mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 01:52:41 +00:00
Refactor/simplify ConformerEncoder
This commit is contained in:
parent
581786a6d3
commit
63d8d935d4
@ -15,7 +15,7 @@
|
|||||||
# See the License for the specific language governing permissions and
|
# See the License for the specific language governing permissions and
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
|
|
||||||
|
import copy
|
||||||
import math
|
import math
|
||||||
import warnings
|
import warnings
|
||||||
from typing import Optional, Tuple
|
from typing import Optional, Tuple
|
||||||
@ -264,13 +264,12 @@ class ConformerEncoderLayer(nn.Module):
|
|||||||
return src
|
return src
|
||||||
|
|
||||||
|
|
||||||
class ConformerEncoder(nn.TransformerEncoder):
|
class ConformerEncoder(nn.Module):
|
||||||
r"""ConformerEncoder is a stack of N encoder layers
|
r"""ConformerEncoder is a stack of N encoder layers
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
encoder_layer: an instance of the ConformerEncoderLayer() class (required).
|
encoder_layer: an instance of the ConformerEncoderLayer() class (required).
|
||||||
num_layers: the number of sub-encoder-layers in the encoder (required).
|
num_layers: the number of sub-encoder-layers in the encoder (required).
|
||||||
norm: the layer normalization component (optional).
|
|
||||||
|
|
||||||
Examples::
|
Examples::
|
||||||
>>> encoder_layer = ConformerEncoderLayer(d_model=512, nhead=8)
|
>>> encoder_layer = ConformerEncoderLayer(d_model=512, nhead=8)
|
||||||
@ -281,11 +280,12 @@ class ConformerEncoder(nn.TransformerEncoder):
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(
|
def __init__(
|
||||||
self, encoder_layer: nn.Module, num_layers: int, norm: nn.Module = None
|
self, encoder_layer: nn.Module, num_layers: int
|
||||||
) -> None:
|
) -> None:
|
||||||
super(ConformerEncoder, self).__init__(
|
super(ConformerEncoder, self).__init__()
|
||||||
encoder_layer=encoder_layer, num_layers=num_layers, norm=norm
|
self.layers = nn.ModuleList([copy.deepcopy(encoder_layer) for i in range(num_layers)])
|
||||||
)
|
self.num_layers = num_layers
|
||||||
|
|
||||||
|
|
||||||
def forward(
|
def forward(
|
||||||
self,
|
self,
|
||||||
@ -320,9 +320,6 @@ class ConformerEncoder(nn.TransformerEncoder):
|
|||||||
src_key_padding_mask=src_key_padding_mask,
|
src_key_padding_mask=src_key_padding_mask,
|
||||||
)
|
)
|
||||||
|
|
||||||
if self.norm is not None:
|
|
||||||
output = self.norm(output)
|
|
||||||
|
|
||||||
return output
|
return output
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user