updated the conv_emformer_transducer_stateless recipes

This commit is contained in:
jinzr 2023-07-23 00:12:54 +08:00
parent fb820982aa
commit 64393e798f
5 changed files with 46 additions and 47 deletions

View File

@ -22,7 +22,7 @@
Usage:
./conv_emformer_transducer_stateless/export.py \
--exp-dir ./conv_emformer_transducer_stateless/exp \
--bpe-model data/lang_bpe_500/bpe.model \
--tokens data/lang_bpe_500/tokens.txt \
--epoch 30 \
--avg 10 \
--use-averaged-model=True \
@ -62,7 +62,7 @@ import argparse
import logging
from pathlib import Path
import sentencepiece as spm
import k2
import torch
from train import add_model_arguments, get_params, get_transducer_model
@ -72,7 +72,7 @@ from icefall.checkpoint import (
find_checkpoints,
load_checkpoint,
)
from icefall.utils import str2bool
from icefall.utils import num_tokens, str2bool
def get_parser():
@ -118,10 +118,10 @@ def get_parser():
)
parser.add_argument(
"--bpe-model",
"--tokens",
type=str,
default="data/lang_bpe_500/bpe.model",
help="Path to the BPE model",
required=True,
help="Path to the tokens.txt.",
)
parser.add_argument(
@ -166,12 +166,12 @@ def main():
logging.info(f"device: {device}")
sp = spm.SentencePieceProcessor()
sp.load(params.bpe_model)
# Load tokens.txt here
token_table = k2.SymbolTable.from_file(params.tokens)
# <blk> is defined in local/train_bpe_model.py
params.blank_id = sp.piece_to_id("<blk>")
params.vocab_size = sp.get_piece_size()
# Load id of the <blk> token and the vocab size
params.blank_id = token_table["<blk>"]
params.vocab_size = num_tokens(token_table) + 1 # +1 for <blk>
logging.info(params)

View File

@ -8,7 +8,7 @@ for more details about how to use this file.
Usage:
./conv_emformer_transducer_stateless2/export-for-ncnn.py \
--exp-dir ./conv_emformer_transducer_stateless2/exp \
--bpe-model data/lang_bpe_500/bpe.model \
--tokens data/lang_bpe_500/tokens.txt \
--epoch 30 \
--avg 10 \
--use-averaged-model=True \
@ -37,7 +37,7 @@ import argparse
import logging
from pathlib import Path
import sentencepiece as spm
import k2
import torch
from scaling_converter import convert_scaled_to_non_scaled
from train2 import add_model_arguments, get_params, get_transducer_model
@ -48,7 +48,7 @@ from icefall.checkpoint import (
find_checkpoints,
load_checkpoint,
)
from icefall.utils import setup_logger, str2bool
from icefall.utils import num_tokens, setup_logger, str2bool
def get_parser():
@ -94,10 +94,10 @@ def get_parser():
)
parser.add_argument(
"--bpe-model",
"--tokens",
type=str,
default="data/lang_bpe_500/bpe.model",
help="Path to the BPE model",
required=True,
help="Path to the tokens.txt.",
)
parser.add_argument(
@ -217,12 +217,12 @@ def main():
logging.info(f"device: {device}")
sp = spm.SentencePieceProcessor()
sp.load(params.bpe_model)
# Load tokens.txt here
token_table = k2.SymbolTable.from_file(params.tokens)
# <blk> is defined in local/train_bpe_model.py
params.blank_id = sp.piece_to_id("<blk>")
params.vocab_size = sp.get_piece_size()
# Load id of the <blk> token and the vocab size
params.blank_id = token_table["<blk>"]
params.vocab_size = num_tokens(token_table) + 1 # +1 for <blk>
logging.info(params)

View File

@ -18,7 +18,6 @@ GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
repo=$(basename $repo_url)
pushd $repo
git lfs pull --include "data/lang_bpe_500/bpe.model"
git lfs pull --include "exp/pretrained-epoch-30-avg-10-averaged.pt"
cd exp
@ -28,7 +27,7 @@ popd
2. Export the model to ONNX
./conv_emformer_transducer_stateless2/export-onnx.py \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--tokens $repo/data/lang_bpe_500/tokens.txt \
--use-averaged-model 0 \
--epoch 99 \
--avg 1 \
@ -55,14 +54,14 @@ import logging
from pathlib import Path
from typing import Dict, Tuple
import k2
import onnx
import sentencepiece as spm
import torch
import torch.nn as nn
from decoder import Decoder
from emformer import Emformer
from scaling_converter import convert_scaled_to_non_scaled
from train2 import add_model_arguments, get_params, get_transducer_model
from emformer import Emformer
from icefall.checkpoint import (
average_checkpoints,
@ -70,7 +69,7 @@ from icefall.checkpoint import (
find_checkpoints,
load_checkpoint,
)
from icefall.utils import setup_logger, str2bool
from icefall.utils import num_tokens, setup_logger, str2bool
def get_parser():
@ -127,10 +126,10 @@ def get_parser():
)
parser.add_argument(
"--bpe-model",
"--tokens",
type=str,
default="data/lang_bpe_500/bpe.model",
help="Path to the BPE model",
required=True,
help="Path to the tokens.txt.",
)
parser.add_argument(
@ -484,12 +483,12 @@ def main():
logging.info(f"device: {device}")
sp = spm.SentencePieceProcessor()
sp.load(params.bpe_model)
# Load tokens.txt here
token_table = k2.SymbolTable.from_file(params.tokens)
# <blk> is defined in local/train_bpe_model.py
params.blank_id = sp.piece_to_id("<blk>")
params.vocab_size = sp.get_piece_size()
# Load id of the <blk> token and the vocab size
params.blank_id = token_table["<blk>"]
params.vocab_size = num_tokens(token_table) + 1 # +1 for <blk>
logging.info(params)

View File

@ -22,7 +22,7 @@
Usage:
./conv_emformer_transducer_stateless2/export.py \
--exp-dir ./conv_emformer_transducer_stateless2/exp \
--bpe-model data/lang_bpe_500/bpe.model \
--tokens data/lang_bpe_500/tokens.txt \
--epoch 30 \
--avg 10 \
--use-averaged-model=True \
@ -62,7 +62,7 @@ import argparse
import logging
from pathlib import Path
import sentencepiece as spm
import k2
import torch
from scaling_converter import convert_scaled_to_non_scaled
from train import add_model_arguments, get_params, get_transducer_model
@ -73,7 +73,7 @@ from icefall.checkpoint import (
find_checkpoints,
load_checkpoint,
)
from icefall.utils import str2bool
from icefall.utils import num_tokens, str2bool
def get_parser():
@ -119,10 +119,10 @@ def get_parser():
)
parser.add_argument(
"--bpe-model",
"--tokens",
type=str,
default="data/lang_bpe_500/bpe.model",
help="Path to the BPE model",
required=True,
help="Path to the tokens.txt.",
)
parser.add_argument(
@ -167,12 +167,12 @@ def main():
logging.info(f"device: {device}")
sp = spm.SentencePieceProcessor()
sp.load(params.bpe_model)
# Load tokens.txt here
token_table = k2.SymbolTable.from_file(params.tokens)
# <blk> is defined in local/train_bpe_model.py
params.blank_id = sp.piece_to_id("<blk>")
params.vocab_size = sp.get_piece_size()
# Load id of the <blk> token and the vocab size
params.blank_id = token_table["<blk>"]
params.vocab_size = num_tokens(token_table) + 1 # +1 for <blk>
logging.info(params)

View File

@ -28,7 +28,7 @@ popd
2. Export the model to ONNX
./conv_emformer_transducer_stateless2/export-onnx.py \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--tokens $repo/data/lang_bpe_500/tokens.txt \
--use-averaged-model 0 \
--epoch 99 \
--avg 1 \