diff --git a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.data2vec_audio.py.swp b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.data2vec_audio.py.swp index 66d3265fa..817e39bf5 100644 Binary files a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.data2vec_audio.py.swp and b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.data2vec_audio.py.swp differ diff --git a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/data2vec_audio.py b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/data2vec_audio.py index ad9222398..e6dfff769 100644 --- a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/data2vec_audio.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/data2vec_audio.py @@ -492,15 +492,9 @@ class Data2VecAudioModel(BaseFairseqModel): if prompt is not None: #features = torch.cat([features, prompt]) prompt = prompt.expand((features.size()[0], prompt.size()[0], prompt.size()[1])) - print(prompt.size()) - print(features.size()) features = torch.cat([prompt, features], dim=1) - print(features.size()) prompt_padding_mask = torch.zeros(prompt.size()[0], prompt.size()[1]).type(torch.BoolTensor).to(features.device) - print(prompt_padding_mask.size()) - print(padding_mask.size()) padding_mask = torch.cat([prompt_padding_mask, padding_mask], dim=1) - print(padding_mask.size()) features = self.layer_norm(features)