diff --git a/egs/librispeech/ASR/pruned_transducer_stateless_gtrans/.conformer_randomcombine.py.swp b/egs/librispeech/ASR/pruned_transducer_stateless_gtrans/.conformer_randomcombine.py.swp index a3f55c1e9..ce2b4814b 100644 Binary files a/egs/librispeech/ASR/pruned_transducer_stateless_gtrans/.conformer_randomcombine.py.swp and b/egs/librispeech/ASR/pruned_transducer_stateless_gtrans/.conformer_randomcombine.py.swp differ diff --git a/egs/librispeech/ASR/pruned_transducer_stateless_gtrans/conformer_randomcombine.py b/egs/librispeech/ASR/pruned_transducer_stateless_gtrans/conformer_randomcombine.py index 85e25cda3..8c4e5f94b 100644 --- a/egs/librispeech/ASR/pruned_transducer_stateless_gtrans/conformer_randomcombine.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless_gtrans/conformer_randomcombine.py @@ -213,56 +213,13 @@ class Conformer(EncoderInterface): x = x.permute(1, 0, 2) # (T, N, C) ->(N, T, C) layer_outputs = [x.permute(1, 0, 2) for x in layer_outputs] - ''' - if self.group_num == 4: - x = self.layer_norm(1/4*(self.sigmoid(self.alpha[0])*layer_outputs[2] + \ - self.sigmoid(self.alpha[1])*layer_outputs[5] + \ - self.sigmoid(self.alpha[2])*layer_outputs[8] + \ - self.sigmoid(self.alpha[3])*layer_outputs[11] - ) - ) - elif self.group_num == 6: - x = self.layer_norm(1/6*(self.sigmoid(self.alpha[0])*layer_outputs[1] + \ - self.sigmoid(self.alpha[1])*layer_outputs[3] + \ - self.sigmoid(self.alpha[2])*layer_outputs[5] + \ - self.sigmoid(self.alpha[3])*layer_outputs[7] + \ - self.sigmoid(self.alpha[4])*layer_outputs[9] + \ - self.sigmoid(self.alpha[5])*layer_outputs[11] - ) - ) - - elif self.group_num == 12: - x = self.layer_norm(1/12*(self.sigmoid(self.alpha[0])*layer_outputs[0] + \ - self.sigmoid(self.alpha[1])*layer_outputs[1] + \ - self.sigmoid(self.alpha[2])*layer_outputs[2] + \ - self.sigmoid(self.alpha[3])*layer_outputs[3] + \ - self.sigmoid(self.alpha[4])*layer_outputs[4] + \ - self.sigmoid(self.alpha[5])*layer_outputs[5] + \ - self.sigmoid(self.alpha[6])*layer_outputs[6] + \ - self.sigmoid(self.alpha[7])*layer_outputs[7] + \ - self.sigmoid(self.alpha[8])*layer_outputs[8] + \ - self.sigmoid(self.alpha[9])*layer_outputs[9] + \ - self.sigmoid(self.alpha[10])*layer_outputs[10] + \ - self.sigmoid(self.alpha[11])*layer_outputs[11] - ) - ) - ''' - + if self.group_num != 0: x = 0 for enum, alpha in enumerate(self.alpha): x += self.sigmoid(alpha) * layer_outputs[(enum+1)*self.group_layer_num-1] x = self.layer_norm(x/self.group_num) - ''' - layer_outputs = [x.permute(1, 0, 2) for x in layer_outputs] - - x = 0 - for enum, alpha in enumerate(self.alpha): - x += self.sigmoid(alpha*layer_outputs[(enum+1)*self.group_layer_num-1]) - - x = self.layer_norm(x/self.group_num) - ''' return x, lengths @torch.jit.export