Add char-based language model training process for aishell. (#945)

* Add char-based language model training process for aishell.

Add soft link from librispeech/ASR/local/sort_lm_training_data.py to aishell/ASR/local/

---------

Co-authored-by: lichao <www.563042811@qq.com>
This commit is contained in:
Jason's Lab 2023-03-16 09:52:11 +08:00 committed by GitHub
parent a48812ddb3
commit 6196b4a407
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 255 additions and 1 deletions

View File

@ -0,0 +1,164 @@
#!/usr/bin/env python3
# Copyright (c) 2021 Xiaomi Corporation (authors: Daniel Povey
# Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script takes a `tokens.txt` and a text file such as
./download/lm/aishell-transcript.txt
and outputs the LM training data to a supplied directory such
as data/lm_training_char. The format is as follows:
It creates a PyTorch archive (.pt file), say data/lm_training.pt, which is a
representation of a dict with the same format with librispeech receipe
"""
import argparse
import logging
from pathlib import Path
import k2
import torch
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--lang-char",
type=str,
help="""Lang dir of asr model, e.g. data/lang_char""",
)
parser.add_argument(
"--lm-data",
type=str,
help="""Input LM training data as text, e.g.
download/lm/aishell-train-word.txt""",
)
parser.add_argument(
"--lm-archive",
type=str,
help="""Path to output archive, e.g. data/lm_training_char/lm_data.pt;
look at the source of this script to see the format.""",
)
return parser.parse_args()
def main():
args = get_args()
if Path(args.lm_archive).exists():
logging.warning(f"{args.lm_archive} exists - skipping")
return
# make token_dict from tokens.txt in order to map characters to tokens.
token_dict = {}
token_file = args.lang_char + "/tokens.txt"
with open(token_file, "r") as f:
for line in f.readlines():
line_list = line.split()
token_dict[line_list[0]] = int(line_list[1])
# word2index is a dictionary from words to integer ids. No need to reserve
# space for epsilon, etc.; the words are just used as a convenient way to
# compress the sequences of tokens.
word2index = dict()
word2token = [] # Will be a list-of-list-of-int, representing tokens.
sentences = [] # Will be a list-of-list-of-int, representing word-ids.
if "aishell-lm" in args.lm_data:
num_lines_in_total = 120098.0
step = 50000
elif "valid" in args.lm_data:
num_lines_in_total = 14326.0
step = 3000
elif "test" in args.lm_data:
num_lines_in_total = 7176.0
step = 3000
else:
num_lines_in_total = None
step = None
processed = 0
with open(args.lm_data) as f:
while True:
line = f.readline()
if line == "":
break
if step and processed % step == 0:
logging.info(
f"Processed number of lines: {processed} "
f"({processed / num_lines_in_total * 100: .3f}%)"
)
processed += 1
line_words = line.split()
for w in line_words:
if w not in word2index:
w_token = []
for t in w:
if t in token_dict:
w_token.append(token_dict[t])
else:
w_token.append(token_dict["<unk>"])
word2index[w] = len(word2token)
word2token.append(w_token)
sentences.append([word2index[w] for w in line_words])
logging.info("Constructing ragged tensors")
words = k2.ragged.RaggedTensor(word2token)
sentences = k2.ragged.RaggedTensor(sentences)
output = dict(words=words, sentences=sentences)
num_sentences = sentences.dim0
logging.info(f"Computing sentence lengths, num_sentences: {num_sentences}")
sentence_lengths = [0] * num_sentences
for i in range(num_sentences):
if step and i % step == 0:
logging.info(
f"Processed number of lines: {i} ({i / num_sentences * 100: .3f}%)"
)
word_ids = sentences[i]
# NOTE: If word_ids is a tensor with only 1 entry,
# token_ids is a torch.Tensor
token_ids = words[word_ids]
if isinstance(token_ids, k2.RaggedTensor):
token_ids = token_ids.values
# token_ids is a 1-D tensor containing the BPE tokens
# of the current sentence
sentence_lengths[i] = token_ids.numel()
output["sentence_lengths"] = torch.tensor(sentence_lengths, dtype=torch.int32)
torch.save(output, args.lm_archive)
logging.info(f"Saved to {args.lm_archive}")
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
main()

View File

@ -7,7 +7,7 @@ set -eou pipefail
nj=15
stage=-1
stop_stage=10
stop_stage=11
# We assume dl_dir (download dir) contains the following
# directories and files. If not, they will be downloaded
@ -219,3 +219,93 @@ if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
./local/compile_hlg.py --lang-dir $lang_phone_dir
./local/compile_hlg.py --lang-dir $lang_char_dir
fi
if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
log "Stage 9: Generate LM training data"
log "Processing char based data"
out_dir=data/lm_training_char
mkdir -p $out_dir $dl_dir/lm
if [ ! -f $dl_dir/lm/aishell-train-word.txt ]; then
cp $lang_phone_dir/transcript_words.txt $dl_dir/lm/aishell-train-word.txt
fi
./local/prepare_char_lm_training_data.py \
--lang-char data/lang_char \
--lm-data $dl_dir/lm/aishell-train-word.txt \
--lm-archive $out_dir/lm_data.pt
if [ ! -f $dl_dir/lm/aishell-valid-word.txt ]; then
aishell_text=$dl_dir/aishell/data_aishell/transcript/aishell_transcript_v0.8.txt
aishell_valid_uid=$dl_dir/aishell/data_aishell/transcript/aishell_valid_uid
find $dl_dir/aishell/data_aishell/wav/dev -name "*.wav" | sed 's/\.wav//g' | awk -F '/' '{print $NF}' > $aishell_valid_uid
awk 'NR==FNR{uid[$1]=$1} NR!=FNR{if($1 in uid) print $0}' $aishell_valid_uid $aishell_text |
cut -d " " -f 2- > $dl_dir/lm/aishell-valid-word.txt
fi
./local/prepare_char_lm_training_data.py \
--lang-char data/lang_char \
--lm-data $dl_dir/lm/aishell-valid-word.txt \
--lm-archive $out_dir/lm_data_valid.pt
if [ ! -f $dl_dir/lm/aishell-test-word.txt ]; then
aishell_text=$dl_dir/aishell/data_aishell/transcript/aishell_transcript_v0.8.txt
aishell_test_uid=$dl_dir/aishell/data_aishell/transcript/aishell_test_uid
find $dl_dir/aishell/data_aishell/wav/test -name "*.wav" | sed 's/\.wav//g' | awk -F '/' '{print $NF}' > $aishell_test_uid
awk 'NR==FNR{uid[$1]=$1} NR!=FNR{if($1 in uid) print $0}' $aishell_test_uid $aishell_text |
cut -d " " -f 2- > $dl_dir/lm/aishell-test-word.txt
fi
./local/prepare_char_lm_training_data.py \
--lang-char data/lang_char \
--lm-data $dl_dir/lm/aishell-test-word.txt \
--lm-archive $out_dir/lm_data_test.pt
fi
if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then
log "Stage 10: Sort LM training data"
# Sort LM training data by sentence length in descending order
# for ease of training.
#
# Sentence length equals to the number of tokens
# in a sentence.
out_dir=data/lm_training_char
mkdir -p $out_dir
ln -snf ../../../librispeech/ASR/local/sort_lm_training_data.py local/
./local/sort_lm_training_data.py \
--in-lm-data $out_dir/lm_data.pt \
--out-lm-data $out_dir/sorted_lm_data.pt \
--out-statistics $out_dir/statistics.txt
./local/sort_lm_training_data.py \
--in-lm-data $out_dir/lm_data_valid.pt \
--out-lm-data $out_dir/sorted_lm_data-valid.pt \
--out-statistics $out_dir/statistics-valid.txt
./local/sort_lm_training_data.py \
--in-lm-data $out_dir/lm_data_test.pt \
--out-lm-data $out_dir/sorted_lm_data-test.pt \
--out-statistics $out_dir/statistics-test.txt
fi
if [ $stage -le 11 ] && [ $stop_stage -ge 11 ]; then
log "Stage 11: Train RNN LM model"
python ../../../icefall/rnn_lm/train.py \
--start-epoch 0 \
--world-size 1 \
--num-epochs 20 \
--use-fp16 0 \
--embedding-dim 512 \
--hidden-dim 512 \
--num-layers 2 \
--batch-size 400 \
--exp-dir rnnlm_char/exp \
--lm-data data/lm_training_char/sorted_lm_data.pt \
--lm-data-valid data/lm_training_char/sorted_lm_data-valid.pt \
--vocab-size 4336 \
--master-port 12345
fi