsa.shape[0] == 4 * 2
|
||||||
|
assert nbest.shape.row_splits(1).tolist() == [0, 4, 8]
|
||||||
|
|
||||||
|
nbest2 = nbest.intersect(lattice)
|
||||||
|
tot_scores = nbest2.tot_scores()
|
||||||
|
argmax = tot_scores.argmax()
|
||||||
|
best_path = k2.index_fsa(nbest2.fsa, argmax)
|
||||||
|
print(best_path[0])
|
@ -60,7 +60,7 @@ def test_get_texts_ragged():
|
|||||||
4
|
4
|
||||||
"""
|
"""
|
||||||
)
|
)
|
||||||
fsa1.aux_labels = k2.RaggedInt("[ [1 3 0 2] [] [4 0 1] [-1]]")
|
fsa1.aux_labels = k2.RaggedTensor("[ [1 3 0 2] [] [4 0 1] [-1]]")
|
||||||
|
|
||||||
fsa2 = k2.Fsa.from_str(
|
fsa2 = k2.Fsa.from_str(
|
||||||
"""
|
"""
|
||||||
@ -70,7 +70,7 @@ def test_get_texts_ragged():
|
|||||||
3
|
3
|
||||||
"""
|
"""
|
||||||
)
|
)
|
||||||
fsa2.aux_labels = k2.RaggedInt("[[3 0 5 0 8] [0 9 7 0] [-1]]")
|
fsa2.aux_labels = k2.RaggedTensor("[[3 0 5 0 8] [0 9 7 0] [-1]]")
|
||||||
fsas = k2.Fsa.from_fsas([fsa1, fsa2])
|
fsas = k2.Fsa.from_fsas([fsa1, fsa2])
|
||||||
texts = get_texts(fsas)
|
texts = get_texts(fsas)
|
||||||
assert texts == [[1, 3, 2, 4, 1], [3, 5, 8, 9, 7]]
|
assert texts == [[1, 3, 2, 4, 1], [3, 5, 8, 9, 7]]
|
||||||
@ -108,3 +108,14 @@ def test_attribute_dict():
|
|||||||
assert s["b"] == 20
|
assert s["b"] == 20
|
||||||
s.c = 100
|
s.c = 100
|
||||||
assert s["c"] == 100
|
assert s["c"] == 100
|
||||||
|
assert hasattr(s, "a")
|
||||||
|
assert hasattr(s, "b")
|
||||||
|
assert getattr(s, "a") == 10
|
||||||
|
del s.a
|
||||||
|
assert hasattr(s, "a") is False
|
||||||
|
setattr(s, "c", 100)
|
||||||
|
s.c = 100
|
||||||
|
try:
|
||||||
|
del s.a
|
||||||
|
except AttributeError as ex:
|
||||||
|
print(f"Caught exception: {ex}")
|
||||||
|
Loading…
x
Reference in New Issue
Block a user