mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 01:52:41 +00:00
support RNNLM shallow fusion in stateless5
This commit is contained in:
parent
de2f5e3e6d
commit
63d0a52dbd
@ -23,7 +23,6 @@ import sentencepiece as spm
|
||||
import torch
|
||||
from model import Transducer
|
||||
|
||||
from icefall import NgramLm, NgramLmStateCost
|
||||
from icefall.decode import Nbest, one_best_decoding
|
||||
from icefall.rnn_lm.model import RnnLmModel
|
||||
from icefall.utils import add_eos, add_sos, get_texts
|
||||
@ -658,8 +657,6 @@ class Hypothesis:
|
||||
# It contains only one entry.
|
||||
log_prob: torch.Tensor
|
||||
|
||||
state_cost: Optional[NgramLmStateCost] = None
|
||||
state: Optional = None
|
||||
lm_score: Optional=None
|
||||
|
||||
@property
|
||||
|
@ -19,36 +19,36 @@
|
||||
"""
|
||||
Usage:
|
||||
(1) greedy search
|
||||
./pruned_transducer_stateless5/decode.py \
|
||||
--epoch 28 \
|
||||
./lstm_transducer_stateless2/decode.py \
|
||||
--epoch 35 \
|
||||
--avg 15 \
|
||||
--exp-dir ./pruned_transducer_stateless5/exp \
|
||||
--exp-dir ./lstm_transducer_stateless2/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method greedy_search
|
||||
|
||||
(2) beam search (not recommended)
|
||||
./pruned_transducer_stateless5/decode.py \
|
||||
--epoch 28 \
|
||||
./lstm_transducer_stateless2/decode.py \
|
||||
--epoch 35 \
|
||||
--avg 15 \
|
||||
--exp-dir ./pruned_transducer_stateless5/exp \
|
||||
--exp-dir ./lstm_transducer_stateless2/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method beam_search \
|
||||
--beam-size 4
|
||||
|
||||
(3) modified beam search
|
||||
./pruned_transducer_stateless5/decode.py \
|
||||
--epoch 28 \
|
||||
./lstm_transducer_stateless2/decode.py \
|
||||
--epoch 35 \
|
||||
--avg 15 \
|
||||
--exp-dir ./pruned_transducer_stateless5/exp \
|
||||
--exp-dir ./lstm_transducer_stateless2/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method modified_beam_search \
|
||||
--beam-size 4
|
||||
|
||||
(4) fast beam search (one best)
|
||||
./pruned_transducer_stateless5/decode.py \
|
||||
--epoch 28 \
|
||||
./lstm_transducer_stateless2/decode.py \
|
||||
--epoch 35 \
|
||||
--avg 15 \
|
||||
--exp-dir ./pruned_transducer_stateless5/exp \
|
||||
--exp-dir ./lstm_transducer_stateless2/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method fast_beam_search \
|
||||
--beam 20.0 \
|
||||
@ -56,10 +56,10 @@ Usage:
|
||||
--max-states 64
|
||||
|
||||
(5) fast beam search (nbest)
|
||||
./pruned_transducer_stateless5/decode.py \
|
||||
--epoch 28 \
|
||||
./lstm_transducer_stateless2/decode.py \
|
||||
--epoch 30 \
|
||||
--avg 15 \
|
||||
--exp-dir ./pruned_transducer_stateless5/exp \
|
||||
--exp-dir ./pruned_transducer_stateless3/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method fast_beam_search_nbest \
|
||||
--beam 20.0 \
|
||||
@ -69,10 +69,10 @@ Usage:
|
||||
--nbest-scale 0.5
|
||||
|
||||
(6) fast beam search (nbest oracle WER)
|
||||
./pruned_transducer_stateless5/decode.py \
|
||||
--epoch 28 \
|
||||
./lstm_transducer_stateless2/decode.py \
|
||||
--epoch 35 \
|
||||
--avg 15 \
|
||||
--exp-dir ./pruned_transducer_stateless5/exp \
|
||||
--exp-dir ./lstm_transducer_stateless2/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method fast_beam_search_nbest_oracle \
|
||||
--beam 20.0 \
|
||||
@ -82,10 +82,10 @@ Usage:
|
||||
--nbest-scale 0.5
|
||||
|
||||
(7) fast beam search (with LG)
|
||||
./pruned_transducer_stateless5/decode.py \
|
||||
--epoch 28 \
|
||||
./lstm_transducer_stateless2/decode.py \
|
||||
--epoch 35 \
|
||||
--avg 15 \
|
||||
--exp-dir ./pruned_transducer_stateless5/exp \
|
||||
--exp-dir ./lstm_transducer_stateless2/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method fast_beam_search_nbest_LG \
|
||||
--beam 20.0 \
|
||||
@ -115,6 +115,7 @@ from beam_search import (
|
||||
greedy_search,
|
||||
greedy_search_batch,
|
||||
modified_beam_search,
|
||||
modified_beam_search_rnnlm_shallow_fusion,
|
||||
)
|
||||
from train import add_model_arguments, get_params, get_transducer_model
|
||||
|
||||
@ -125,6 +126,7 @@ from icefall.checkpoint import (
|
||||
load_checkpoint,
|
||||
)
|
||||
from icefall.lexicon import Lexicon
|
||||
from icefall.rnn_lm.model import RnnLmModel
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
setup_logger,
|
||||
@ -183,7 +185,7 @@ def get_parser():
|
||||
parser.add_argument(
|
||||
"--exp-dir",
|
||||
type=str,
|
||||
default="pruned_transducer_stateless5/exp",
|
||||
default="lstm_transducer_stateless2/exp",
|
||||
help="The experiment dir",
|
||||
)
|
||||
|
||||
@ -213,6 +215,7 @@ def get_parser():
|
||||
- fast_beam_search_nbest
|
||||
- fast_beam_search_nbest_oracle
|
||||
- fast_beam_search_nbest_LG
|
||||
- modified-beam-search3 # for rnn lm shallow fusion
|
||||
If you use fast_beam_search_nbest_LG, you have to specify
|
||||
`--lang-dir`, which should contain `LG.pt`.
|
||||
""",
|
||||
@ -240,16 +243,6 @@ def get_parser():
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--ngram-lm-scale",
|
||||
type=float,
|
||||
default=0.01,
|
||||
help="""
|
||||
Used only when --decoding_method is fast_beam_search_nbest_LG.
|
||||
It specifies the scale for n-gram LM scores.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-contexts",
|
||||
type=int,
|
||||
@ -275,6 +268,7 @@ def get_parser():
|
||||
help="The context size in the decoder. 1 means bigram; "
|
||||
"2 means tri-gram",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-sym-per-frame",
|
||||
type=int,
|
||||
@ -302,28 +296,69 @@ def get_parser():
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--simulate-streaming",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="""Whether to simulate streaming in decoding, this is a good way to
|
||||
test a streaming model.
|
||||
"--rnn-lm-scale",
|
||||
type=float,
|
||||
default=0.0,
|
||||
help="""Used only when --method is modified_beam_search3.
|
||||
It specifies the path to RNN LM exp dir.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--decode-chunk-size",
|
||||
type=int,
|
||||
default=16,
|
||||
help="The chunk size for decoding (in frames after subsampling)",
|
||||
"--rnn-lm-exp-dir",
|
||||
type=str,
|
||||
default="rnn_lm/exp",
|
||||
help="""Used only when --method is rnn-lm.
|
||||
It specifies the path to RNN LM exp dir.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--left-context",
|
||||
"--rnn-lm-epoch",
|
||||
type=int,
|
||||
default=64,
|
||||
help="left context can be seen during decoding (in frames after subsampling)",
|
||||
default=7,
|
||||
help="""Used only when --method is rnn-lm.
|
||||
It specifies the checkpoint to use.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--rnn-lm-avg",
|
||||
type=int,
|
||||
default=2,
|
||||
help="""Used only when --method is rnn-lm.
|
||||
It specifies the number of checkpoints to average.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--rnn-lm-embedding-dim",
|
||||
type=int,
|
||||
default=2048,
|
||||
help="Embedding dim of the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--rnn-lm-hidden-dim",
|
||||
type=int,
|
||||
default=2048,
|
||||
help="Hidden dim of the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--rnn-lm-num-layers",
|
||||
type=int,
|
||||
default=4,
|
||||
help="Number of RNN layers the model",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--rnn-lm-tie-weights",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="""True to share the weights between the input embedding layer and the
|
||||
last output linear layer
|
||||
""",
|
||||
)
|
||||
add_model_arguments(parser)
|
||||
|
||||
return parser
|
||||
@ -336,6 +371,8 @@ def decode_one_batch(
|
||||
batch: dict,
|
||||
word_table: Optional[k2.SymbolTable] = None,
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
rnnlm: Optional[RnnLmModel] = None,
|
||||
rnnlm_scale: float = 1.0,
|
||||
) -> Dict[str, List[List[str]]]:
|
||||
"""Decode one batch and return the result in a dict. The dict has the
|
||||
following format:
|
||||
@ -361,7 +398,7 @@ def decode_one_batch(
|
||||
word_table:
|
||||
The word symbol table.
|
||||
decoding_graph:
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or LG, Used
|
||||
only when --decoding_method is fast_beam_search, fast_beam_search_nbest,
|
||||
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
|
||||
Returns:
|
||||
@ -474,12 +511,21 @@ def decode_one_batch(
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
elif params.decoding_method == "modified_beam_search_rnnlm_shallow_fusion":
|
||||
hyp_tokens = modified_beam_search_rnnlm_shallow_fusion(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam_size,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
else:
|
||||
batch_size = encoder_out.size(0)
|
||||
|
||||
for i in range(batch_size):
|
||||
# fmt: off
|
||||
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
||||
encoder_out_i = encoder_out[i:i + 1, :encoder_out_lens[i]]
|
||||
# fmt: on
|
||||
if params.decoding_method == "greedy_search":
|
||||
hyp = greedy_search(
|
||||
@ -523,7 +569,9 @@ def decode_dataset(
|
||||
sp: spm.SentencePieceProcessor,
|
||||
word_table: Optional[k2.SymbolTable] = None,
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
|
||||
rnnlm: Optional[RnnLmModel] = None,
|
||||
rnnlm_scale: float = 1.0,
|
||||
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
||||
"""Decode dataset.
|
||||
|
||||
Args:
|
||||
@ -538,7 +586,7 @@ def decode_dataset(
|
||||
word_table:
|
||||
The word symbol table.
|
||||
decoding_graph:
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or LG, Used
|
||||
only when --decoding_method is fast_beam_search, fast_beam_search_nbest,
|
||||
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
|
||||
Returns:
|
||||
@ -564,6 +612,7 @@ def decode_dataset(
|
||||
for batch_idx, batch in enumerate(dl):
|
||||
texts = batch["supervisions"]["text"]
|
||||
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
|
||||
logging.info(f"Decoding {batch_idx}-th batch")
|
||||
|
||||
hyps_dict = decode_one_batch(
|
||||
params=params,
|
||||
@ -572,6 +621,8 @@ def decode_dataset(
|
||||
decoding_graph=decoding_graph,
|
||||
word_table=word_table,
|
||||
batch=batch,
|
||||
rnnlm=rnnlm,
|
||||
rnnlm_scale=rnnlm_scale,
|
||||
)
|
||||
|
||||
for name, hyps in hyps_dict.items():
|
||||
@ -597,7 +648,7 @@ def decode_dataset(
|
||||
def save_results(
|
||||
params: AttributeDict,
|
||||
test_set_name: str,
|
||||
results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]],
|
||||
results_dict: Dict[str, List[Tuple[List[int], List[int]]]],
|
||||
):
|
||||
test_set_wers = dict()
|
||||
for key, results in results_dict.items():
|
||||
@ -657,6 +708,7 @@ def main():
|
||||
"fast_beam_search_nbest_LG",
|
||||
"fast_beam_search_nbest_oracle",
|
||||
"modified_beam_search",
|
||||
"modified_beam_search_sf_rnnlm",
|
||||
)
|
||||
params.res_dir = params.exp_dir / params.decoding_method
|
||||
|
||||
@ -665,10 +717,6 @@ def main():
|
||||
else:
|
||||
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||
|
||||
if params.simulate_streaming:
|
||||
params.suffix += f"-streaming-chunk-size-{params.decode_chunk_size}"
|
||||
params.suffix += f"-left-context-{params.left_context}"
|
||||
|
||||
if "fast_beam_search" in params.decoding_method:
|
||||
params.suffix += f"-beam-{params.beam}"
|
||||
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||
@ -686,6 +734,8 @@ def main():
|
||||
params.suffix += f"-context-{params.context_size}"
|
||||
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
||||
|
||||
params.suffix += f"-rnnlm-lm-scale-{params.rnn_lm_scale}"
|
||||
|
||||
if params.use_averaged_model:
|
||||
params.suffix += "-use-averaged-model"
|
||||
|
||||
@ -706,11 +756,6 @@ def main():
|
||||
params.unk_id = sp.piece_to_id("<unk>")
|
||||
params.vocab_size = sp.get_piece_size()
|
||||
|
||||
if params.simulate_streaming:
|
||||
assert (
|
||||
params.causal_convolution
|
||||
), "Decoding in streaming requires causal convolution"
|
||||
|
||||
logging.info(params)
|
||||
|
||||
logging.info("About to create model")
|
||||
@ -796,6 +841,25 @@ def main():
|
||||
model.to(device)
|
||||
model.eval()
|
||||
|
||||
rnn_lm_model = None
|
||||
rnn_lm_scale = params.rnn_lm_scale
|
||||
if params.decoding_method == "modified_beam_search3":
|
||||
rnn_lm_model = RnnLmModel(
|
||||
vocab_size=params.vocab_size,
|
||||
embedding_dim=params.rnn_lm_embedding_dim,
|
||||
hidden_dim=params.rnn_lm_hidden_dim,
|
||||
num_layers=params.rnn_lm_num_layers,
|
||||
tie_weights=params.rnn_lm_tie_weights,
|
||||
)
|
||||
assert params.rnn_lm_avg == 1
|
||||
|
||||
load_checkpoint(
|
||||
f"{params.rnn_lm_exp_dir}/epoch-{params.rnn_lm_epoch}.pt",
|
||||
rnn_lm_model,
|
||||
)
|
||||
rnn_lm_model.to(device)
|
||||
rnn_lm_model.eval()
|
||||
|
||||
if "fast_beam_search" in params.decoding_method:
|
||||
if params.decoding_method == "fast_beam_search_nbest_LG":
|
||||
lexicon = Lexicon(params.lang_dir)
|
||||
@ -839,6 +903,8 @@ def main():
|
||||
sp=sp,
|
||||
word_table=word_table,
|
||||
decoding_graph=decoding_graph,
|
||||
rnnlm=rnn_lm_model,
|
||||
rnnlm_scale=rnn_lm_scale,
|
||||
)
|
||||
|
||||
save_results(
|
||||
|
Loading…
x
Reference in New Issue
Block a user