diff --git a/egs/librispeech/ASR/pruned_transducer_stateless4b/optim.py b/egs/librispeech/ASR/pruned_transducer_stateless4b/optim.py index f01ca24e6..0289db2f1 100644 --- a/egs/librispeech/ASR/pruned_transducer_stateless4b/optim.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless4b/optim.py @@ -122,16 +122,7 @@ def _update_factorization(x: Tensor, x_factorized: Tensor, this_mean = _mean_like(x_norm_var, shape) f = ((1.0 - speed) + speed * this_mean) factors.append(f) - # temp - #import random - #if random.random() < 0.1: - # print("factor norms: ", list((x-1.0).abs().mean().item() for x in factors)) x_factorized *= _product(*factors) - # TEMP - #import random - #if random.random() < 1.0: - # x_norm, norm = (x**2).mean().sqrt(), (x_factorized**2).mean().sqrt() - # print(f"numel,x_norm,factor_norm,eps={x.numel()},{x_norm},{norm},{eps}") def _get_factor_grads(x: Tensor, x_grad: Tensor) -> List[Tensor]: """ @@ -571,11 +562,6 @@ class Eve(Optimizer): ) p.mul_(1 - (weight_decay * is_above_target_rms)) - - if state["step"] % 50 == 0 and False: - delta = (exp_avg / denom) * -step_size - print("This_delta norm = ", delta.norm()) - p.addcdiv_(exp_avg, denom, value=-step_size) return loss