Updating RESULTS.md

This commit is contained in:
AmirHussein96 2024-09-23 03:25:10 +00:00
parent 6107374e8f
commit 64c1413e76
2 changed files with 59 additions and 4 deletions

View File

@ -1,5 +1,60 @@
## Results
### zipformer hybrid autoregresive transducer (HAT)
see <https://github.com/k2-fsa/icefall/pull/1291> for more details
[zipformer_hat](./zipformer_hat)
Results with RNNLM shallow fusion and internal language model subtraction on the same data (Librispeech)
Model | Train | Decode | LM scale | ILM scale | test-clean | test-other
-- | -- | -- | -- | -- | -- | --
Zipformer-HAT | train-960 | greedy_search | - | - | 2.22 | 5.01
  |   | modified_beam_search | 0 | 0 | 2.18 | 4.96
  |   | + RNNLM shallow fusion | 0.29 | 0 | 1.96 | 4.55
  |   | - ILME | 0.29 | 0.1 | 1.95 | 4.55
  |   | - ILME | 0.29 | 0.3 | 1.97 | 4.5
The training command is:
```bash
export CUDA_VISIBLE_DEVICES="0,1,2,3"
./zipformer_hat/train.py \
--world-size 4 \
--num-epochs 40 \
--lr-batches 5000 \
--lr-epochs 4 \
--exp-dir ./zipformer_hat/exp \
--use-fp16 1 \
--bpe-model data/lang_bpe_500/bpe.model \
--max-duration 800 \
--causal 0 \
--num-encoder-layers 2,2,2,2,2,2 \
--feedforward-dim 512,768,1024,1024,1024,768 \
--encoder-dim 192,256,256,256,256,256 \
--encoder-unmasked-dim 192,192,192,192,192,192 \
--use-transducer 1
```
The decoding command is:
```bash
export CUDA_VISIBLE_DEVICES="0"
for m in ctc-decoding 1best nbest nbest-rescoring whole-lattice-rescoring; do
./zipformer/ctc_decode.py \
--epoch 40 \
--avg 16 \
--exp-dir zipformer/exp-ctc-rnnt \
--use-transducer 1 \
--use-ctc 1 \
--max-duration 300 \
--causal 0 \
--num-paths 100 \
--nbest-scale 1.0 \
--hlg-scale 0.6 \
--decoding-method $m
done
```
### zipformer (zipformer + pruned stateless transducer + CTC)
See <https://github.com/k2-fsa/icefall/pull/1111> for more details.

View File

@ -24,22 +24,22 @@ Usage:
export CUDA_VISIBLE_DEVICES="0,1,2,3"
# For non-streaming model training:
./zipformer/train.py \
./zipformer_hat/train.py \
--world-size 4 \
--num-epochs 30 \
--start-epoch 1 \
--use-fp16 1 \
--exp-dir zipformer/exp \
--exp-dir zipformer_hat/exp \
--full-libri 1 \
--max-duration 1000
# For streaming model training:
./zipformer/train.py \
./zipformer_hat/train.py \
--world-size 4 \
--num-epochs 30 \
--start-epoch 1 \
--use-fp16 1 \
--exp-dir zipformer/exp \
--exp-dir zipformer_hat/exp \
--causal 1 \
--full-libri 1 \
--max-duration 1000