mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 10:02:22 +00:00
support RNNLM shallow fusion in stateless5
This commit is contained in:
parent
de2f5e3e6d
commit
63d0a52dbd
@ -23,7 +23,6 @@ import sentencepiece as spm
|
|||||||
import torch
|
import torch
|
||||||
from model import Transducer
|
from model import Transducer
|
||||||
|
|
||||||
from icefall import NgramLm, NgramLmStateCost
|
|
||||||
from icefall.decode import Nbest, one_best_decoding
|
from icefall.decode import Nbest, one_best_decoding
|
||||||
from icefall.rnn_lm.model import RnnLmModel
|
from icefall.rnn_lm.model import RnnLmModel
|
||||||
from icefall.utils import add_eos, add_sos, get_texts
|
from icefall.utils import add_eos, add_sos, get_texts
|
||||||
@ -658,8 +657,6 @@ class Hypothesis:
|
|||||||
# It contains only one entry.
|
# It contains only one entry.
|
||||||
log_prob: torch.Tensor
|
log_prob: torch.Tensor
|
||||||
|
|
||||||
state_cost: Optional[NgramLmStateCost] = None
|
|
||||||
state: Optional = None
|
|
||||||
lm_score: Optional=None
|
lm_score: Optional=None
|
||||||
|
|
||||||
@property
|
@property
|
||||||
|
@ -19,36 +19,36 @@
|
|||||||
"""
|
"""
|
||||||
Usage:
|
Usage:
|
||||||
(1) greedy search
|
(1) greedy search
|
||||||
./pruned_transducer_stateless5/decode.py \
|
./lstm_transducer_stateless2/decode.py \
|
||||||
--epoch 28 \
|
--epoch 35 \
|
||||||
--avg 15 \
|
--avg 15 \
|
||||||
--exp-dir ./pruned_transducer_stateless5/exp \
|
--exp-dir ./lstm_transducer_stateless2/exp \
|
||||||
--max-duration 600 \
|
--max-duration 600 \
|
||||||
--decoding-method greedy_search
|
--decoding-method greedy_search
|
||||||
|
|
||||||
(2) beam search (not recommended)
|
(2) beam search (not recommended)
|
||||||
./pruned_transducer_stateless5/decode.py \
|
./lstm_transducer_stateless2/decode.py \
|
||||||
--epoch 28 \
|
--epoch 35 \
|
||||||
--avg 15 \
|
--avg 15 \
|
||||||
--exp-dir ./pruned_transducer_stateless5/exp \
|
--exp-dir ./lstm_transducer_stateless2/exp \
|
||||||
--max-duration 600 \
|
--max-duration 600 \
|
||||||
--decoding-method beam_search \
|
--decoding-method beam_search \
|
||||||
--beam-size 4
|
--beam-size 4
|
||||||
|
|
||||||
(3) modified beam search
|
(3) modified beam search
|
||||||
./pruned_transducer_stateless5/decode.py \
|
./lstm_transducer_stateless2/decode.py \
|
||||||
--epoch 28 \
|
--epoch 35 \
|
||||||
--avg 15 \
|
--avg 15 \
|
||||||
--exp-dir ./pruned_transducer_stateless5/exp \
|
--exp-dir ./lstm_transducer_stateless2/exp \
|
||||||
--max-duration 600 \
|
--max-duration 600 \
|
||||||
--decoding-method modified_beam_search \
|
--decoding-method modified_beam_search \
|
||||||
--beam-size 4
|
--beam-size 4
|
||||||
|
|
||||||
(4) fast beam search (one best)
|
(4) fast beam search (one best)
|
||||||
./pruned_transducer_stateless5/decode.py \
|
./lstm_transducer_stateless2/decode.py \
|
||||||
--epoch 28 \
|
--epoch 35 \
|
||||||
--avg 15 \
|
--avg 15 \
|
||||||
--exp-dir ./pruned_transducer_stateless5/exp \
|
--exp-dir ./lstm_transducer_stateless2/exp \
|
||||||
--max-duration 600 \
|
--max-duration 600 \
|
||||||
--decoding-method fast_beam_search \
|
--decoding-method fast_beam_search \
|
||||||
--beam 20.0 \
|
--beam 20.0 \
|
||||||
@ -56,10 +56,10 @@ Usage:
|
|||||||
--max-states 64
|
--max-states 64
|
||||||
|
|
||||||
(5) fast beam search (nbest)
|
(5) fast beam search (nbest)
|
||||||
./pruned_transducer_stateless5/decode.py \
|
./lstm_transducer_stateless2/decode.py \
|
||||||
--epoch 28 \
|
--epoch 30 \
|
||||||
--avg 15 \
|
--avg 15 \
|
||||||
--exp-dir ./pruned_transducer_stateless5/exp \
|
--exp-dir ./pruned_transducer_stateless3/exp \
|
||||||
--max-duration 600 \
|
--max-duration 600 \
|
||||||
--decoding-method fast_beam_search_nbest \
|
--decoding-method fast_beam_search_nbest \
|
||||||
--beam 20.0 \
|
--beam 20.0 \
|
||||||
@ -69,10 +69,10 @@ Usage:
|
|||||||
--nbest-scale 0.5
|
--nbest-scale 0.5
|
||||||
|
|
||||||
(6) fast beam search (nbest oracle WER)
|
(6) fast beam search (nbest oracle WER)
|
||||||
./pruned_transducer_stateless5/decode.py \
|
./lstm_transducer_stateless2/decode.py \
|
||||||
--epoch 28 \
|
--epoch 35 \
|
||||||
--avg 15 \
|
--avg 15 \
|
||||||
--exp-dir ./pruned_transducer_stateless5/exp \
|
--exp-dir ./lstm_transducer_stateless2/exp \
|
||||||
--max-duration 600 \
|
--max-duration 600 \
|
||||||
--decoding-method fast_beam_search_nbest_oracle \
|
--decoding-method fast_beam_search_nbest_oracle \
|
||||||
--beam 20.0 \
|
--beam 20.0 \
|
||||||
@ -82,10 +82,10 @@ Usage:
|
|||||||
--nbest-scale 0.5
|
--nbest-scale 0.5
|
||||||
|
|
||||||
(7) fast beam search (with LG)
|
(7) fast beam search (with LG)
|
||||||
./pruned_transducer_stateless5/decode.py \
|
./lstm_transducer_stateless2/decode.py \
|
||||||
--epoch 28 \
|
--epoch 35 \
|
||||||
--avg 15 \
|
--avg 15 \
|
||||||
--exp-dir ./pruned_transducer_stateless5/exp \
|
--exp-dir ./lstm_transducer_stateless2/exp \
|
||||||
--max-duration 600 \
|
--max-duration 600 \
|
||||||
--decoding-method fast_beam_search_nbest_LG \
|
--decoding-method fast_beam_search_nbest_LG \
|
||||||
--beam 20.0 \
|
--beam 20.0 \
|
||||||
@ -115,6 +115,7 @@ from beam_search import (
|
|||||||
greedy_search,
|
greedy_search,
|
||||||
greedy_search_batch,
|
greedy_search_batch,
|
||||||
modified_beam_search,
|
modified_beam_search,
|
||||||
|
modified_beam_search_rnnlm_shallow_fusion,
|
||||||
)
|
)
|
||||||
from train import add_model_arguments, get_params, get_transducer_model
|
from train import add_model_arguments, get_params, get_transducer_model
|
||||||
|
|
||||||
@ -125,6 +126,7 @@ from icefall.checkpoint import (
|
|||||||
load_checkpoint,
|
load_checkpoint,
|
||||||
)
|
)
|
||||||
from icefall.lexicon import Lexicon
|
from icefall.lexicon import Lexicon
|
||||||
|
from icefall.rnn_lm.model import RnnLmModel
|
||||||
from icefall.utils import (
|
from icefall.utils import (
|
||||||
AttributeDict,
|
AttributeDict,
|
||||||
setup_logger,
|
setup_logger,
|
||||||
@ -183,7 +185,7 @@ def get_parser():
|
|||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--exp-dir",
|
"--exp-dir",
|
||||||
type=str,
|
type=str,
|
||||||
default="pruned_transducer_stateless5/exp",
|
default="lstm_transducer_stateless2/exp",
|
||||||
help="The experiment dir",
|
help="The experiment dir",
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -213,6 +215,7 @@ def get_parser():
|
|||||||
- fast_beam_search_nbest
|
- fast_beam_search_nbest
|
||||||
- fast_beam_search_nbest_oracle
|
- fast_beam_search_nbest_oracle
|
||||||
- fast_beam_search_nbest_LG
|
- fast_beam_search_nbest_LG
|
||||||
|
- modified-beam-search3 # for rnn lm shallow fusion
|
||||||
If you use fast_beam_search_nbest_LG, you have to specify
|
If you use fast_beam_search_nbest_LG, you have to specify
|
||||||
`--lang-dir`, which should contain `LG.pt`.
|
`--lang-dir`, which should contain `LG.pt`.
|
||||||
""",
|
""",
|
||||||
@ -240,16 +243,6 @@ def get_parser():
|
|||||||
""",
|
""",
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--ngram-lm-scale",
|
|
||||||
type=float,
|
|
||||||
default=0.01,
|
|
||||||
help="""
|
|
||||||
Used only when --decoding_method is fast_beam_search_nbest_LG.
|
|
||||||
It specifies the scale for n-gram LM scores.
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--max-contexts",
|
"--max-contexts",
|
||||||
type=int,
|
type=int,
|
||||||
@ -275,6 +268,7 @@ def get_parser():
|
|||||||
help="The context size in the decoder. 1 means bigram; "
|
help="The context size in the decoder. 1 means bigram; "
|
||||||
"2 means tri-gram",
|
"2 means tri-gram",
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--max-sym-per-frame",
|
"--max-sym-per-frame",
|
||||||
type=int,
|
type=int,
|
||||||
@ -302,28 +296,69 @@ def get_parser():
|
|||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--simulate-streaming",
|
"--rnn-lm-scale",
|
||||||
type=str2bool,
|
type=float,
|
||||||
default=False,
|
default=0.0,
|
||||||
help="""Whether to simulate streaming in decoding, this is a good way to
|
help="""Used only when --method is modified_beam_search3.
|
||||||
test a streaming model.
|
It specifies the path to RNN LM exp dir.
|
||||||
""",
|
""",
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--decode-chunk-size",
|
"--rnn-lm-exp-dir",
|
||||||
type=int,
|
type=str,
|
||||||
default=16,
|
default="rnn_lm/exp",
|
||||||
help="The chunk size for decoding (in frames after subsampling)",
|
help="""Used only when --method is rnn-lm.
|
||||||
|
It specifies the path to RNN LM exp dir.
|
||||||
|
""",
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--left-context",
|
"--rnn-lm-epoch",
|
||||||
type=int,
|
type=int,
|
||||||
default=64,
|
default=7,
|
||||||
help="left context can be seen during decoding (in frames after subsampling)",
|
help="""Used only when --method is rnn-lm.
|
||||||
|
It specifies the checkpoint to use.
|
||||||
|
""",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--rnn-lm-avg",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="""Used only when --method is rnn-lm.
|
||||||
|
It specifies the number of checkpoints to average.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--rnn-lm-embedding-dim",
|
||||||
|
type=int,
|
||||||
|
default=2048,
|
||||||
|
help="Embedding dim of the model",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--rnn-lm-hidden-dim",
|
||||||
|
type=int,
|
||||||
|
default=2048,
|
||||||
|
help="Hidden dim of the model",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--rnn-lm-num-layers",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="Number of RNN layers the model",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--rnn-lm-tie-weights",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="""True to share the weights between the input embedding layer and the
|
||||||
|
last output linear layer
|
||||||
|
""",
|
||||||
|
)
|
||||||
add_model_arguments(parser)
|
add_model_arguments(parser)
|
||||||
|
|
||||||
return parser
|
return parser
|
||||||
@ -336,6 +371,8 @@ def decode_one_batch(
|
|||||||
batch: dict,
|
batch: dict,
|
||||||
word_table: Optional[k2.SymbolTable] = None,
|
word_table: Optional[k2.SymbolTable] = None,
|
||||||
decoding_graph: Optional[k2.Fsa] = None,
|
decoding_graph: Optional[k2.Fsa] = None,
|
||||||
|
rnnlm: Optional[RnnLmModel] = None,
|
||||||
|
rnnlm_scale: float = 1.0,
|
||||||
) -> Dict[str, List[List[str]]]:
|
) -> Dict[str, List[List[str]]]:
|
||||||
"""Decode one batch and return the result in a dict. The dict has the
|
"""Decode one batch and return the result in a dict. The dict has the
|
||||||
following format:
|
following format:
|
||||||
@ -361,7 +398,7 @@ def decode_one_batch(
|
|||||||
word_table:
|
word_table:
|
||||||
The word symbol table.
|
The word symbol table.
|
||||||
decoding_graph:
|
decoding_graph:
|
||||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
The decoding graph. Can be either a `k2.trivial_graph` or LG, Used
|
||||||
only when --decoding_method is fast_beam_search, fast_beam_search_nbest,
|
only when --decoding_method is fast_beam_search, fast_beam_search_nbest,
|
||||||
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
|
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
|
||||||
Returns:
|
Returns:
|
||||||
@ -474,12 +511,21 @@ def decode_one_batch(
|
|||||||
)
|
)
|
||||||
for hyp in sp.decode(hyp_tokens):
|
for hyp in sp.decode(hyp_tokens):
|
||||||
hyps.append(hyp.split())
|
hyps.append(hyp.split())
|
||||||
|
elif params.decoding_method == "modified_beam_search_rnnlm_shallow_fusion":
|
||||||
|
hyp_tokens = modified_beam_search_rnnlm_shallow_fusion(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
beam=params.beam_size,
|
||||||
|
)
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(hyp.split())
|
||||||
else:
|
else:
|
||||||
batch_size = encoder_out.size(0)
|
batch_size = encoder_out.size(0)
|
||||||
|
|
||||||
for i in range(batch_size):
|
for i in range(batch_size):
|
||||||
# fmt: off
|
# fmt: off
|
||||||
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
encoder_out_i = encoder_out[i:i + 1, :encoder_out_lens[i]]
|
||||||
# fmt: on
|
# fmt: on
|
||||||
if params.decoding_method == "greedy_search":
|
if params.decoding_method == "greedy_search":
|
||||||
hyp = greedy_search(
|
hyp = greedy_search(
|
||||||
@ -523,7 +569,9 @@ def decode_dataset(
|
|||||||
sp: spm.SentencePieceProcessor,
|
sp: spm.SentencePieceProcessor,
|
||||||
word_table: Optional[k2.SymbolTable] = None,
|
word_table: Optional[k2.SymbolTable] = None,
|
||||||
decoding_graph: Optional[k2.Fsa] = None,
|
decoding_graph: Optional[k2.Fsa] = None,
|
||||||
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
|
rnnlm: Optional[RnnLmModel] = None,
|
||||||
|
rnnlm_scale: float = 1.0,
|
||||||
|
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
||||||
"""Decode dataset.
|
"""Decode dataset.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
@ -538,7 +586,7 @@ def decode_dataset(
|
|||||||
word_table:
|
word_table:
|
||||||
The word symbol table.
|
The word symbol table.
|
||||||
decoding_graph:
|
decoding_graph:
|
||||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
The decoding graph. Can be either a `k2.trivial_graph` or LG, Used
|
||||||
only when --decoding_method is fast_beam_search, fast_beam_search_nbest,
|
only when --decoding_method is fast_beam_search, fast_beam_search_nbest,
|
||||||
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
|
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
|
||||||
Returns:
|
Returns:
|
||||||
@ -564,6 +612,7 @@ def decode_dataset(
|
|||||||
for batch_idx, batch in enumerate(dl):
|
for batch_idx, batch in enumerate(dl):
|
||||||
texts = batch["supervisions"]["text"]
|
texts = batch["supervisions"]["text"]
|
||||||
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
|
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
|
||||||
|
logging.info(f"Decoding {batch_idx}-th batch")
|
||||||
|
|
||||||
hyps_dict = decode_one_batch(
|
hyps_dict = decode_one_batch(
|
||||||
params=params,
|
params=params,
|
||||||
@ -572,6 +621,8 @@ def decode_dataset(
|
|||||||
decoding_graph=decoding_graph,
|
decoding_graph=decoding_graph,
|
||||||
word_table=word_table,
|
word_table=word_table,
|
||||||
batch=batch,
|
batch=batch,
|
||||||
|
rnnlm=rnnlm,
|
||||||
|
rnnlm_scale=rnnlm_scale,
|
||||||
)
|
)
|
||||||
|
|
||||||
for name, hyps in hyps_dict.items():
|
for name, hyps in hyps_dict.items():
|
||||||
@ -597,7 +648,7 @@ def decode_dataset(
|
|||||||
def save_results(
|
def save_results(
|
||||||
params: AttributeDict,
|
params: AttributeDict,
|
||||||
test_set_name: str,
|
test_set_name: str,
|
||||||
results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]],
|
results_dict: Dict[str, List[Tuple[List[int], List[int]]]],
|
||||||
):
|
):
|
||||||
test_set_wers = dict()
|
test_set_wers = dict()
|
||||||
for key, results in results_dict.items():
|
for key, results in results_dict.items():
|
||||||
@ -657,6 +708,7 @@ def main():
|
|||||||
"fast_beam_search_nbest_LG",
|
"fast_beam_search_nbest_LG",
|
||||||
"fast_beam_search_nbest_oracle",
|
"fast_beam_search_nbest_oracle",
|
||||||
"modified_beam_search",
|
"modified_beam_search",
|
||||||
|
"modified_beam_search_sf_rnnlm",
|
||||||
)
|
)
|
||||||
params.res_dir = params.exp_dir / params.decoding_method
|
params.res_dir = params.exp_dir / params.decoding_method
|
||||||
|
|
||||||
@ -665,10 +717,6 @@ def main():
|
|||||||
else:
|
else:
|
||||||
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||||
|
|
||||||
if params.simulate_streaming:
|
|
||||||
params.suffix += f"-streaming-chunk-size-{params.decode_chunk_size}"
|
|
||||||
params.suffix += f"-left-context-{params.left_context}"
|
|
||||||
|
|
||||||
if "fast_beam_search" in params.decoding_method:
|
if "fast_beam_search" in params.decoding_method:
|
||||||
params.suffix += f"-beam-{params.beam}"
|
params.suffix += f"-beam-{params.beam}"
|
||||||
params.suffix += f"-max-contexts-{params.max_contexts}"
|
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||||
@ -686,6 +734,8 @@ def main():
|
|||||||
params.suffix += f"-context-{params.context_size}"
|
params.suffix += f"-context-{params.context_size}"
|
||||||
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
||||||
|
|
||||||
|
params.suffix += f"-rnnlm-lm-scale-{params.rnn_lm_scale}"
|
||||||
|
|
||||||
if params.use_averaged_model:
|
if params.use_averaged_model:
|
||||||
params.suffix += "-use-averaged-model"
|
params.suffix += "-use-averaged-model"
|
||||||
|
|
||||||
@ -706,11 +756,6 @@ def main():
|
|||||||
params.unk_id = sp.piece_to_id("<unk>")
|
params.unk_id = sp.piece_to_id("<unk>")
|
||||||
params.vocab_size = sp.get_piece_size()
|
params.vocab_size = sp.get_piece_size()
|
||||||
|
|
||||||
if params.simulate_streaming:
|
|
||||||
assert (
|
|
||||||
params.causal_convolution
|
|
||||||
), "Decoding in streaming requires causal convolution"
|
|
||||||
|
|
||||||
logging.info(params)
|
logging.info(params)
|
||||||
|
|
||||||
logging.info("About to create model")
|
logging.info("About to create model")
|
||||||
@ -796,6 +841,25 @@ def main():
|
|||||||
model.to(device)
|
model.to(device)
|
||||||
model.eval()
|
model.eval()
|
||||||
|
|
||||||
|
rnn_lm_model = None
|
||||||
|
rnn_lm_scale = params.rnn_lm_scale
|
||||||
|
if params.decoding_method == "modified_beam_search3":
|
||||||
|
rnn_lm_model = RnnLmModel(
|
||||||
|
vocab_size=params.vocab_size,
|
||||||
|
embedding_dim=params.rnn_lm_embedding_dim,
|
||||||
|
hidden_dim=params.rnn_lm_hidden_dim,
|
||||||
|
num_layers=params.rnn_lm_num_layers,
|
||||||
|
tie_weights=params.rnn_lm_tie_weights,
|
||||||
|
)
|
||||||
|
assert params.rnn_lm_avg == 1
|
||||||
|
|
||||||
|
load_checkpoint(
|
||||||
|
f"{params.rnn_lm_exp_dir}/epoch-{params.rnn_lm_epoch}.pt",
|
||||||
|
rnn_lm_model,
|
||||||
|
)
|
||||||
|
rnn_lm_model.to(device)
|
||||||
|
rnn_lm_model.eval()
|
||||||
|
|
||||||
if "fast_beam_search" in params.decoding_method:
|
if "fast_beam_search" in params.decoding_method:
|
||||||
if params.decoding_method == "fast_beam_search_nbest_LG":
|
if params.decoding_method == "fast_beam_search_nbest_LG":
|
||||||
lexicon = Lexicon(params.lang_dir)
|
lexicon = Lexicon(params.lang_dir)
|
||||||
@ -839,6 +903,8 @@ def main():
|
|||||||
sp=sp,
|
sp=sp,
|
||||||
word_table=word_table,
|
word_table=word_table,
|
||||||
decoding_graph=decoding_graph,
|
decoding_graph=decoding_graph,
|
||||||
|
rnnlm=rnn_lm_model,
|
||||||
|
rnnlm_scale=rnn_lm_scale,
|
||||||
)
|
)
|
||||||
|
|
||||||
save_results(
|
save_results(
|
||||||
|
Loading…
x
Reference in New Issue
Block a user