mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-11 11:02:29 +00:00
Get the input for the auxiliary branch.
This commit is contained in:
parent
218d79aba7
commit
5e4b1e01fe
@ -52,6 +52,7 @@ class Conformer(Transformer):
|
||||
nhead: int = 4,
|
||||
dim_feedforward: int = 2048,
|
||||
num_encoder_layers: int = 12,
|
||||
mid_layer: int = 6,
|
||||
dropout: float = 0.1,
|
||||
cnn_module_kernel: int = 31,
|
||||
normalize_before: bool = True,
|
||||
@ -69,6 +70,7 @@ class Conformer(Transformer):
|
||||
normalize_before=normalize_before,
|
||||
vgg_frontend=vgg_frontend,
|
||||
)
|
||||
assert 0 <= mid_layer < num_encoder_layers
|
||||
|
||||
self.encoder_pos = RelPositionalEncoding(d_model, dropout)
|
||||
|
||||
@ -80,14 +82,18 @@ class Conformer(Transformer):
|
||||
cnn_module_kernel,
|
||||
normalize_before,
|
||||
)
|
||||
self.encoder = ConformerEncoder(encoder_layer, num_encoder_layers)
|
||||
self.encoder = ConformerEncoder(
|
||||
encoder_layer, num_encoder_layers, mid_layer=mid_layer
|
||||
)
|
||||
self.normalize_before = normalize_before
|
||||
if self.normalize_before:
|
||||
self.after_norm = nn.LayerNorm(d_model)
|
||||
self.mid_layer_norm = nn.LayerNorm(d_model)
|
||||
else:
|
||||
# Note: TorchScript detects that self.after_norm could be used inside forward()
|
||||
# and throws an error without this change.
|
||||
self.after_norm = identity
|
||||
self.mid_layer_norm = identity
|
||||
|
||||
def forward(
|
||||
self, x: torch.Tensor, x_lens: torch.Tensor
|
||||
@ -114,15 +120,24 @@ class Conformer(Transformer):
|
||||
assert x.size(0) == lengths.max().item()
|
||||
mask = make_pad_mask(lengths)
|
||||
|
||||
x = self.encoder(x, pos_emb, src_key_padding_mask=mask) # (T, N, C)
|
||||
# Both x and mid_layer_out are of shape (T, N, d_model)
|
||||
x, mid_layer_out = self.encoder(
|
||||
x,
|
||||
pos_emb,
|
||||
src_key_padding_mask=mask,
|
||||
)
|
||||
|
||||
if self.normalize_before:
|
||||
x = self.after_norm(x)
|
||||
mid_layer_out = self.mid_layer_norm(mid_layer_out)
|
||||
|
||||
# (T, N, d_model) -> (N, T, d_model)
|
||||
mid_layer_out = mid_layer_out.permute(1, 0, 2)
|
||||
|
||||
logits = self.encoder_output_layer(x)
|
||||
logits = logits.permute(1, 0, 2) # (T, N, C) ->(N, T, C)
|
||||
|
||||
return logits, lengths
|
||||
return logits, lengths, mid_layer_out
|
||||
|
||||
|
||||
class ConformerEncoderLayer(nn.Module):
|
||||
@ -281,11 +296,28 @@ class ConformerEncoder(nn.TransformerEncoder):
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, encoder_layer: nn.Module, num_layers: int, norm: nn.Module = None
|
||||
self,
|
||||
encoder_layer: nn.Module,
|
||||
num_layers: int,
|
||||
mid_layer: int,
|
||||
norm: nn.Module = None,
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
encoder_layer:
|
||||
Type of the encoder layer.
|
||||
num_layers:
|
||||
Number of encoder layers.
|
||||
mid_layer:
|
||||
Also return the output of this layer in `forward()`.
|
||||
norm:
|
||||
If not None, the output of the last layer is processed by `norm`.
|
||||
"""
|
||||
super(ConformerEncoder, self).__init__(
|
||||
encoder_layer=encoder_layer, num_layers=num_layers, norm=norm
|
||||
)
|
||||
assert 0 <= mid_layer < num_layers, (mid_layer, num_layers)
|
||||
self.mid_layer = mid_layer
|
||||
|
||||
def forward(
|
||||
self,
|
||||
@ -293,7 +325,7 @@ class ConformerEncoder(nn.TransformerEncoder):
|
||||
pos_emb: Tensor,
|
||||
mask: Optional[Tensor] = None,
|
||||
src_key_padding_mask: Optional[Tensor] = None,
|
||||
) -> Tensor:
|
||||
) -> Tuple[Tensor, Tensor]:
|
||||
r"""Pass the input through the encoder layers in turn.
|
||||
|
||||
Args:
|
||||
@ -312,18 +344,20 @@ class ConformerEncoder(nn.TransformerEncoder):
|
||||
"""
|
||||
output = src
|
||||
|
||||
for mod in self.layers:
|
||||
for i, mod in enumerate(self.layers):
|
||||
output = mod(
|
||||
output,
|
||||
pos_emb,
|
||||
src_mask=mask,
|
||||
src_key_padding_mask=src_key_padding_mask,
|
||||
)
|
||||
if i == self.mid_layer:
|
||||
mid_layer_output = output
|
||||
|
||||
if self.norm is not None:
|
||||
output = self.norm(output)
|
||||
|
||||
return output
|
||||
return output, mid_layer_output
|
||||
|
||||
|
||||
class RelPositionalEncoding(torch.nn.Module):
|
||||
|
1
egs/librispeech/ASR/transducer_stateless_aux_kl/subsampling.py
Symbolic link
1
egs/librispeech/ASR/transducer_stateless_aux_kl/subsampling.py
Symbolic link
@ -0,0 +1 @@
|
||||
../conformer_ctc/subsampling.py
|
@ -0,0 +1,62 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
To run this file, do:
|
||||
|
||||
cd icefall/egs/librispeech/ASR
|
||||
python ./transducer_stateless_aux_kl/test_conformer.py
|
||||
"""
|
||||
|
||||
import torch
|
||||
from conformer import Conformer
|
||||
|
||||
|
||||
def test_conformer():
|
||||
output_dim = 1024
|
||||
d_model = 512
|
||||
conformer = Conformer(
|
||||
num_features=80,
|
||||
output_dim=output_dim,
|
||||
subsampling_factor=4,
|
||||
d_model=d_model,
|
||||
nhead=8,
|
||||
dim_feedforward=2048,
|
||||
num_encoder_layers=12,
|
||||
mid_layer=6,
|
||||
)
|
||||
N = 3
|
||||
T = 100
|
||||
C = 80
|
||||
x = torch.randn(N, T, C)
|
||||
x_lens = torch.tensor([50, 100, 80])
|
||||
logits, logit_lens, mid_layer_out = conformer(x, x_lens)
|
||||
|
||||
expected_T = ((T - 1) // 2 - 1) // 2
|
||||
assert logits.shape == (N, expected_T, output_dim)
|
||||
assert logit_lens.max().item() == expected_T
|
||||
assert mid_layer_out.shape == (N, expected_T, d_model)
|
||||
print(logits.shape)
|
||||
print(logit_lens)
|
||||
|
||||
|
||||
def main():
|
||||
test_conformer()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -233,6 +233,9 @@ def get_params() -> AttributeDict:
|
||||
"nhead": 8,
|
||||
"dim_feedforward": 2048,
|
||||
"num_encoder_layers": 12,
|
||||
# We us the output from mid_layer as the input of the
|
||||
# auxiliary branch
|
||||
"mid_layer": 6,
|
||||
"vgg_frontend": False,
|
||||
# parameters for Noam
|
||||
"warm_step": 80000, # For the 100h subset, use 8k
|
||||
@ -253,6 +256,7 @@ def get_encoder_model(params: AttributeDict) -> nn.Module:
|
||||
nhead=params.nhead,
|
||||
dim_feedforward=params.dim_feedforward,
|
||||
num_encoder_layers=params.num_encoder_layers,
|
||||
mid_layer=params.mid_layer,
|
||||
vgg_frontend=params.vgg_frontend,
|
||||
)
|
||||
return encoder
|
||||
|
Loading…
x
Reference in New Issue
Block a user