add dataset example for librispeech

This commit is contained in:
Fangjun Kuang 2025-05-29 11:44:40 +08:00
parent 717aa53be9
commit 5ec7297f32

View File

@ -17,14 +17,16 @@
import argparse
import inspect
import logging
import random
from functools import lru_cache
from pathlib import Path
from typing import Any, Dict, Optional
import lhotse
import torch
from lhotse import CutSet, Fbank, FbankConfig, load_manifest, load_manifest_lazy
from lhotse import CutSet, Fbank, FbankConfig, load_manifest_lazy
from lhotse.cut import Cut
from lhotse.dataset import ( # noqa F401 for PrecomputedFeatures
CutConcatenate,
CutMix,
@ -41,6 +43,9 @@ from lhotse.dataset.input_strategies import ( # noqa F401 For AudioSamples
from lhotse.utils import fix_random_seed
from torch.utils.data import DataLoader
from icefall.speech_recognition_dataset import (
ConsistencyRegularizationSpeechRecognitionDataset,
)
from icefall.utils import str2bool
@ -52,7 +57,25 @@ class _SeedWorkers:
fix_random_seed(self.seed + worker_id)
class LibriSpeechAsrDataModule:
def perturb_speed(c: Cut):
factor = random.uniform(0.9, 1.1)
print("perturb_speed factor", factor)
return lhotse.MonoCut.perturb_speed(c, factor)
def perturb_volume(c: Cut):
factor = random.uniform(0.9, 1.1)
print("perturb_volume factor", factor)
return lhotse.MonoCut.perturb_volume(c, factor)
def perturb_tempo(c: Cut):
factor = random.uniform(0.9, 1.1)
print("perturb_tempo factor", factor)
return lhotse.MonoCut.perturb_tempo(c, factor)
class LibriSpeechAsrDataModuleWithParallelAug:
"""
DataModule for k2 ASR experiments.
It assumes there is always one train and valid dataloader,
@ -123,36 +146,6 @@ class LibriSpeechAsrDataModule:
help="The number of buckets for the DynamicBucketingSampler"
"(you might want to increase it for larger datasets).",
)
group.add_argument(
"--concatenate-cuts",
type=str2bool,
default=False,
help="When enabled, utterances (cuts) will be concatenated "
"to minimize the amount of padding.",
)
group.add_argument(
"--duration-factor",
type=float,
default=1.0,
help="Determines the maximum duration of a concatenated cut "
"relative to the duration of the longest cut in a batch.",
)
group.add_argument(
"--gap",
type=float,
default=1.0,
help="The amount of padding (in seconds) inserted between "
"concatenated cuts. This padding is filled with noise when "
"noise augmentation is used.",
)
group.add_argument(
"--on-the-fly-feats",
type=str2bool,
default=False,
help="When enabled, use on-the-fly cut mixing and feature "
"extraction. Will drop existing precomputed feature manifests "
"if available.",
)
group.add_argument(
"--shuffle",
type=str2bool,
@ -184,28 +177,12 @@ class LibriSpeechAsrDataModule:
)
group.add_argument(
"--enable-spec-aug",
"--on-the-fly-feats",
type=str2bool,
default=True,
help="When enabled, use SpecAugment for training dataset.",
)
group.add_argument(
"--spec-aug-time-warp-factor",
type=int,
default=80,
help="Used only when --enable-spec-aug is True. "
"It specifies the factor for time warping in SpecAugment. "
"Larger values mean more warping. "
"A value less than 1 means to disable time warp.",
)
group.add_argument(
"--enable-musan",
type=str2bool,
default=True,
help="When enabled, select noise from MUSAN and mix it"
"with training dataset. ",
default=False,
help="When enabled, use on-the-fly cut mixing and feature "
"extraction. Will drop existing precomputed feature manifests "
"if available. For training dataset, it always uses on_the_fly_feats",
)
group.add_argument(
@ -227,83 +204,14 @@ class LibriSpeechAsrDataModule:
sampler_state_dict:
The state dict for the training sampler.
"""
transforms = []
if self.args.enable_musan:
logging.info("Enable MUSAN")
logging.info("About to get Musan cuts")
cuts_musan = load_manifest(self.args.manifest_dir / "musan_cuts.jsonl.gz")
transforms.append(
CutMix(cuts=cuts_musan, p=0.5, snr=(10, 20), preserve_id=True)
)
else:
logging.info("Disable MUSAN")
if self.args.concatenate_cuts:
logging.info(
f"Using cut concatenation with duration factor "
f"{self.args.duration_factor} and gap {self.args.gap}."
)
# Cut concatenation should be the first transform in the list,
# so that if we e.g. mix noise in, it will fill the gaps between
# different utterances.
transforms = [
CutConcatenate(
duration_factor=self.args.duration_factor, gap=self.args.gap
)
] + transforms
input_transforms = []
if self.args.enable_spec_aug:
logging.info("Enable SpecAugment")
logging.info(f"Time warp factor: {self.args.spec_aug_time_warp_factor}")
# Set the value of num_frame_masks according to Lhotse's version.
# In different Lhotse's versions, the default of num_frame_masks is
# different.
num_frame_masks = 10
num_frame_masks_parameter = inspect.signature(
SpecAugment.__init__
).parameters["num_frame_masks"]
if num_frame_masks_parameter.default == 1:
num_frame_masks = 2
logging.info(f"Num frame mask: {num_frame_masks}")
input_transforms.append(
SpecAugment(
time_warp_factor=self.args.spec_aug_time_warp_factor,
num_frame_masks=num_frame_masks,
features_mask_size=27,
num_feature_masks=2,
frames_mask_size=100,
)
)
else:
logging.info("Disable SpecAugment")
transforms = [perturb_speed, perturb_volume, perturb_tempo]
logging.info("About to create train dataset")
train = K2SpeechRecognitionDataset(
input_strategy=eval(self.args.input_strategy)(),
train = ConsistencyRegularizationSpeechRecognitionDataset(
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
cut_transforms=transforms,
input_transforms=input_transforms,
return_cuts=self.args.return_cuts,
)
if self.args.on_the_fly_feats:
# NOTE: the PerturbSpeed transform should be added only if we
# remove it from data prep stage.
# Add on-the-fly speed perturbation; since originally it would
# have increased epoch size by 3, we will apply prob 2/3 and use
# 3x more epochs.
# Speed perturbation probably should come first before
# concatenation, but in principle the transforms order doesn't have
# to be strict (e.g. could be randomized)
# transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa
# Drop feats to be on the safe side.
train = K2SpeechRecognitionDataset(
cut_transforms=transforms,
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))),
input_transforms=input_transforms,
return_cuts=self.args.return_cuts,
)
if self.args.bucketing_sampler:
logging.info("Using DynamicBucketingSampler.")
train_sampler = DynamicBucketingSampler(