mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-18 13:34:20 +00:00
minor updates
This commit is contained in:
parent
d70f6e21f2
commit
634931cb61
@ -779,6 +779,78 @@ def greedy_search_batch(
|
||||
)
|
||||
|
||||
|
||||
def deprecated_greedy_search_batch(
|
||||
model: nn.Module, encoder_out: torch.Tensor
|
||||
) -> List[List[int]]:
|
||||
"""Greedy search in batch mode. It hardcodes --max-sym-per-frame=1.
|
||||
Args:
|
||||
model:
|
||||
The transducer model.
|
||||
encoder_out:
|
||||
Output from the encoder. Its shape is (N, T, C), where N >= 1.
|
||||
Returns:
|
||||
Return a list-of-list of token IDs containing the decoded results.
|
||||
len(ans) equals to encoder_out.size(0).
|
||||
"""
|
||||
assert encoder_out.ndim == 3
|
||||
assert encoder_out.size(0) >= 1, encoder_out.size(0)
|
||||
|
||||
device = next(model.parameters()).device
|
||||
|
||||
batch_size = encoder_out.size(0)
|
||||
T = encoder_out.size(1)
|
||||
|
||||
blank_id = model.decoder.blank_id
|
||||
unk_id = getattr(model, "unk_id", blank_id)
|
||||
context_size = model.decoder.context_size
|
||||
|
||||
hyps = [[blank_id] * context_size for _ in range(batch_size)]
|
||||
|
||||
decoder_input = torch.tensor(
|
||||
hyps,
|
||||
device=device,
|
||||
dtype=torch.int64,
|
||||
) # (batch_size, context_size)
|
||||
|
||||
decoder_out = model.decoder(decoder_input, need_pad=False)
|
||||
decoder_out = model.joiner.decoder_proj(decoder_out)
|
||||
encoder_out = model.joiner.encoder_proj(encoder_out)
|
||||
|
||||
# decoder_out: (batch_size, 1, decoder_out_dim)
|
||||
for t in range(T):
|
||||
current_encoder_out = encoder_out[:, t : t + 1, :].unsqueeze(2) # noqa
|
||||
# current_encoder_out's shape: (batch_size, 1, 1, encoder_out_dim)
|
||||
logits = model.joiner(
|
||||
current_encoder_out, decoder_out.unsqueeze(1), project_input=False
|
||||
)
|
||||
print(current_encoder_out)
|
||||
print(decoder_out.unsqueeze(1))
|
||||
print(logits)
|
||||
exit()
|
||||
# logits'shape (batch_size, 1, 1, vocab_size)
|
||||
logits = logits.squeeze(1).squeeze(1) # (batch_size, vocab_size)
|
||||
assert logits.ndim == 2, logits.shape
|
||||
y = logits.argmax(dim=1).tolist()
|
||||
emitted = False
|
||||
for i, v in enumerate(y):
|
||||
if v not in (blank_id, unk_id):
|
||||
hyps[i].append(v)
|
||||
emitted = True
|
||||
if emitted:
|
||||
# update decoder output
|
||||
decoder_input = [h[-context_size:] for h in hyps]
|
||||
decoder_input = torch.tensor(
|
||||
decoder_input,
|
||||
device=device,
|
||||
dtype=torch.int64,
|
||||
)
|
||||
decoder_out = model.decoder(decoder_input, need_pad=False)
|
||||
decoder_out = model.joiner.decoder_proj(decoder_out)
|
||||
|
||||
ans = [h[context_size:] for h in hyps]
|
||||
return ans
|
||||
|
||||
|
||||
def deprecated_greedy_search_batch_for_cross_attn(
|
||||
model: nn.Module,
|
||||
encoder_out: torch.Tensor,
|
||||
@ -822,23 +894,29 @@ def deprecated_greedy_search_batch_for_cross_attn(
|
||||
|
||||
# decoder_out: (batch_size, 1, decoder_out_dim)
|
||||
for t in range(T):
|
||||
# current_encoder_out = encoder_out[:, t : t + 1, :].unsqueeze(2) # noqa
|
||||
current_encoder_out = encoder_out[:, t : t + 1, :].unsqueeze(2) # noqa
|
||||
# current_encoder_out's shape: (batch_size, 1, 1, encoder_out_dim)
|
||||
current_encoder_out = model.joiner.label_level_am_attention(
|
||||
attn_encoder_out = model.joiner.label_level_am_attention(
|
||||
encoder_out.unsqueeze(2),
|
||||
decoder_out.unsqueeze(2),
|
||||
# encoder_out_lens,
|
||||
None,
|
||||
encoder_out_lens,
|
||||
)
|
||||
# print(encoder_out[:, t : t + 1, :].unsqueeze(2))
|
||||
# current_encoder_out = torch.zeros_like(current_encoder_out)
|
||||
logits = model.joiner(
|
||||
current_encoder_out,
|
||||
decoder_out.unsqueeze(1),
|
||||
torch.zeros_like(current_encoder_out),
|
||||
None,
|
||||
apply_attn=False,
|
||||
project_input=False,
|
||||
)
|
||||
# logits'shape (batch_size, 1, 1, vocab_size)
|
||||
logits = logits.squeeze(1).squeeze(1) # (batch_size, vocab_size)
|
||||
# print(current_encoder_out)
|
||||
# print(decoder_out)
|
||||
# print(logits)
|
||||
# # exit()
|
||||
assert logits.ndim == 2, logits.shape
|
||||
y = logits.argmax(dim=1).tolist()
|
||||
emitted = False
|
||||
|
@ -39,6 +39,7 @@ class Joiner(nn.Module):
|
||||
self,
|
||||
encoder_out: torch.Tensor,
|
||||
decoder_out: torch.Tensor,
|
||||
attn_encoder_out: torch.Tensor,
|
||||
lengths: torch.Tensor,
|
||||
apply_attn: bool = True,
|
||||
project_input: bool = True,
|
||||
@ -64,14 +65,14 @@ class Joiner(nn.Module):
|
||||
)
|
||||
|
||||
if apply_attn and lengths is not None:
|
||||
encoder_out = self.label_level_am_attention(
|
||||
attn_encoder_out = self.label_level_am_attention(
|
||||
encoder_out, decoder_out, lengths
|
||||
)
|
||||
|
||||
if project_input:
|
||||
logit = self.encoder_proj(encoder_out) + self.decoder_proj(decoder_out)
|
||||
else:
|
||||
logit = encoder_out + decoder_out
|
||||
logit = encoder_out + decoder_out + attn_encoder_out
|
||||
|
||||
logit = self.output_linear(torch.tanh(logit))
|
||||
|
||||
|
@ -265,7 +265,12 @@ class AsrModel(nn.Module):
|
||||
# project_input=False since we applied the decoder's input projections
|
||||
# prior to do_rnnt_pruning (this is an optimization for speed).
|
||||
logits = self.joiner(
|
||||
am_pruned, lm_pruned, encoder_out_lens, apply_attn=True, project_input=False
|
||||
am_pruned,
|
||||
lm_pruned,
|
||||
None,
|
||||
encoder_out_lens,
|
||||
apply_attn=True,
|
||||
project_input=False,
|
||||
)
|
||||
|
||||
with torch.cuda.amp.autocast(enabled=False):
|
||||
|
Loading…
x
Reference in New Issue
Block a user