Add training/decoding/model-export tutorials

This commit is contained in:
Fangjun Kuang 2023-08-16 22:26:27 +08:00
parent 6ecaaf342a
commit 618110610e
7 changed files with 442 additions and 4 deletions

View File

@ -1,6 +1,11 @@
.. _dummies_tutorial_data_preparation:
Data Preparation Data Preparation
================ ================
After :ref:`dummies_tutorial_environment_setup`, we can start preparing the
data for training and decoding.
The first step is to prepare the data for training. We have already provided The first step is to prepare the data for training. We have already provided
`prepare.sh <https://github.com/k2-fsa/icefall/blob/master/egs/yesno/ASR/prepare.sh>`_ `prepare.sh <https://github.com/k2-fsa/icefall/blob/master/egs/yesno/ASR/prepare.sh>`_
that would prepare everything required for training. that would prepare everything required for training.
@ -97,7 +102,7 @@ data
**data/manifests**: **data/manifests**:
This directory contains manifests. There are used to generate files in This directory contains manifests. They are used to generate files in
``data/fbank``. ``data/fbank``.
To give you an idea of what it contains, we examine the first few lines of To give you an idea of what it contains, we examine the first few lines of
@ -165,3 +170,11 @@ data
Note that ``yesno_cuts_train.jsonl.gz`` only stores the information about how to read the features. Note that ``yesno_cuts_train.jsonl.gz`` only stores the information about how to read the features.
The actual features are stored separately in ``data/fbank/yesno_feats_train.lca``. The actual features are stored separately in ``data/fbank/yesno_feats_train.lca``.
**data/lang**:
This directory contains the lexicon.
**data/lm**:
This directory contains language models.

View File

@ -0,0 +1,39 @@
.. _dummies_tutorial_decoding:
Decoding
========
After :ref:`dummies_tutorial_training`, we can start decoding.
The command to start the decoding is quite simple:
.. code-block:: bash
cd /tmp/icefall
export PYTHONPATH=/tmp/icefall:$PYTHONPATH
cd egs/yesno/ASR
# We use CPU for decoding by setting the following environment variable
export CUDA_VISIBLE_DEVICES=""
./tdnn/decode.py
The output logs are given below:
.. literalinclude:: ./code/decoding-yesno.txt
For the more curious
--------------------
.. code-block:: bash
./tdnn/decode.py --help
will print the usage information about ``./tdnn/decode.py``. For instance, you
can specify:
- ``--epoch`` to use which checkpoint for decoding
- ``--avg`` to select how many checkpoints to use for model averaging
You usually try different combinations of ``--epoch`` and ``--avg`` and select
one that leads to the lowest WER (`Word Error Rate <https://en.wikipedia.org/wiki/Word_error_rate>`_).

View File

@ -1,3 +1,5 @@
.. _dummies_tutorial_environment_setup:
Environment setup Environment setup
================= =================
@ -64,6 +66,9 @@ to install dependencies of `icefall`_:
pip install torch==2.0.0+cpu torchaudio==2.0.0+cpu -f https://download.pytorch.org/whl/torch_stable.html pip install torch==2.0.0+cpu torchaudio==2.0.0+cpu -f https://download.pytorch.org/whl/torch_stable.html
# If you are using macOS or Windows, please use the following command to install torch and torchaudio
# pip install torch==2.0.0 torchaudio==2.0.0 -f https://download.pytorch.org/whl/torch_stable.html
# Now install k2 # Now install k2
# Please refer to https://k2-fsa.github.io/k2/installation/from_wheels.html#linux-cpu-example # Please refer to https://k2-fsa.github.io/k2/installation/from_wheels.html#linux-cpu-example
@ -94,5 +99,23 @@ You can select any directory you want.
export PYTHONPATH=/tmp/icefall:$PYTHONPATH export PYTHONPATH=/tmp/icefall:$PYTHONPATH
.. hint::
If you get the following error during this tutorial:
.. code-block:: bash
ModuleNotFoundError: No module named 'icefall'
please set the above environment variable to fix it.
Congratulations! You have installed `icefall`_ successfully. Congratulations! You have installed `icefall`_ successfully.
For the more curious
--------------------
`icefall`_ contains a collection of Python scripts and you don't need to
use ``python3 setup.py install`` or ``pip install icefall`` to install it.
All you need to do is to download the code and set the environment variable
``PYTHONPATH``.

View File

@ -5,17 +5,30 @@ This tutorial walks you step by step about how to create a simple
ASR (`Automatic Speech Recognition <https://en.wikipedia.org/wiki/Speech_recognition>`_) ASR (`Automatic Speech Recognition <https://en.wikipedia.org/wiki/Speech_recognition>`_)
system with `Next-gen Kaldi`_. system with `Next-gen Kaldi`_.
It uses the `yesno`_ dataset for demonstration. The `yesno`_ dataset We use the `yesno`_ dataset for demonstration. We select it out of two reasons:
is very tiny and the model training can be finished within 20 seconds on ``CPU``.
That also means you don't need a ``GPU`` to finish this tutorial. - It is quite tiny, containing only about 12 minutes of data
- The training can be finished within 20 seconds on ``CPU``.
That also means you don't need a ``GPU`` to run this tutorial.
Let's get started! Let's get started!
Please follow items below **sequentially**. Please follow items below **sequentially**.
.. note::
The :ref:`dummies_tutorial_data_preparation` runs only on Linux and on macOS.
All other parts run on Linux, macOS, and Windows.
Help from the community is appreciated to port the :ref:`dummies_tutorial_data_preparation`
to Windows.
.. toctree:: .. toctree::
:maxdepth: 2 :maxdepth: 2
./environment-setup.rst ./environment-setup.rst
./data-preparation.rst ./data-preparation.rst
./training.rst
./decoding.rst
./model-export.rst

View File

@ -0,0 +1,310 @@
Model Export
============
There are three ways to export a pre-trained model.
- Export the model parameters via `model.state_dict() <https://pytorch.org/docs/stable/generated/torch.nn.Module.html?highlight=load_state_dict#torch.nn.Module.state_dict>`_
- Export via `torchscript <https://pytorch.org/docs/stable/jit.html>`_: either `torch.jit.script() <https://pytorch.org/docs/stable/generated/torch.jit.script.html#torch.jit.script>`_ or `torch.jit.trace() <https://pytorch.org/docs/stable/generated/torch.jit.trace.html>`_
- Export to `ONNX`_ via `torch.onnx.export() <https://pytorch.org/docs/stable/onnx.html>`_
Each method is explained below in detail.
Export the model parameters via model.state_dict()
---------------------------------------------------
The command for this kind of export is
.. code-block:: bash
cd /tmp/icefall
export PYTHONPATH=/tmp/icefall:$PYTHONPATH
cd egs/yesno/ASR
# assume that "--epoch 14 --avg 2" produces the lowest WER.
./tdnn/export.py --epoch 14 --avg 2
The output logs are given below:
.. code-block:: bash
2023-08-16 20:42:03,912 INFO [export.py:76] {'exp_dir': PosixPath('tdnn/exp'), 'lang_dir': PosixPath('data/lang_phone'), 'lr': 0.01, 'feature_dim': 23, 'weight_decay': 1e-06, 'start_epoch': 0, 'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 10, 'reset_interval': 20, 'valid_interval': 10, 'beam_size': 10, 'reduction': 'sum', 'use_double_scores': True, 'epoch': 14, 'avg': 2, 'jit': False}
2023-08-16 20:42:03,913 INFO [lexicon.py:168] Loading pre-compiled data/lang_phone/Linv.pt
2023-08-16 20:42:03,950 INFO [export.py:93] averaging ['tdnn/exp/epoch-13.pt', 'tdnn/exp/epoch-14.pt']
2023-08-16 20:42:03,971 INFO [export.py:106] Not using torch.jit.script
2023-08-16 20:42:03,974 INFO [export.py:111] Saved to tdnn/exp/pretrained.pt
We can see from the logs that the exported model is saved to the file ``tdnn/exp/pretrained.pt``.
To give you an idea of what ``tdnn/exp/pretrained.pt`` contains, we can use the following command:
.. code-block:: python3
>>> import torch
>>> m = torch.load("tdnn/exp/pretrained.pt")
>>> list(m.keys())
['model']
>>> list(m["model"].keys())
['tdnn.0.weight', 'tdnn.0.bias', 'tdnn.2.running_mean', 'tdnn.2.running_var', 'tdnn.2.num_batches_tracked', 'tdnn.3.weight', 'tdnn.3.bias', 'tdnn.5.running_mean', 'tdnn.5.running_var', 'tdnn.5.num_batches_tracked', 'tdnn.6.weight', 'tdnn.6.bias', 'tdnn.8.running_mean', 'tdnn.8.running_var', 'tdnn.8.num_batches_tracked', 'output_linear.weight', 'output_linear.bias']
We can use ``tdnn/exp/pretrained.pt`` in the following way with ``./tdnn/decode.py``:
.. code-block:: bash
cd tdnn/exp
ln -s pretrained.pt epoch-99.pt
cd ../..
./tdnn/decode.py --epoch 99 --avg 1
The output logs of the above command are given below:
.. code-block:: bash
2023-08-16 20:45:48,089 INFO [decode.py:262] Decoding started
2023-08-16 20:45:48,090 INFO [decode.py:263] {'exp_dir': PosixPath('tdnn/exp'), 'lang_dir': PosixPath('data/lang_phone'), 'feature_dim': 23, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'use_double_scores': True, 'epoch': 99, 'avg': 1, 'export': False, 'feature_dir': PosixPath('data/fbank'), 'max_duration': 30.0, 'bucketing_sampler': False, 'num_buckets': 10, 'concatenate_cuts': False, 'duration_factor': 1.0, 'gap': 1.0, 'on_the_fly_feats': False, 'shuffle': False, 'return_cuts': True, 'num_workers': 2, 'env_info': {'k2-version': '1.24.3', 'k2-build-type': 'Release', 'k2-with-cuda': False, 'k2-git-sha1': 'ad79f1c699c684de9785ed6ca5edb805a41f78c3', 'k2-git-date': 'Wed Jul 26 09:30:42 2023', 'lhotse-version': '1.16.0.dev+git.aa073f6.clean', 'torch-version': '2.0.0', 'torch-cuda-available': False, 'torch-cuda-version': None, 'python-version': '3.1', 'icefall-git-branch': 'master', 'icefall-git-sha1': '9a47c08-clean', 'icefall-git-date': 'Mon Aug 14 22:10:50 2023', 'icefall-path': '/private/tmp/icefall', 'k2-path': '/private/tmp/icefall_env/lib/python3.11/site-packages/k2/__init__.py', 'lhotse-path': '/private/tmp/icefall_env/lib/python3.11/site-packages/lhotse/__init__.py', 'hostname': 'fangjuns-MacBook-Pro.local', 'IP address': '127.0.0.1'}}
2023-08-16 20:45:48,092 INFO [lexicon.py:168] Loading pre-compiled data/lang_phone/Linv.pt
2023-08-16 20:45:48,103 INFO [decode.py:272] device: cpu
2023-08-16 20:45:48,109 INFO [checkpoint.py:112] Loading checkpoint from tdnn/exp/epoch-99.pt
2023-08-16 20:45:48,115 INFO [asr_datamodule.py:218] About to get test cuts
2023-08-16 20:45:48,115 INFO [asr_datamodule.py:253] About to get test cuts
2023-08-16 20:45:50,386 INFO [decode.py:203] batch 0/?, cuts processed until now is 4
2023-08-16 20:45:50,556 INFO [decode.py:240] The transcripts are stored in tdnn/exp/recogs-test_set.txt
2023-08-16 20:45:50,557 INFO [utils.py:564] [test_set] %WER 0.42% [1 / 240, 0 ins, 1 del, 0 sub ]
2023-08-16 20:45:50,558 INFO [decode.py:248] Wrote detailed error stats to tdnn/exp/errs-test_set.txt
2023-08-16 20:45:50,559 INFO [decode.py:315] Done!
We can see that it produces an identical WER as before.
We can also use it to decode files with the following command:
.. code-block:: bash
# ./tdnn/pretrained.py requires kaldifeat
#
# Please refer to https://csukuangfj.github.io/kaldifeat/installation/from_wheels.html
# for how to install kaldifeat
pip install kaldifeat==1.25.0.dev20230726+cpu.torch2.0.0 -f https://csukuangfj.github.io/kaldifeat/cpu.html
./tdnn/pretrained.py \
--checkpoint ./tdnn/exp/pretrained.pt \
--HLG ./data/lang_phone/HLG.pt \
--words-file ./data/lang_phone/words.txt \
download/waves_yesno/0_0_0_1_0_0_0_1.wav \
download/waves_yesno/0_0_1_0_0_0_1_0.wav
The output is given below:
.. code-block:: bash
2023-08-16 20:53:19,208 INFO [pretrained.py:136] {'feature_dim': 23, 'num_classes': 4, 'sample_rate': 8000, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'use_double_scores': True, 'checkpoint': './tdnn/exp/pretrained.pt', 'words_file': './data/lang_phone/words.txt', 'HLG': './data/lang_phone/HLG.pt', 'sound_files': ['download/waves_yesno/0_0_0_1_0_0_0_1.wav', 'download/waves_yesno/0_0_1_0_0_0_1_0.wav']}
2023-08-16 20:53:19,208 INFO [pretrained.py:142] device: cpu
2023-08-16 20:53:19,208 INFO [pretrained.py:144] Creating model
2023-08-16 20:53:19,212 INFO [pretrained.py:156] Loading HLG from ./data/lang_phone/HLG.pt
2023-08-16 20:53:19,213 INFO [pretrained.py:160] Constructing Fbank computer
2023-08-16 20:53:19,213 INFO [pretrained.py:170] Reading sound files: ['download/waves_yesno/0_0_0_1_0_0_0_1.wav', 'download/waves_yesno/0_0_1_0_0_0_1_0.wav']
2023-08-16 20:53:19,224 INFO [pretrained.py:176] Decoding started
2023-08-16 20:53:19,304 INFO [pretrained.py:212]
download/waves_yesno/0_0_0_1_0_0_0_1.wav:
NO NO NO YES NO NO NO YES
download/waves_yesno/0_0_1_0_0_0_1_0.wav:
NO NO YES NO NO NO YES NO
2023-08-16 20:53:19,304 INFO [pretrained.py:214] Decoding Done
Export via torch.jit.script()
-----------------------------
The command for this kind of export is
.. code-block:: bash
cd /tmp/icefall
export PYTHONPATH=/tmp/icefall:$PYTHONPATH
cd egs/yesno/ASR
# assume that "--epoch 14 --avg 2" produces the lowest WER.
./tdnn/export.py --epoch 14 --avg 2 --jit true
The output logs are given below:
.. code-block:: bash
2023-08-16 20:47:44,666 INFO [export.py:76] {'exp_dir': PosixPath('tdnn/exp'), 'lang_dir': PosixPath('data/lang_phone'), 'lr': 0.01, 'feature_dim': 23, 'weight_decay': 1e-06, 'start_epoch': 0, 'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 10, 'reset_interval': 20, 'valid_interval': 10, 'beam_size': 10, 'reduction': 'sum', 'use_double_scores': True, 'epoch': 14, 'avg': 2, 'jit': True}
2023-08-16 20:47:44,667 INFO [lexicon.py:168] Loading pre-compiled data/lang_phone/Linv.pt
2023-08-16 20:47:44,670 INFO [export.py:93] averaging ['tdnn/exp/epoch-13.pt', 'tdnn/exp/epoch-14.pt']
2023-08-16 20:47:44,677 INFO [export.py:100] Using torch.jit.script
2023-08-16 20:47:44,843 INFO [export.py:104] Saved to tdnn/exp/cpu_jit.pt
From the output logs we can see that the generated file is saved to ``tdnn/exp/cpu_jit.pt``.
Don't be confused by the name ``cpu_jit.pt``. The ``cpu`` part means the model is moved to
CPU before exporting. That means, when you load it with:
.. code-block:: bash
torch.jit.load()
you don't need to specify the argument `map_location <https://pytorch.org/docs/stable/generated/torch.jit.load.html#torch.jit.load>`_
and it resides on CPU by default.
To use ``tdnn/exp/cpu_jit.pt`` with `icefall`_ to decode files, we can use:
.. code-block:: bash
# ./tdnn/jit_pretrained.py requires kaldifeat
#
# Please refer to https://csukuangfj.github.io/kaldifeat/installation/from_wheels.html
# for how to install kaldifeat
pip install kaldifeat==1.25.0.dev20230726+cpu.torch2.0.0 -f https://csukuangfj.github.io/kaldifeat/cpu.html
./tdnn/jit_pretrained.py \
--nn-model ./tdnn/exp/cpu_jit.pt \
--HLG ./data/lang_phone/HLG.pt \
--words-file ./data/lang_phone/words.txt \
download/waves_yesno/0_0_0_1_0_0_0_1.wav \
download/waves_yesno/0_0_1_0_0_0_1_0.wav
The output is given below:
.. code-block:: bash
2023-08-16 20:56:00,603 INFO [jit_pretrained.py:121] {'feature_dim': 23, 'num_classes': 4, 'sample_rate': 8000, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'use_double_scores': True, 'nn_model': './tdnn/exp/cpu_jit.pt', 'words_file': './data/lang_phone/words.txt', 'HLG': './data/lang_phone/HLG.pt', 'sound_files': ['download/waves_yesno/0_0_0_1_0_0_0_1.wav', 'download/waves_yesno/0_0_1_0_0_0_1_0.wav']}
2023-08-16 20:56:00,603 INFO [jit_pretrained.py:127] device: cpu
2023-08-16 20:56:00,603 INFO [jit_pretrained.py:129] Loading torchscript model
2023-08-16 20:56:00,640 INFO [jit_pretrained.py:134] Loading HLG from ./data/lang_phone/HLG.pt
2023-08-16 20:56:00,641 INFO [jit_pretrained.py:138] Constructing Fbank computer
2023-08-16 20:56:00,641 INFO [jit_pretrained.py:148] Reading sound files: ['download/waves_yesno/0_0_0_1_0_0_0_1.wav', 'download/waves_yesno/0_0_1_0_0_0_1_0.wav']
2023-08-16 20:56:00,642 INFO [jit_pretrained.py:154] Decoding started
2023-08-16 20:56:00,727 INFO [jit_pretrained.py:190]
download/waves_yesno/0_0_0_1_0_0_0_1.wav:
NO NO NO YES NO NO NO YES
download/waves_yesno/0_0_1_0_0_0_1_0.wav:
NO NO YES NO NO NO YES NO
2023-08-16 20:56:00,727 INFO [jit_pretrained.py:192] Decoding Done
.. hint::
We provide only code for ``torch.jit.script()``. You can try ``torch.jit.trace()``
if you want.
Export via torch.onnx.export()
------------------------------
The command for this kind of export is
.. code-block:: bash
cd /tmp/icefall
export PYTHONPATH=/tmp/icefall:$PYTHONPATH
cd egs/yesno/ASR
# tdnn/export_onnx.py requires onnx and onnxruntime
pip install onnx onnxruntime
# assume that "--epoch 14 --avg 2" produces the lowest WER.
./tdnn/export_onnx.py \
--epoch 14 \
--avg 2
The output logs are given below:
.. code-block:: bash
2023-08-16 20:59:20,888 INFO [export_onnx.py:83] {'exp_dir': PosixPath('tdnn/exp'), 'lang_dir': PosixPath('data/lang_phone'), 'lr': 0.01, 'feature_dim': 23, 'weight_decay': 1e-06, 'start_epoch': 0, 'best_train_loss': inf, 'best_valid_loss': inf, 'best_train_epoch': -1, 'best_valid_epoch': -1, 'batch_idx_train': 0, 'log_interval': 10, 'reset_interval': 20, 'valid_interval': 10, 'beam_size': 10, 'reduction': 'sum', 'use_double_scores': True, 'epoch': 14, 'avg': 2}
2023-08-16 20:59:20,888 INFO [lexicon.py:168] Loading pre-compiled data/lang_phone/Linv.pt
2023-08-16 20:59:20,892 INFO [export_onnx.py:100] averaging ['tdnn/exp/epoch-13.pt', 'tdnn/exp/epoch-14.pt']
================ Diagnostic Run torch.onnx.export version 2.0.0 ================
verbose: False, log level: Level.ERROR
======================= 0 NONE 0 NOTE 0 WARNING 0 ERROR ========================
2023-08-16 20:59:21,047 INFO [export_onnx.py:127] Saved to tdnn/exp/model-epoch-14-avg-2.onnx
2023-08-16 20:59:21,047 INFO [export_onnx.py:136] meta_data: {'model_type': 'tdnn', 'version': '1', 'model_author': 'k2-fsa', 'comment': 'non-streaming tdnn for the yesno recipe', 'vocab_size': 4}
2023-08-16 20:59:21,049 INFO [export_onnx.py:140] Generate int8 quantization models
2023-08-16 20:59:21,075 INFO [onnx_quantizer.py:538] Quantization parameters for tensor:"/Transpose_1_output_0" not specified
2023-08-16 20:59:21,081 INFO [export_onnx.py:151] Saved to tdnn/exp/model-epoch-14-avg-2.int8.onnx
We can see from the logs that it generates two files:
- ``tdnn/exp/model-epoch-14-avg-2.onnx`` (ONNX model with ``float32`` weights)
- ``tdnn/exp/model-epoch-14-avg-2.int8.onnx`` (ONNX model with ``int8`` weights)
To use the generated ONNX model files for decoding with `onnxruntime`_, we can use
.. code-block:: bash
# ./tdnn/onnx_pretrained.py requires kaldifeat
#
# Please refer to https://csukuangfj.github.io/kaldifeat/installation/from_wheels.html
# for how to install kaldifeat
pip install kaldifeat==1.25.0.dev20230726+cpu.torch2.0.0 -f https://csukuangfj.github.io/kaldifeat/cpu.html
./tdnn/onnx_pretrained.py \
--nn-model ./tdnn/exp/model-epoch-14-avg-2.onnx \
--HLG ./data/lang_phone/HLG.pt \
--words-file ./data/lang_phone/words.txt \
download/waves_yesno/0_0_0_1_0_0_0_1.wav \
download/waves_yesno/0_0_1_0_0_0_1_0.wav
The output is given below:
.. code-block:: bash
2023-08-16 21:03:24,260 INFO [onnx_pretrained.py:166] {'feature_dim': 23, 'sample_rate': 8000, 'search_beam': 20, 'output_beam': 8, 'min_active_states': 30, 'max_active_states': 10000, 'use_double_scores': True, 'nn_model': './tdnn/exp/model-epoch-14-avg-2.onnx', 'words_file': './data/lang_phone/words.txt', 'HLG': './data/lang_phone/HLG.pt', 'sound_files': ['download/waves_yesno/0_0_0_1_0_0_0_1.wav', 'download/waves_yesno/0_0_1_0_0_0_1_0.wav']}
2023-08-16 21:03:24,260 INFO [onnx_pretrained.py:171] device: cpu
2023-08-16 21:03:24,260 INFO [onnx_pretrained.py:173] Loading onnx model ./tdnn/exp/model-epoch-14-avg-2.onnx
2023-08-16 21:03:24,267 INFO [onnx_pretrained.py:176] Loading HLG from ./data/lang_phone/HLG.pt
2023-08-16 21:03:24,270 INFO [onnx_pretrained.py:180] Constructing Fbank computer
2023-08-16 21:03:24,273 INFO [onnx_pretrained.py:190] Reading sound files: ['download/waves_yesno/0_0_0_1_0_0_0_1.wav', 'download/waves_yesno/0_0_1_0_0_0_1_0.wav']
2023-08-16 21:03:24,279 INFO [onnx_pretrained.py:196] Decoding started
2023-08-16 21:03:24,318 INFO [onnx_pretrained.py:232]
download/waves_yesno/0_0_0_1_0_0_0_1.wav:
NO NO NO YES NO NO NO YES
download/waves_yesno/0_0_1_0_0_0_1_0.wav:
NO NO YES NO NO NO YES NO
2023-08-16 21:03:24,318 INFO [onnx_pretrained.py:234] Decoding Done
.. note::
To use the ``int8`` ONNX model for decoding, please use:
.. code-block:: bash
./tdnn/onnx_pretrained.py \
--nn-model ./tdnn/exp/model-epoch-14-avg-2.onnx \
--HLG ./data/lang_phone/HLG.pt \
--words-file ./data/lang_phone/words.txt \
download/waves_yesno/0_0_0_1_0_0_0_1.wav \
download/waves_yesno/0_0_1_0_0_0_1_0.wav
For the more curious
--------------------
If you are wondering how to deploy the model without ``torch``, please
continue reading. We will show how to use `sherpa-onnx`_ to run the
exported ONNX models, which depends only on `onnxruntime`_ and does not
depend on ``torch``.
In this tutorial, we will only demonstrate the usage of `sherpa-onnx`_ with the
pre-trained model of the `yesno`_ recipe. There are also other two frameworks
available:
- `sherpa`_. It works with torchscript models.
- `sherpa-ncnn`_. It works with models exported using :ref:`icefall_export_to_ncnn` with `ncnn`_
Please see `<https://k2-fsa.github.io/sherpa/>`_ for further details.

View File

@ -0,0 +1,39 @@
.. _dummies_tutorial_training:
Training
========
After :ref:`dummies_tutorial_data_preparation`, we can start training.
The command to start the training is quite simple:
.. code-block:: bash
cd /tmp/icefall
export PYTHONPATH=/tmp/icefall:$PYTHONPATH
cd egs/yesno/ASR
# We use CPU for training by setting the following environment variable
export CUDA_VISIBLE_DEVICES=""
./tdnn/train.py
That's it!
You can find the training logs below:
.. literalinclude:: ./code/train-yesno.txt
For the more curious
--------------------
.. code-block:: bash
./tdnn/train.py --help
will print the usage information about ``./tdnn/train.py``. For instance, you
can specify the number of epochs to train and the location to save the training
results.
The training text logs are saved in ``tdnn/exp/log`` while the tensorboard
logs are in ``tdnn/exp/tensorboard``.

View File

@ -6,6 +6,7 @@ This file shows how to use an ONNX model for decoding with onnxruntime.
Usage: Usage:
(1) Use a not quantized ONNX model, i.e., a float32 model (1) Use a not quantized ONNX model, i.e., a float32 model
./tdnn/onnx_pretrained.py \ ./tdnn/onnx_pretrained.py \
--nn-model ./tdnn/exp/model-epoch-14-avg-2.onnx \ --nn-model ./tdnn/exp/model-epoch-14-avg-2.onnx \
--HLG ./data/lang_phone/HLG.pt \ --HLG ./data/lang_phone/HLG.pt \