mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-26 10:16:14 +00:00
use pretrained language model and lexicon
This commit is contained in:
parent
72abd38f27
commit
652646ab8f
@ -1 +0,0 @@
|
||||
../../../librispeech/ASR/local/compile_hlg.py
|
159
egs/gigaspeech/ASR/local/compile_hlg.py
Executable file
159
egs/gigaspeech/ASR/local/compile_hlg.py
Executable file
@ -0,0 +1,159 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
"""
|
||||
This script takes as input lang_dir and generates HLG from
|
||||
|
||||
- H, the ctc topology, built from tokens contained in lang_dir/lexicon.txt
|
||||
- L, the lexicon, built from lang_dir/L_disambig.pt
|
||||
|
||||
Caution: We use a lexicon that contains disambiguation symbols
|
||||
|
||||
- G, the LM, built from data/lm/G_4_gram.fst.txt
|
||||
|
||||
The generated HLG is saved in $lang_dir/HLG.pt
|
||||
"""
|
||||
import argparse
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
import k2
|
||||
import torch
|
||||
|
||||
from icefall.lexicon import Lexicon
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=str,
|
||||
help="""Input and output directory.
|
||||
""",
|
||||
)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def compile_HLG(lang_dir: str) -> k2.Fsa:
|
||||
"""
|
||||
Args:
|
||||
lang_dir:
|
||||
The language directory, e.g., data/lang_phone or data/lang_bpe_5000.
|
||||
|
||||
Return:
|
||||
An FSA representing HLG.
|
||||
"""
|
||||
lexicon = Lexicon(lang_dir)
|
||||
max_token_id = max(lexicon.tokens)
|
||||
logging.info(f"Building ctc_topo. max_token_id: {max_token_id}")
|
||||
H = k2.ctc_topo(max_token_id)
|
||||
L = k2.Fsa.from_dict(torch.load(f"{lang_dir}/L_disambig.pt"))
|
||||
|
||||
if Path("data/lm/G_4_gram.pt").is_file():
|
||||
logging.info("Loading pre-compiled G_4_gram")
|
||||
d = torch.load("data/lm/G_4_gram.pt")
|
||||
G = k2.Fsa.from_dict(d)
|
||||
else:
|
||||
logging.info("Loading G_4_gram.fst.txt")
|
||||
with open("data/lm/G_4_gram.fst.txt") as f:
|
||||
G = k2.Fsa.from_openfst(f.read(), acceptor=False)
|
||||
torch.save(G.as_dict(), "data/lm/G_4_gram.pt")
|
||||
|
||||
first_token_disambig_id = lexicon.token_table["#0"]
|
||||
first_word_disambig_id = lexicon.word_table["#0"]
|
||||
|
||||
L = k2.arc_sort(L)
|
||||
G = k2.arc_sort(G)
|
||||
|
||||
logging.info("Intersecting L and G")
|
||||
LG = k2.compose(L, G)
|
||||
logging.info(f"LG shape: {LG.shape}")
|
||||
|
||||
logging.info("Connecting LG")
|
||||
LG = k2.connect(LG)
|
||||
logging.info(f"LG shape after k2.connect: {LG.shape}")
|
||||
|
||||
logging.info(type(LG.aux_labels))
|
||||
logging.info("Determinizing LG")
|
||||
|
||||
LG = k2.determinize(LG)
|
||||
logging.info(type(LG.aux_labels))
|
||||
|
||||
logging.info("Connecting LG after k2.determinize")
|
||||
LG = k2.connect(LG)
|
||||
|
||||
logging.info("Removing disambiguation symbols on LG")
|
||||
|
||||
LG.labels[LG.labels >= first_token_disambig_id] = 0
|
||||
# See https://github.com/k2-fsa/k2/issues/874
|
||||
# for why we need to set LG.properties to None
|
||||
LG.__dict__["_properties"] = None
|
||||
|
||||
assert isinstance(LG.aux_labels, k2.RaggedTensor)
|
||||
LG.aux_labels.values[LG.aux_labels.values >= first_word_disambig_id] = 0
|
||||
|
||||
LG = k2.remove_epsilon(LG)
|
||||
logging.info(f"LG shape after k2.remove_epsilon: {LG.shape}")
|
||||
|
||||
LG = k2.connect(LG)
|
||||
LG.aux_labels = LG.aux_labels.remove_values_eq(0)
|
||||
|
||||
logging.info("Arc sorting LG")
|
||||
LG = k2.arc_sort(LG)
|
||||
|
||||
logging.info("Composing H and LG")
|
||||
# CAUTION: The name of the inner_labels is fixed
|
||||
# to `tokens`. If you want to change it, please
|
||||
# also change other places in icefall that are using
|
||||
# it.
|
||||
HLG = k2.compose(H, LG, inner_labels="tokens")
|
||||
|
||||
logging.info("Connecting LG")
|
||||
HLG = k2.connect(HLG)
|
||||
|
||||
logging.info("Arc sorting LG")
|
||||
HLG = k2.arc_sort(HLG)
|
||||
logging.info(f"HLG.shape: {HLG.shape}")
|
||||
|
||||
return HLG
|
||||
|
||||
|
||||
def main():
|
||||
args = get_args()
|
||||
lang_dir = Path(args.lang_dir)
|
||||
|
||||
if (lang_dir / "HLG.pt").is_file():
|
||||
logging.info(f"{lang_dir}/HLG.pt already exists - skipping")
|
||||
return
|
||||
|
||||
logging.info(f"Processing {lang_dir}")
|
||||
|
||||
HLG = compile_HLG(lang_dir)
|
||||
logging.info(f"Saving HLG.pt to {lang_dir}")
|
||||
torch.save(HLG.as_dict(), f"{lang_dir}/HLG.pt")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = (
|
||||
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
)
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
|
||||
main()
|
@ -19,6 +19,13 @@ num_splits=2000
|
||||
# You can apply for the download credentials by following
|
||||
# https://github.com/SpeechColab/GigaSpeech#download
|
||||
#
|
||||
# - $dl_dir/lm
|
||||
# This directory contains the language model downloaded from
|
||||
# https://huggingface.co/wgb14/gigaspeech_lm
|
||||
#
|
||||
# - 4gram.arpa.gz
|
||||
# - lexicon.txt
|
||||
#
|
||||
# - $dl_dir/musan
|
||||
# This directory contains the following directories downloaded from
|
||||
# http://www.openslr.org/17/
|
||||
@ -34,7 +41,7 @@ dl_dir=$PWD/download
|
||||
# It will generate data/lang_bpe_xxx,
|
||||
# data/lang_bpe_yyy if the array contains xxx, yyy
|
||||
vocab_sizes=(
|
||||
# 5000
|
||||
5000
|
||||
500
|
||||
)
|
||||
|
||||
@ -50,6 +57,15 @@ log() {
|
||||
|
||||
log "dl_dir: $dl_dir"
|
||||
|
||||
if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then
|
||||
log "stage -1: Download LM"
|
||||
# We assume that you have installed the git-lfs, if not, you could install it
|
||||
# using: `sudo apt-get install git-lfs && git-lfs install`
|
||||
[ ! -e $dl_dir/lm ] && mkdir -p $dl_dir/lm
|
||||
git clone https://huggingface.co/wgb14/gigaspeech_lm $dl_dir/lm
|
||||
gunzip -c $dl_dir/lm/4gram.arpa.gz > $dl_dir/lm/4gram.arpa
|
||||
fi
|
||||
|
||||
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
|
||||
log "Stage 0: Download data"
|
||||
|
||||
@ -159,13 +175,14 @@ if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
|
||||
lang_dir=data/lang_phone
|
||||
mkdir -p $lang_dir
|
||||
|
||||
# (echo '!SIL SIL'; echo '<SPOKEN_NOISE> SPN'; echo '<UNK> SPN'; ) |
|
||||
# cat - $dl_dir/lm/librispeech-lexicon.txt |
|
||||
# sort | uniq > $lang_dir/lexicon.txt
|
||||
(echo '!SIL SIL'; echo '<SPOKEN_NOISE> SPN'; echo '<UNK> SPN'; ) |
|
||||
cat - $dl_dir/lm/lexicon.txt |
|
||||
sort | uniq > $lang_dir/lexicon.txt
|
||||
|
||||
if [ ! -f $lang_dir/L_disambig.pt ]; then
|
||||
./local/prepare_lang.py --lang-dir $lang_dir
|
||||
fi
|
||||
|
||||
# if [ ! -f $lang_dir/L_disambig.pt ]; then
|
||||
# ./local/prepare_lang.py --lang-dir $lang_dir
|
||||
# fi
|
||||
if [ ! -f $lang_dir/transcript_words.txt ]; then
|
||||
gunzip -c "data/manifests/gigaspeech_supervisions_XL.jsonl.gz" \
|
||||
| jq '.text' \
|
||||
@ -225,14 +242,6 @@ if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then
|
||||
# so that the two can share G.pt later.
|
||||
cp data/lang_phone/{words.txt,transcript_words.txt} $lang_dir
|
||||
|
||||
if [ ! -f $lang_dir/transcript_words.txt ]; then
|
||||
log "Generate data for BPE training"
|
||||
gunzip -c "data/manifests/gigaspeech_supervisions_XL.jsonl.gz" \
|
||||
| jq '.text' \
|
||||
| sed 's/"//g' \
|
||||
> $lang_dir/transcript_words.txt
|
||||
fi
|
||||
|
||||
if [ ! -f $lang_dir/bpe.model ]; then
|
||||
./local/train_bpe_model.py \
|
||||
--lang-dir $lang_dir \
|
||||
@ -283,42 +292,20 @@ if [ $stage -le 12 ] && [ $stop_stage -ge 12 ]; then
|
||||
# it using: pip install kaldilm
|
||||
|
||||
mkdir -p data/lm
|
||||
if [ ! -f data/lm/3-gram.arpa ]; then
|
||||
./shared/make_kn_lm.py \
|
||||
-ngram-order 3 \
|
||||
-text "data/lang_phone/transcript_words.txt" \
|
||||
-lm data/lm/3-gram.arpa
|
||||
fi
|
||||
|
||||
if [ ! -f data/lm/G_3_gram.fst.txt ]; then
|
||||
if [ ! -f data/lm/G_4_gram.fst.txt ]; then
|
||||
# It is used in building HLG
|
||||
python3 -m kaldilm \
|
||||
--read-symbol-table="data/lang_phone/words.txt" \
|
||||
--disambig-symbol='#0' \
|
||||
--max-order=3 \
|
||||
data/lm/3-gram.arpa > data/lm/G_3_gram.fst.txt
|
||||
fi
|
||||
|
||||
if [ ! -f data/lm/4-gram.arpa ]; then
|
||||
./shared/make_kn_lm.py \
|
||||
-ngram-order 4 \
|
||||
-text "data/lang_phone/transcript_words.txt" \
|
||||
-lm data/lm/4-gram.arpa
|
||||
fi
|
||||
|
||||
if [ ! -f data/lm/G_4_gram.fst.txt ]; then
|
||||
# It is used for LM rescoring
|
||||
python3 -m kaldilm \
|
||||
--read-symbol-table="data/lang_phone/words.txt" \
|
||||
--disambig-symbol='#0' \
|
||||
--max-order=4 \
|
||||
data/lm/4-gram.arpa > data/lm/G_4_gram.fst.txt
|
||||
$dl_dir/lm/4gram.arpa > data/lm/G_4_gram.fst.txt
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 13 ] && [ $stop_stage -ge 13 ]; then
|
||||
log "Stage 13: Compile HLG"
|
||||
# ./local/compile_hlg.py --lang-dir data/lang_phone
|
||||
./local/compile_hlg.py --lang-dir data/lang_phone
|
||||
|
||||
for vocab_size in ${vocab_sizes[@]}; do
|
||||
lang_dir=data/lang_bpe_${vocab_size}
|
||||
|
Loading…
x
Reference in New Issue
Block a user