mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 10:02:22 +00:00
Merge branch 'master' into einichi
This commit is contained in:
commit
5c142d4c60
167
.github/scripts/baker_zh/TTS/run-matcha.sh
vendored
Executable file
167
.github/scripts/baker_zh/TTS/run-matcha.sh
vendored
Executable file
@ -0,0 +1,167 @@
|
|||||||
|
#!/usr/bin/env bash
|
||||||
|
|
||||||
|
set -ex
|
||||||
|
|
||||||
|
apt-get update
|
||||||
|
apt-get install -y sox
|
||||||
|
|
||||||
|
python3 -m pip install numba conformer==0.3.2 diffusers librosa
|
||||||
|
python3 -m pip install jieba
|
||||||
|
|
||||||
|
|
||||||
|
log() {
|
||||||
|
# This function is from espnet
|
||||||
|
local fname=${BASH_SOURCE[1]##*/}
|
||||||
|
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
||||||
|
}
|
||||||
|
|
||||||
|
cd egs/baker_zh/TTS
|
||||||
|
|
||||||
|
sed -i.bak s/600/8/g ./prepare.sh
|
||||||
|
sed -i.bak s/"first 100"/"first 3"/g ./prepare.sh
|
||||||
|
sed -i.bak s/500/5/g ./prepare.sh
|
||||||
|
git diff
|
||||||
|
|
||||||
|
function prepare_data() {
|
||||||
|
# We have created a subset of the data for testing
|
||||||
|
#
|
||||||
|
mkdir -p download
|
||||||
|
pushd download
|
||||||
|
wget -q https://huggingface.co/csukuangfj/tmp-files/resolve/main/BZNSYP-samples.tar.bz2
|
||||||
|
tar xvf BZNSYP-samples.tar.bz2
|
||||||
|
mv BZNSYP-samples BZNSYP
|
||||||
|
rm BZNSYP-samples.tar.bz2
|
||||||
|
popd
|
||||||
|
|
||||||
|
./prepare.sh
|
||||||
|
tree .
|
||||||
|
}
|
||||||
|
|
||||||
|
function train() {
|
||||||
|
pushd ./matcha
|
||||||
|
sed -i.bak s/1500/3/g ./train.py
|
||||||
|
git diff .
|
||||||
|
popd
|
||||||
|
|
||||||
|
./matcha/train.py \
|
||||||
|
--exp-dir matcha/exp \
|
||||||
|
--num-epochs 1 \
|
||||||
|
--save-every-n 1 \
|
||||||
|
--num-buckets 2 \
|
||||||
|
--tokens data/tokens.txt \
|
||||||
|
--max-duration 20
|
||||||
|
|
||||||
|
ls -lh matcha/exp
|
||||||
|
}
|
||||||
|
|
||||||
|
function infer() {
|
||||||
|
curl -SL -O https://github.com/csukuangfj/models/raw/refs/heads/master/hifigan/generator_v2
|
||||||
|
|
||||||
|
./matcha/infer.py \
|
||||||
|
--num-buckets 2 \
|
||||||
|
--epoch 1 \
|
||||||
|
--exp-dir ./matcha/exp \
|
||||||
|
--tokens data/tokens.txt \
|
||||||
|
--cmvn ./data/fbank/cmvn.json \
|
||||||
|
--vocoder ./generator_v2 \
|
||||||
|
--input-text "当夜幕降临,星光点点,伴随着微风拂面,我在静谧中感受着时光的流转,思念如涟漪荡漾,梦境如画卷展开,我与自然融为一体,沉静在这片宁静的美丽之中,感受着生命的奇迹与温柔。" \
|
||||||
|
--output-wav ./generated.wav
|
||||||
|
|
||||||
|
ls -lh *.wav
|
||||||
|
soxi ./generated.wav
|
||||||
|
rm -v ./generated.wav
|
||||||
|
rm -v generator_v2
|
||||||
|
}
|
||||||
|
|
||||||
|
function export_onnx() {
|
||||||
|
pushd matcha/exp
|
||||||
|
curl -SL -O https://huggingface.co/csukuangfj/icefall-tts-baker-matcha-zh-2024-12-27/resolve/main/epoch-2000.pt
|
||||||
|
popd
|
||||||
|
|
||||||
|
pushd data/fbank
|
||||||
|
rm -v *.json
|
||||||
|
curl -SL -O https://huggingface.co/csukuangfj/icefall-tts-baker-matcha-zh-2024-12-27/resolve/main/cmvn.json
|
||||||
|
popd
|
||||||
|
|
||||||
|
./matcha/export_onnx.py \
|
||||||
|
--exp-dir ./matcha/exp \
|
||||||
|
--epoch 2000 \
|
||||||
|
--tokens ./data/tokens.txt \
|
||||||
|
--cmvn ./data/fbank/cmvn.json
|
||||||
|
|
||||||
|
ls -lh *.onnx
|
||||||
|
|
||||||
|
if false; then
|
||||||
|
# The CI machine does not have enough memory to run it
|
||||||
|
#
|
||||||
|
curl -SL -O https://github.com/csukuangfj/models/raw/refs/heads/master/hifigan/generator_v1
|
||||||
|
curl -SL -O https://github.com/csukuangfj/models/raw/refs/heads/master/hifigan/generator_v2
|
||||||
|
curl -SL -O https://github.com/csukuangfj/models/raw/refs/heads/master/hifigan/generator_v3
|
||||||
|
python3 ./matcha/export_onnx_hifigan.py
|
||||||
|
else
|
||||||
|
curl -SL -O https://huggingface.co/csukuangfj/icefall-tts-ljspeech-matcha-en-2024-10-28/resolve/main/exp/hifigan_v1.onnx
|
||||||
|
curl -SL -O https://huggingface.co/csukuangfj/icefall-tts-ljspeech-matcha-en-2024-10-28/resolve/main/exp/hifigan_v2.onnx
|
||||||
|
curl -SL -O https://huggingface.co/csukuangfj/icefall-tts-ljspeech-matcha-en-2024-10-28/resolve/main/exp/hifigan_v3.onnx
|
||||||
|
fi
|
||||||
|
|
||||||
|
ls -lh *.onnx
|
||||||
|
|
||||||
|
python3 ./matcha/generate_lexicon.py
|
||||||
|
|
||||||
|
for v in v1 v2 v3; do
|
||||||
|
python3 ./matcha/onnx_pretrained.py \
|
||||||
|
--acoustic-model ./model-steps-6.onnx \
|
||||||
|
--vocoder ./hifigan_$v.onnx \
|
||||||
|
--tokens ./data/tokens.txt \
|
||||||
|
--lexicon ./lexicon.txt \
|
||||||
|
--input-text "当夜幕降临,星光点点,伴随着微风拂面,我在静谧中感受着时光的流转,思念如涟漪荡漾,梦境如画卷展开,我与自然融为一体,沉静在这片宁静的美丽之中,感受着生命的奇迹与温柔。" \
|
||||||
|
--output-wav /icefall/generated-matcha-tts-steps-6-$v.wav
|
||||||
|
done
|
||||||
|
|
||||||
|
ls -lh /icefall/*.wav
|
||||||
|
soxi /icefall/generated-matcha-tts-steps-6-*.wav
|
||||||
|
cp ./model-steps-*.onnx /icefall
|
||||||
|
|
||||||
|
d=matcha-icefall-zh-baker
|
||||||
|
mkdir $d
|
||||||
|
cp -v data/tokens.txt $d
|
||||||
|
cp -v lexicon.txt $d
|
||||||
|
cp model-steps-3.onnx $d
|
||||||
|
pushd $d
|
||||||
|
curl -SL -O https://github.com/csukuangfj/cppjieba/releases/download/sherpa-onnx-2024-04-19/dict.tar.bz2
|
||||||
|
tar xvf dict.tar.bz2
|
||||||
|
rm dict.tar.bz2
|
||||||
|
|
||||||
|
curl -SL -O https://huggingface.co/csukuangfj/icefall-tts-aishell3-vits-low-2024-04-06/resolve/main/data/date.fst
|
||||||
|
curl -SL -O https://huggingface.co/csukuangfj/icefall-tts-aishell3-vits-low-2024-04-06/resolve/main/data/number.fst
|
||||||
|
curl -SL -O https://huggingface.co/csukuangfj/icefall-tts-aishell3-vits-low-2024-04-06/resolve/main/data/phone.fst
|
||||||
|
|
||||||
|
cat >README.md <<EOF
|
||||||
|
# Introduction
|
||||||
|
|
||||||
|
This model is trained using the dataset from
|
||||||
|
https://en.data-baker.com/datasets/freeDatasets/
|
||||||
|
|
||||||
|
The dataset contains 10000 Chinese sentences of a native Chinese female speaker,
|
||||||
|
which is about 12 hours.
|
||||||
|
|
||||||
|
**Note**: The dataset is for non-commercial use only.
|
||||||
|
|
||||||
|
You can find the training code at
|
||||||
|
https://github.com/k2-fsa/icefall/tree/master/egs/baker_zh/TTS
|
||||||
|
EOF
|
||||||
|
|
||||||
|
ls -lh
|
||||||
|
popd
|
||||||
|
tar cvjf $d.tar.bz2 $d
|
||||||
|
mv $d.tar.bz2 /icefall
|
||||||
|
mv $d /icefall
|
||||||
|
}
|
||||||
|
|
||||||
|
prepare_data
|
||||||
|
train
|
||||||
|
infer
|
||||||
|
export_onnx
|
||||||
|
|
||||||
|
rm -rfv generator_v* matcha/exp
|
||||||
|
git checkout .
|
10
.github/scripts/docker/Dockerfile
vendored
10
.github/scripts/docker/Dockerfile
vendored
@ -31,12 +31,15 @@ LABEL github_repo="https://github.com/k2-fsa/icefall"
|
|||||||
|
|
||||||
# Install dependencies
|
# Install dependencies
|
||||||
RUN pip install --no-cache-dir \
|
RUN pip install --no-cache-dir \
|
||||||
torch==${TORCH_VERSION} torchaudio==${TORCHAUDIO_VERSION} -f https://download.pytorch.org/whl/cpu/torch_stable.html \
|
torch==${TORCH_VERSION}+cpu -f https://download.pytorch.org/whl/torch \
|
||||||
|
torchaudio==${TORCHAUDIO_VERSION}+cpu -f https://download.pytorch.org/whl/torchaudio \
|
||||||
k2==${_K2_VERSION} -f https://k2-fsa.github.io/k2/cpu.html \
|
k2==${_K2_VERSION} -f https://k2-fsa.github.io/k2/cpu.html \
|
||||||
\
|
\
|
||||||
git+https://github.com/lhotse-speech/lhotse \
|
git+https://github.com/lhotse-speech/lhotse \
|
||||||
kaldifeat==${_KALDIFEAT_VERSION} -f https://csukuangfj.github.io/kaldifeat/cpu.html \
|
kaldifeat==${_KALDIFEAT_VERSION} -f https://csukuangfj.github.io/kaldifeat/cpu.html \
|
||||||
|
conformer==0.3.2 \
|
||||||
cython \
|
cython \
|
||||||
|
diffusers \
|
||||||
dill \
|
dill \
|
||||||
espnet_tts_frontend \
|
espnet_tts_frontend \
|
||||||
graphviz \
|
graphviz \
|
||||||
@ -45,10 +48,11 @@ RUN pip install --no-cache-dir \
|
|||||||
kaldialign \
|
kaldialign \
|
||||||
kaldifst \
|
kaldifst \
|
||||||
kaldilm \
|
kaldilm \
|
||||||
matplotlib \
|
librosa \
|
||||||
|
"matplotlib<=3.9.4" \
|
||||||
multi_quantization \
|
multi_quantization \
|
||||||
numba \
|
numba \
|
||||||
numpy \
|
"numpy<2.0" \
|
||||||
onnxoptimizer \
|
onnxoptimizer \
|
||||||
onnxsim \
|
onnxsim \
|
||||||
onnx \
|
onnx \
|
||||||
|
64
.github/scripts/docker/generate_build_matrix.py
vendored
64
.github/scripts/docker/generate_build_matrix.py
vendored
@ -2,9 +2,19 @@
|
|||||||
# Copyright 2023 Xiaomi Corp. (authors: Fangjun Kuang)
|
# Copyright 2023 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
import json
|
import json
|
||||||
|
|
||||||
|
|
||||||
|
def get_args():
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument(
|
||||||
|
"--min-torch-version",
|
||||||
|
help="Minimu torch version",
|
||||||
|
)
|
||||||
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
def version_gt(a, b):
|
def version_gt(a, b):
|
||||||
a_major, a_minor = list(map(int, a.split(".")))[:2]
|
a_major, a_minor = list(map(int, a.split(".")))[:2]
|
||||||
b_major, b_minor = list(map(int, b.split(".")))[:2]
|
b_major, b_minor = list(map(int, b.split(".")))[:2]
|
||||||
@ -42,22 +52,34 @@ def get_torchaudio_version(torch_version):
|
|||||||
return torch_version
|
return torch_version
|
||||||
|
|
||||||
|
|
||||||
def get_matrix():
|
|
||||||
k2_version = "1.24.4.dev20240223"
|
def get_matrix(min_torch_version):
|
||||||
kaldifeat_version = "1.25.4.dev20240223"
|
k2_version = "1.24.4.dev20241029"
|
||||||
version = "20240725"
|
kaldifeat_version = "1.25.5.dev20241029"
|
||||||
|
version = "20241218"
|
||||||
|
|
||||||
|
# torchaudio 2.5.0 does not support python 3.13
|
||||||
|
|
||||||
python_version = ["3.8", "3.9", "3.10", "3.11", "3.12"]
|
python_version = ["3.8", "3.9", "3.10", "3.11", "3.12"]
|
||||||
torch_version = []
|
torch_version = []
|
||||||
torch_version += ["1.13.0", "1.13.1"]
|
torch_version += ["1.13.0", "1.13.1"]
|
||||||
torch_version += ["2.0.0", "2.0.1"]
|
torch_version += ["2.0.0", "2.0.1"]
|
||||||
torch_version += ["2.1.0", "2.1.1", "2.1.2"]
|
# torch_version += ["2.1.0", "2.1.1", "2.1.2"]
|
||||||
torch_version += ["2.2.0", "2.2.1", "2.2.2"]
|
# torch_version += ["2.2.0", "2.2.1", "2.2.2"]
|
||||||
|
# Test only torch >= 2.3.0
|
||||||
torch_version += ["2.3.0", "2.3.1"]
|
torch_version += ["2.3.0", "2.3.1"]
|
||||||
torch_version += ["2.4.0"]
|
torch_version += ["2.4.0"]
|
||||||
|
|
||||||
|
torch_version += ["2.4.1"]
|
||||||
|
torch_version += ["2.5.0"]
|
||||||
|
torch_version += ["2.5.1"]
|
||||||
|
|
||||||
matrix = []
|
matrix = []
|
||||||
for p in python_version:
|
for p in python_version:
|
||||||
for t in torch_version:
|
for t in torch_version:
|
||||||
|
if min_torch_version and version_gt(min_torch_version, t):
|
||||||
|
continue
|
||||||
|
|
||||||
# torchaudio <= 1.13.x supports only python <= 3.10
|
# torchaudio <= 1.13.x supports only python <= 3.10
|
||||||
|
|
||||||
if version_gt(p, "3.10") and not version_gt(t, "2.0"):
|
if version_gt(p, "3.10") and not version_gt(t, "2.0"):
|
||||||
@ -67,21 +89,20 @@ def get_matrix():
|
|||||||
if version_gt(p, "3.11") and not version_gt(t, "2.1"):
|
if version_gt(p, "3.11") and not version_gt(t, "2.1"):
|
||||||
continue
|
continue
|
||||||
|
|
||||||
k2_version_2 = k2_version
|
if version_gt(p, "3.12") and not version_gt(t, "2.4"):
|
||||||
kaldifeat_version_2 = kaldifeat_version
|
continue
|
||||||
|
|
||||||
if t == "2.2.2":
|
if version_gt(t, "2.4") and version_gt("3.10", p):
|
||||||
k2_version_2 = "1.24.4.dev20240328"
|
# torch>=2.5 requires python 3.10
|
||||||
kaldifeat_version_2 = "1.25.4.dev20240329"
|
continue
|
||||||
elif t == "2.3.0":
|
|
||||||
k2_version_2 = "1.24.4.dev20240425"
|
|
||||||
kaldifeat_version_2 = "1.25.4.dev20240425"
|
if t == "2.5.1":
|
||||||
elif t == "2.3.1":
|
k2_version_2 = "1.24.4.dev20241122"
|
||||||
k2_version_2 = "1.24.4.dev20240606"
|
kaldifeat_version_2 = "1.25.5.dev20241126"
|
||||||
kaldifeat_version_2 = "1.25.4.dev20240606"
|
else:
|
||||||
elif t == "2.4.0":
|
k2_version_2 = k2_version
|
||||||
k2_version_2 = "1.24.4.dev20240725"
|
kaldifeat_version_2 = kaldifeat_version
|
||||||
kaldifeat_version_2 = "1.25.4.dev20240725"
|
|
||||||
|
|
||||||
matrix.append(
|
matrix.append(
|
||||||
{
|
{
|
||||||
@ -97,7 +118,8 @@ def get_matrix():
|
|||||||
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
matrix = get_matrix()
|
args = get_args()
|
||||||
|
matrix = get_matrix(min_torch_version=args.min_torch_version)
|
||||||
print(json.dumps({"include": matrix}))
|
print(json.dumps({"include": matrix}))
|
||||||
|
|
||||||
|
|
||||||
|
157
.github/scripts/ljspeech/TTS/run-matcha.sh
vendored
Executable file
157
.github/scripts/ljspeech/TTS/run-matcha.sh
vendored
Executable file
@ -0,0 +1,157 @@
|
|||||||
|
#!/usr/bin/env bash
|
||||||
|
|
||||||
|
set -ex
|
||||||
|
|
||||||
|
apt-get update
|
||||||
|
apt-get install -y sox
|
||||||
|
|
||||||
|
python3 -m pip install piper_phonemize -f https://k2-fsa.github.io/icefall/piper_phonemize.html
|
||||||
|
python3 -m pip install espnet_tts_frontend
|
||||||
|
python3 -m pip install numba conformer==0.3.2 diffusers librosa
|
||||||
|
|
||||||
|
log() {
|
||||||
|
# This function is from espnet
|
||||||
|
local fname=${BASH_SOURCE[1]##*/}
|
||||||
|
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
||||||
|
}
|
||||||
|
|
||||||
|
cd egs/ljspeech/TTS
|
||||||
|
|
||||||
|
sed -i.bak s/600/8/g ./prepare.sh
|
||||||
|
sed -i.bak s/"first 100"/"first 3"/g ./prepare.sh
|
||||||
|
sed -i.bak s/500/5/g ./prepare.sh
|
||||||
|
git diff
|
||||||
|
|
||||||
|
function prepare_data() {
|
||||||
|
# We have created a subset of the data for testing
|
||||||
|
#
|
||||||
|
mkdir -p download
|
||||||
|
pushd download
|
||||||
|
wget -q https://huggingface.co/csukuangfj/ljspeech-subset-for-ci-test/resolve/main/LJSpeech-1.1.tar.bz2
|
||||||
|
tar xvf LJSpeech-1.1.tar.bz2
|
||||||
|
popd
|
||||||
|
|
||||||
|
./prepare.sh
|
||||||
|
tree .
|
||||||
|
}
|
||||||
|
|
||||||
|
function train() {
|
||||||
|
pushd ./matcha
|
||||||
|
sed -i.bak s/1500/3/g ./train.py
|
||||||
|
git diff .
|
||||||
|
popd
|
||||||
|
|
||||||
|
./matcha/train.py \
|
||||||
|
--exp-dir matcha/exp \
|
||||||
|
--num-epochs 1 \
|
||||||
|
--save-every-n 1 \
|
||||||
|
--num-buckets 2 \
|
||||||
|
--tokens data/tokens.txt \
|
||||||
|
--max-duration 20
|
||||||
|
|
||||||
|
ls -lh matcha/exp
|
||||||
|
}
|
||||||
|
|
||||||
|
function infer() {
|
||||||
|
|
||||||
|
curl -SL -O https://github.com/csukuangfj/models/raw/refs/heads/master/hifigan/generator_v1
|
||||||
|
|
||||||
|
./matcha/infer.py \
|
||||||
|
--num-buckets 2 \
|
||||||
|
--epoch 1 \
|
||||||
|
--exp-dir ./matcha/exp \
|
||||||
|
--tokens data/tokens.txt \
|
||||||
|
--vocoder ./generator_v1 \
|
||||||
|
--input-text "how are you doing?" \
|
||||||
|
--output-wav ./generated.wav
|
||||||
|
|
||||||
|
ls -lh *.wav
|
||||||
|
soxi ./generated.wav
|
||||||
|
rm -v ./generated.wav
|
||||||
|
rm -v generator_v1
|
||||||
|
}
|
||||||
|
|
||||||
|
function export_onnx() {
|
||||||
|
pushd matcha/exp
|
||||||
|
curl -SL -O https://huggingface.co/csukuangfj/icefall-tts-ljspeech-matcha-en-2024-10-28/resolve/main/exp/epoch-4000.pt
|
||||||
|
popd
|
||||||
|
|
||||||
|
pushd data/fbank
|
||||||
|
rm -fv *.json
|
||||||
|
curl -SL -O https://huggingface.co/csukuangfj/icefall-tts-ljspeech-matcha-en-2024-10-28/resolve/main/data/cmvn.json
|
||||||
|
popd
|
||||||
|
|
||||||
|
./matcha/export_onnx.py \
|
||||||
|
--exp-dir ./matcha/exp \
|
||||||
|
--epoch 4000 \
|
||||||
|
--tokens ./data/tokens.txt \
|
||||||
|
--cmvn ./data/fbank/cmvn.json
|
||||||
|
|
||||||
|
ls -lh *.onnx
|
||||||
|
|
||||||
|
if false; then
|
||||||
|
# The CI machine does not have enough memory to run it
|
||||||
|
#
|
||||||
|
curl -SL -O https://github.com/csukuangfj/models/raw/refs/heads/master/hifigan/generator_v1
|
||||||
|
curl -SL -O https://github.com/csukuangfj/models/raw/refs/heads/master/hifigan/generator_v2
|
||||||
|
curl -SL -O https://github.com/csukuangfj/models/raw/refs/heads/master/hifigan/generator_v3
|
||||||
|
python3 ./matcha/export_onnx_hifigan.py
|
||||||
|
else
|
||||||
|
curl -SL -O https://huggingface.co/csukuangfj/icefall-tts-ljspeech-matcha-en-2024-10-28/resolve/main/exp/hifigan_v1.onnx
|
||||||
|
curl -SL -O https://huggingface.co/csukuangfj/icefall-tts-ljspeech-matcha-en-2024-10-28/resolve/main/exp/hifigan_v2.onnx
|
||||||
|
curl -SL -O https://huggingface.co/csukuangfj/icefall-tts-ljspeech-matcha-en-2024-10-28/resolve/main/exp/hifigan_v3.onnx
|
||||||
|
fi
|
||||||
|
|
||||||
|
ls -lh *.onnx
|
||||||
|
|
||||||
|
for v in v1 v2 v3; do
|
||||||
|
python3 ./matcha/onnx_pretrained.py \
|
||||||
|
--acoustic-model ./model-steps-6.onnx \
|
||||||
|
--vocoder ./hifigan_$v.onnx \
|
||||||
|
--tokens ./data/tokens.txt \
|
||||||
|
--input-text "how are you doing?" \
|
||||||
|
--output-wav /icefall/generated-matcha-tts-steps-6-$v.wav
|
||||||
|
done
|
||||||
|
|
||||||
|
ls -lh /icefall/*.wav
|
||||||
|
soxi /icefall/generated-matcha-tts-steps-6-*.wav
|
||||||
|
|
||||||
|
cp ./model-steps-*.onnx /icefall
|
||||||
|
|
||||||
|
d=matcha-icefall-en_US-ljspeech
|
||||||
|
mkdir $d
|
||||||
|
cp -v data/tokens.txt $d
|
||||||
|
cp model-steps-3.onnx $d
|
||||||
|
pushd $d
|
||||||
|
curl -SL -O https://github.com/k2-fsa/sherpa-onnx/releases/download/tts-models/espeak-ng-data.tar.bz2
|
||||||
|
tar xf espeak-ng-data.tar.bz2
|
||||||
|
rm espeak-ng-data.tar.bz2
|
||||||
|
|
||||||
|
cat >README.md <<EOF
|
||||||
|
# Introduction
|
||||||
|
|
||||||
|
This model is trained using the dataset from
|
||||||
|
https://keithito.com/LJ-Speech-Dataset/
|
||||||
|
|
||||||
|
The dataset contains only 1 female speaker.
|
||||||
|
|
||||||
|
You can find the training code at
|
||||||
|
https://github.com/k2-fsa/icefall/tree/master/egs/ljspeech/TTS#matcha
|
||||||
|
EOF
|
||||||
|
|
||||||
|
ls -lh
|
||||||
|
|
||||||
|
popd
|
||||||
|
|
||||||
|
tar cvjf $d.tar.bz2 $d
|
||||||
|
mv $d.tar.bz2 /icefall
|
||||||
|
mv $d /icefall
|
||||||
|
}
|
||||||
|
|
||||||
|
prepare_data
|
||||||
|
train
|
||||||
|
infer
|
||||||
|
export_onnx
|
||||||
|
|
||||||
|
rm -rfv generator_v* matcha/exp
|
||||||
|
git checkout .
|
2
.github/scripts/ljspeech/TTS/run.sh
vendored
2
.github/scripts/ljspeech/TTS/run.sh
vendored
@ -22,7 +22,7 @@ git diff
|
|||||||
function prepare_data() {
|
function prepare_data() {
|
||||||
# We have created a subset of the data for testing
|
# We have created a subset of the data for testing
|
||||||
#
|
#
|
||||||
mkdir download
|
mkdir -p download
|
||||||
pushd download
|
pushd download
|
||||||
wget -q https://huggingface.co/csukuangfj/ljspeech-subset-for-ci-test/resolve/main/LJSpeech-1.1.tar.bz2
|
wget -q https://huggingface.co/csukuangfj/ljspeech-subset-for-ci-test/resolve/main/LJSpeech-1.1.tar.bz2
|
||||||
tar xvf LJSpeech-1.1.tar.bz2
|
tar xvf LJSpeech-1.1.tar.bz2
|
||||||
|
42
.github/scripts/multi-zh-hans.sh
vendored
42
.github/scripts/multi-zh-hans.sh
vendored
@ -16,6 +16,48 @@ log "pwd: $PWD"
|
|||||||
|
|
||||||
cd egs/multi_zh-hans/ASR
|
cd egs/multi_zh-hans/ASR
|
||||||
|
|
||||||
|
repo_url=https://huggingface.co/zrjin/icefall-asr-multi-zh-hans-zipformer-2023-9-2
|
||||||
|
log "Downloading pre-trained model from $repo_url"
|
||||||
|
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
|
||||||
|
repo=$(basename $repo_url)
|
||||||
|
pushd $repo
|
||||||
|
cd exp
|
||||||
|
git lfs pull --include pretrained.pt
|
||||||
|
ln -s pretrained.pt epoch-99.pt
|
||||||
|
cd ../data/lang_bpe_2000
|
||||||
|
ls -lh
|
||||||
|
git lfs pull --include L.pt L_disambig.pt Linv.pt bpe.model
|
||||||
|
git lfs pull --include "*.model"
|
||||||
|
ls -lh
|
||||||
|
popd
|
||||||
|
|
||||||
|
log "--------------------------------------------"
|
||||||
|
log "Export non-streaming ONNX transducer models "
|
||||||
|
log "--------------------------------------------"
|
||||||
|
./zipformer/export-onnx.py \
|
||||||
|
--tokens $repo/data/lang_bpe_2000/tokens.txt \
|
||||||
|
--use-averaged-model 0 \
|
||||||
|
--epoch 99 \
|
||||||
|
--avg 1 \
|
||||||
|
--exp-dir $repo/exp \
|
||||||
|
--causal False
|
||||||
|
|
||||||
|
ls -lh $repo/exp
|
||||||
|
|
||||||
|
./zipformer/onnx_pretrained.py \
|
||||||
|
--encoder-model-filename $repo/exp/encoder-epoch-99-avg-1.onnx \
|
||||||
|
--decoder-model-filename $repo/exp/decoder-epoch-99-avg-1.onnx \
|
||||||
|
--joiner-model-filename $repo/exp/joiner-epoch-99-avg-1.onnx \
|
||||||
|
--tokens $repo/data/lang_bpe_2000/tokens.txt \
|
||||||
|
$repo/test_wavs/DEV_T0000000000.wav \
|
||||||
|
$repo/test_wavs/DEV_T0000000001.wav \
|
||||||
|
$repo/test_wavs/DEV_T0000000002.wav \
|
||||||
|
$repo/test_wavs/TEST_MEETING_T0000000113.wav \
|
||||||
|
$repo/test_wavs/TEST_MEETING_T0000000219.wav \
|
||||||
|
$repo/test_wavs/TEST_MEETING_T0000000351.wav
|
||||||
|
|
||||||
|
rm -rf $repo
|
||||||
|
|
||||||
repo_url=https://huggingface.co/zrjin/icefall-asr-multi-zh-hans-zipformer-ctc-streaming-2023-11-05
|
repo_url=https://huggingface.co/zrjin/icefall-asr-multi-zh-hans-zipformer-ctc-streaming-2023-11-05
|
||||||
log "Downloading pre-trained model from $repo_url"
|
log "Downloading pre-trained model from $repo_url"
|
||||||
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
|
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
|
||||||
|
@ -19,7 +19,7 @@ repo=$(basename $repo_url)
|
|||||||
|
|
||||||
echo "GITHUB_EVENT_NAME: ${GITHUB_EVENT_NAME}"
|
echo "GITHUB_EVENT_NAME: ${GITHUB_EVENT_NAME}"
|
||||||
echo "GITHUB_EVENT_LABEL_NAME: ${GITHUB_EVENT_LABEL_NAME}"
|
echo "GITHUB_EVENT_LABEL_NAME: ${GITHUB_EVENT_LABEL_NAME}"
|
||||||
if [[ x"${GITHUB_EVENT_NAME}" == x"schedule" || x"${GITHUB_EVENT_LABEL_NAME}" == x"run-decode" ]]; then
|
if [[ x"${GITHUB_EVENT_NAME}" == x"schedule" || x"${GITHUB_EVENT_NAME}" == x"workflow_dispatch" || x"${GITHUB_EVENT_LABEL_NAME}" == x"run-decode" ]]; then
|
||||||
mkdir -p pruned_transducer_stateless2/exp
|
mkdir -p pruned_transducer_stateless2/exp
|
||||||
ln -s $PWD/$repo/exp/pretrained-iter-3488000-avg-20.pt pruned_transducer_stateless2/exp/epoch-999.pt
|
ln -s $PWD/$repo/exp/pretrained-iter-3488000-avg-20.pt pruned_transducer_stateless2/exp/epoch-999.pt
|
||||||
ln -s $PWD/$repo/data/lang_bpe_500 data/
|
ln -s $PWD/$repo/data/lang_bpe_500 data/
|
||||||
@ -29,8 +29,16 @@ if [[ x"${GITHUB_EVENT_NAME}" == x"schedule" || x"${GITHUB_EVENT_LABEL_NAME}" ==
|
|||||||
ls -lh data/fbank
|
ls -lh data/fbank
|
||||||
ls -lh pruned_transducer_stateless2/exp
|
ls -lh pruned_transducer_stateless2/exp
|
||||||
|
|
||||||
ln -s data/fbank/cuts_DEV.jsonl.gz data/fbank/gigaspeech_cuts_DEV.jsonl.gz
|
pushd data/fbank
|
||||||
ln -s data/fbank/cuts_TEST.jsonl.gz data/fbank/gigaspeech_cuts_TEST.jsonl.gz
|
curl -SL -O https://huggingface.co/csukuangfj/giga-dev-dataset-fbank/resolve/main/data/fbank/cuts_DEV.jsonl.gz
|
||||||
|
curl -SL -O https://huggingface.co/csukuangfj/giga-dev-dataset-fbank/resolve/main/data/fbank/cuts_TEST.jsonl.gz
|
||||||
|
curl -SL -O https://huggingface.co/csukuangfj/giga-dev-dataset-fbank/resolve/main/data/fbank/feats_DEV.lca
|
||||||
|
curl -SL -O https://huggingface.co/csukuangfj/giga-dev-dataset-fbank/resolve/main/data/fbank/feats_TEST.lca
|
||||||
|
|
||||||
|
ln -sf cuts_DEV.jsonl.gz gigaspeech_cuts_DEV.jsonl.gz
|
||||||
|
ln -sf cuts_TEST.jsonl.gz gigaspeech_cuts_TEST.jsonl.gz
|
||||||
|
popd
|
||||||
|
|
||||||
|
|
||||||
log "Decoding dev and test"
|
log "Decoding dev and test"
|
||||||
|
|
||||||
|
@ -129,20 +129,34 @@ done
|
|||||||
|
|
||||||
echo "GITHUB_EVENT_NAME: ${GITHUB_EVENT_NAME}"
|
echo "GITHUB_EVENT_NAME: ${GITHUB_EVENT_NAME}"
|
||||||
echo "GITHUB_EVENT_LABEL_NAME: ${GITHUB_EVENT_LABEL_NAME}"
|
echo "GITHUB_EVENT_LABEL_NAME: ${GITHUB_EVENT_LABEL_NAME}"
|
||||||
if [[ x"${GITHUB_EVENT_NAME}" == x"schedule" || x"${GITHUB_EVENT_LABEL_NAME}" == x"run-decode" ]]; then
|
if [[ x"${GITHUB_EVENT_NAME}" == x"schedule" || x"${GITHUB_EVENT_NAME}" == x"workflow_dispatch" || x"${GITHUB_EVENT_LABEL_NAME}" == x"run-decode" ]]; then
|
||||||
mkdir -p zipformer/exp
|
mkdir -p zipformer/exp
|
||||||
ln -s $PWD/$repo/exp/pretrained.pt zipformer/exp/epoch-30.pt
|
ln -s $PWD/$repo/exp/pretrained.pt zipformer/exp/epoch-30.pt
|
||||||
|
mkdir -p data
|
||||||
ln -s $PWD/$repo/data/lang_bpe_500 data/
|
ln -s $PWD/$repo/data/lang_bpe_500 data/
|
||||||
|
|
||||||
ls -lh data
|
ls -lh data
|
||||||
ls -lh zipformer/exp
|
ls -lh zipformer/exp
|
||||||
|
|
||||||
|
mkdir -p data/fbank
|
||||||
|
pushd data/fbank
|
||||||
|
|
||||||
|
curl -SL -O https://huggingface.co/csukuangfj/giga-dev-dataset-fbank/resolve/main/data/fbank/cuts_DEV.jsonl.gz
|
||||||
|
curl -SL -O https://huggingface.co/csukuangfj/giga-dev-dataset-fbank/resolve/main/data/fbank/cuts_TEST.jsonl.gz
|
||||||
|
curl -SL -O https://huggingface.co/csukuangfj/giga-dev-dataset-fbank/resolve/main/data/fbank/feats_DEV.lca
|
||||||
|
curl -SL -O https://huggingface.co/csukuangfj/giga-dev-dataset-fbank/resolve/main/data/fbank/feats_TEST.lca
|
||||||
|
|
||||||
|
ln -sf cuts_DEV.jsonl.gz gigaspeech_cuts_DEV.jsonl.gz
|
||||||
|
ln -sf cuts_TEST.jsonl.gz gigaspeech_cuts_TEST.jsonl.gz
|
||||||
|
|
||||||
|
popd
|
||||||
|
|
||||||
log "Decoding test-clean and test-other"
|
log "Decoding test-clean and test-other"
|
||||||
|
|
||||||
# use a small value for decoding with CPU
|
# use a small value for decoding with CPU
|
||||||
max_duration=100
|
max_duration=100
|
||||||
|
|
||||||
for method in greedy_search fast_beam_search modified_beam_search; do
|
for method in greedy_search; do
|
||||||
log "Decoding with $method"
|
log "Decoding with $method"
|
||||||
|
|
||||||
./zipformer/decode.py \
|
./zipformer/decode.py \
|
||||||
|
@ -162,7 +162,7 @@ if [[ x"${GITHUB_EVENT_LABEL_NAME}" == x"LODR" ]]; then
|
|||||||
--ngram-lm-scale -0.16
|
--ngram-lm-scale -0.16
|
||||||
fi
|
fi
|
||||||
|
|
||||||
if [[ x"${GITHUB_EVENT_NAME}" == x"schedule" ]]; then
|
if [[ x"${GITHUB_EVENT_NAME}" == x"schedule" || x"${GITHUB_EVENT_NAME}" == x"workflow_dispatch" ]]; then
|
||||||
mkdir -p lstm_transducer_stateless2/exp
|
mkdir -p lstm_transducer_stateless2/exp
|
||||||
ln -s $PWD/$repo/exp/pretrained.pt lstm_transducer_stateless2/exp/epoch-999.pt
|
ln -s $PWD/$repo/exp/pretrained.pt lstm_transducer_stateless2/exp/epoch-999.pt
|
||||||
ln -s $PWD/$repo/data/lang_bpe_500 data/
|
ln -s $PWD/$repo/data/lang_bpe_500 data/
|
||||||
@ -175,7 +175,7 @@ if [[ x"${GITHUB_EVENT_NAME}" == x"schedule" ]]; then
|
|||||||
# use a small value for decoding with CPU
|
# use a small value for decoding with CPU
|
||||||
max_duration=100
|
max_duration=100
|
||||||
|
|
||||||
for method in greedy_search fast_beam_search modified_beam_search; do
|
for method in greedy_search fast_beam_search; do
|
||||||
log "Decoding with $method"
|
log "Decoding with $method"
|
||||||
|
|
||||||
./lstm_transducer_stateless2/decode.py \
|
./lstm_transducer_stateless2/decode.py \
|
||||||
|
1
.github/scripts/test-onnx-export.sh
vendored
1
.github/scripts/test-onnx-export.sh
vendored
@ -25,6 +25,7 @@ popd
|
|||||||
|
|
||||||
log "Export via torch.jit.script()"
|
log "Export via torch.jit.script()"
|
||||||
./zipformer/export.py \
|
./zipformer/export.py \
|
||||||
|
--use-averaged-model 0 \
|
||||||
--exp-dir $repo/exp \
|
--exp-dir $repo/exp \
|
||||||
--tokens $repo/data/lang_bpe_500/tokens.txt \
|
--tokens $repo/data/lang_bpe_500/tokens.txt \
|
||||||
--epoch 99 \
|
--epoch 99 \
|
||||||
|
6
.github/workflows/audioset.yml
vendored
6
.github/workflows/audioset.yml
vendored
@ -83,7 +83,7 @@ jobs:
|
|||||||
ls -lh ./model-onnx/*
|
ls -lh ./model-onnx/*
|
||||||
|
|
||||||
- name: Upload model to huggingface
|
- name: Upload model to huggingface
|
||||||
if: matrix.python-version == '3.9' && matrix.torch-version == '2.2.0' && github.event_name == 'push'
|
if: matrix.python-version == '3.9' && matrix.torch-version == '2.3.0' && github.event_name == 'push'
|
||||||
env:
|
env:
|
||||||
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
||||||
uses: nick-fields/retry@v3
|
uses: nick-fields/retry@v3
|
||||||
@ -116,7 +116,7 @@ jobs:
|
|||||||
rm -rf huggingface
|
rm -rf huggingface
|
||||||
|
|
||||||
- name: Prepare for release
|
- name: Prepare for release
|
||||||
if: matrix.python-version == '3.9' && matrix.torch-version == '2.2.0' && github.event_name == 'push'
|
if: matrix.python-version == '3.9' && matrix.torch-version == '2.3.0' && github.event_name == 'push'
|
||||||
shell: bash
|
shell: bash
|
||||||
run: |
|
run: |
|
||||||
d=sherpa-onnx-zipformer-audio-tagging-2024-04-09
|
d=sherpa-onnx-zipformer-audio-tagging-2024-04-09
|
||||||
@ -125,7 +125,7 @@ jobs:
|
|||||||
ls -lh
|
ls -lh
|
||||||
|
|
||||||
- name: Release exported onnx models
|
- name: Release exported onnx models
|
||||||
if: matrix.python-version == '3.9' && matrix.torch-version == '2.2.0' && github.event_name == 'push'
|
if: matrix.python-version == '3.9' && matrix.torch-version == '2.3.0' && github.event_name == 'push'
|
||||||
uses: svenstaro/upload-release-action@v2
|
uses: svenstaro/upload-release-action@v2
|
||||||
with:
|
with:
|
||||||
file_glob: true
|
file_glob: true
|
||||||
|
152
.github/workflows/baker_zh.yml
vendored
Normal file
152
.github/workflows/baker_zh.yml
vendored
Normal file
@ -0,0 +1,152 @@
|
|||||||
|
name: baker_zh
|
||||||
|
|
||||||
|
on:
|
||||||
|
push:
|
||||||
|
branches:
|
||||||
|
- master
|
||||||
|
- baker-matcha-2
|
||||||
|
|
||||||
|
pull_request:
|
||||||
|
branches:
|
||||||
|
- master
|
||||||
|
|
||||||
|
workflow_dispatch:
|
||||||
|
|
||||||
|
concurrency:
|
||||||
|
group: baker-zh-${{ github.ref }}
|
||||||
|
cancel-in-progress: true
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
generate_build_matrix:
|
||||||
|
if: github.repository_owner == 'csukuangfj' || github.repository_owner == 'k2-fsa'
|
||||||
|
# see https://github.com/pytorch/pytorch/pull/50633
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
outputs:
|
||||||
|
matrix: ${{ steps.set-matrix.outputs.matrix }}
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v4
|
||||||
|
with:
|
||||||
|
fetch-depth: 0
|
||||||
|
- name: Generating build matrix
|
||||||
|
id: set-matrix
|
||||||
|
run: |
|
||||||
|
# outputting for debugging purposes
|
||||||
|
python ./.github/scripts/docker/generate_build_matrix.py --min-torch-version "2.3"
|
||||||
|
MATRIX=$(python ./.github/scripts/docker/generate_build_matrix.py --min-torch-version "2.3")
|
||||||
|
echo "::set-output name=matrix::${MATRIX}"
|
||||||
|
|
||||||
|
baker_zh:
|
||||||
|
needs: generate_build_matrix
|
||||||
|
name: py${{ matrix.python-version }} torch${{ matrix.torch-version }} v${{ matrix.version }}
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
strategy:
|
||||||
|
fail-fast: false
|
||||||
|
matrix:
|
||||||
|
${{ fromJson(needs.generate_build_matrix.outputs.matrix) }}
|
||||||
|
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v4
|
||||||
|
with:
|
||||||
|
fetch-depth: 0
|
||||||
|
|
||||||
|
- name: Free space
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
ls -lh
|
||||||
|
df -h
|
||||||
|
rm -rf /opt/hostedtoolcache
|
||||||
|
df -h
|
||||||
|
echo "pwd: $PWD"
|
||||||
|
echo "github.workspace ${{ github.workspace }}"
|
||||||
|
|
||||||
|
- name: Run tests
|
||||||
|
uses: addnab/docker-run-action@v3
|
||||||
|
with:
|
||||||
|
image: ghcr.io/${{ github.repository_owner }}/icefall:cpu-py${{ matrix.python-version }}-torch${{ matrix.torch-version }}-v${{ matrix.version }}
|
||||||
|
options: |
|
||||||
|
--volume ${{ github.workspace }}/:/icefall
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
export PYTHONPATH=/icefall:$PYTHONPATH
|
||||||
|
cd /icefall
|
||||||
|
|
||||||
|
pip install onnx==1.17.0
|
||||||
|
|
||||||
|
pip list
|
||||||
|
|
||||||
|
git config --global --add safe.directory /icefall
|
||||||
|
|
||||||
|
.github/scripts/baker_zh/TTS/run-matcha.sh
|
||||||
|
|
||||||
|
- name: display files
|
||||||
|
shell: bash
|
||||||
|
run: |
|
||||||
|
ls -lh
|
||||||
|
|
||||||
|
- uses: actions/upload-artifact@v4
|
||||||
|
if: matrix.python-version == '3.9' && matrix.torch-version == '2.3.0'
|
||||||
|
with:
|
||||||
|
name: generated-test-files-${{ matrix.python-version }}-${{ matrix.torch-version }}
|
||||||
|
path: ./*.wav
|
||||||
|
|
||||||
|
- uses: actions/upload-artifact@v4
|
||||||
|
if: matrix.python-version == '3.9' && matrix.torch-version == '2.3.0'
|
||||||
|
with:
|
||||||
|
name: step-2
|
||||||
|
path: ./model-steps-2.onnx
|
||||||
|
|
||||||
|
- uses: actions/upload-artifact@v4
|
||||||
|
if: matrix.python-version == '3.9' && matrix.torch-version == '2.3.0'
|
||||||
|
with:
|
||||||
|
name: step-3
|
||||||
|
path: ./model-steps-3.onnx
|
||||||
|
|
||||||
|
- uses: actions/upload-artifact@v4
|
||||||
|
if: matrix.python-version == '3.9' && matrix.torch-version == '2.3.0'
|
||||||
|
with:
|
||||||
|
name: step-4
|
||||||
|
path: ./model-steps-4.onnx
|
||||||
|
|
||||||
|
- uses: actions/upload-artifact@v4
|
||||||
|
if: matrix.python-version == '3.9' && matrix.torch-version == '2.3.0'
|
||||||
|
with:
|
||||||
|
name: step-5
|
||||||
|
path: ./model-steps-5.onnx
|
||||||
|
|
||||||
|
- uses: actions/upload-artifact@v4
|
||||||
|
if: matrix.python-version == '3.9' && matrix.torch-version == '2.3.0'
|
||||||
|
with:
|
||||||
|
name: step-6
|
||||||
|
path: ./model-steps-6.onnx
|
||||||
|
|
||||||
|
- name: Upload models to huggingface
|
||||||
|
if: matrix.python-version == '3.9' && matrix.torch-version == '2.3.0' && github.event_name == 'push'
|
||||||
|
shell: bash
|
||||||
|
env:
|
||||||
|
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
||||||
|
run: |
|
||||||
|
d=matcha-icefall-zh-baker
|
||||||
|
|
||||||
|
GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/csukuangfj/$d hf
|
||||||
|
cp -av $d/* hf/
|
||||||
|
|
||||||
|
pushd hf
|
||||||
|
git add .
|
||||||
|
|
||||||
|
git config --global user.name "csukuangfj"
|
||||||
|
git config --global user.email "csukuangfj@gmail.com"
|
||||||
|
git config --global lfs.allowincompletepush true
|
||||||
|
|
||||||
|
git commit -m "upload model" && git push https://csukuangfj:${HF_TOKEN}@huggingface.co/csukuangfj/$d main || true
|
||||||
|
popd
|
||||||
|
|
||||||
|
- name: Release exported onnx models
|
||||||
|
if: matrix.python-version == '3.9' && matrix.torch-version == '2.3.0' && github.event_name == 'push'
|
||||||
|
uses: svenstaro/upload-release-action@v2
|
||||||
|
with:
|
||||||
|
file_glob: true
|
||||||
|
overwrite: true
|
||||||
|
file: matcha-icefall-*.tar.bz2
|
||||||
|
repo_name: k2-fsa/sherpa-onnx
|
||||||
|
repo_token: ${{ secrets.UPLOAD_GH_SHERPA_ONNX_TOKEN }}
|
||||||
|
tag: tts-models
|
2
.github/workflows/build-doc.yml
vendored
2
.github/workflows/build-doc.yml
vendored
@ -26,6 +26,8 @@ on:
|
|||||||
pull_request:
|
pull_request:
|
||||||
types: [labeled]
|
types: [labeled]
|
||||||
|
|
||||||
|
workflow_dispatch:
|
||||||
|
|
||||||
concurrency:
|
concurrency:
|
||||||
group: build_doc-${{ github.ref }}
|
group: build_doc-${{ github.ref }}
|
||||||
cancel-in-progress: true
|
cancel-in-progress: true
|
||||||
|
4
.github/workflows/build-docker-image.yml
vendored
4
.github/workflows/build-docker-image.yml
vendored
@ -16,7 +16,9 @@ jobs:
|
|||||||
fail-fast: false
|
fail-fast: false
|
||||||
matrix:
|
matrix:
|
||||||
os: [ubuntu-latest]
|
os: [ubuntu-latest]
|
||||||
image: ["torch2.4.0-cuda12.4", "torch2.4.0-cuda12.1", "torch2.4.0-cuda11.8", "torch2.3.1-cuda12.1", "torch2.3.1-cuda11.8", "torch2.2.2-cuda12.1", "torch2.2.2-cuda11.8", "torch2.2.1-cuda12.1", "torch2.2.1-cuda11.8", "torch2.2.0-cuda12.1", "torch2.2.0-cuda11.8", "torch2.1.0-cuda12.1", "torch2.1.0-cuda11.8", "torch2.0.0-cuda11.7", "torch1.13.0-cuda11.6", "torch1.12.1-cuda11.3", "torch1.9.0-cuda10.2"]
|
|
||||||
|
image: ["torch2.4.1-cuda12.4", "torch2.4.1-cuda12.1", "torch2.4.1-cuda11.8", "torch2.4.0-cuda12.4", "torch2.4.0-cuda12.1", "torch2.4.0-cuda11.8", "torch2.3.1-cuda12.1", "torch2.3.1-cuda11.8", "torch2.2.2-cuda12.1", "torch2.2.2-cuda11.8", "torch2.2.1-cuda12.1", "torch2.2.1-cuda11.8", "torch2.2.0-cuda12.1", "torch2.2.0-cuda11.8", "torch2.1.0-cuda12.1", "torch2.1.0-cuda11.8", "torch2.0.0-cuda11.7", "torch1.13.0-cuda11.6", "torch1.12.1-cuda11.3", "torch1.9.0-cuda10.2"]
|
||||||
|
|
||||||
|
|
||||||
steps:
|
steps:
|
||||||
# refer to https://github.com/actions/checkout
|
# refer to https://github.com/actions/checkout
|
||||||
|
84
.github/workflows/ljspeech.yml
vendored
84
.github/workflows/ljspeech.yml
vendored
@ -30,8 +30,8 @@ jobs:
|
|||||||
id: set-matrix
|
id: set-matrix
|
||||||
run: |
|
run: |
|
||||||
# outputting for debugging purposes
|
# outputting for debugging purposes
|
||||||
python ./.github/scripts/docker/generate_build_matrix.py
|
python ./.github/scripts/docker/generate_build_matrix.py --min-torch-version "2.3"
|
||||||
MATRIX=$(python ./.github/scripts/docker/generate_build_matrix.py)
|
MATRIX=$(python ./.github/scripts/docker/generate_build_matrix.py --min-torch-version "2.3")
|
||||||
echo "::set-output name=matrix::${MATRIX}"
|
echo "::set-output name=matrix::${MATRIX}"
|
||||||
|
|
||||||
ljspeech:
|
ljspeech:
|
||||||
@ -70,6 +70,11 @@ jobs:
|
|||||||
cd /icefall
|
cd /icefall
|
||||||
git config --global --add safe.directory /icefall
|
git config --global --add safe.directory /icefall
|
||||||
|
|
||||||
|
pip install "matplotlib<=3.9.4"
|
||||||
|
|
||||||
|
pip list
|
||||||
|
|
||||||
|
.github/scripts/ljspeech/TTS/run-matcha.sh
|
||||||
.github/scripts/ljspeech/TTS/run.sh
|
.github/scripts/ljspeech/TTS/run.sh
|
||||||
|
|
||||||
- name: display files
|
- name: display files
|
||||||
@ -78,19 +83,13 @@ jobs:
|
|||||||
ls -lh
|
ls -lh
|
||||||
|
|
||||||
- uses: actions/upload-artifact@v4
|
- uses: actions/upload-artifact@v4
|
||||||
if: matrix.python-version == '3.9' && matrix.torch-version == '2.2.0'
|
if: matrix.python-version == '3.9' && matrix.torch-version == '2.3.0'
|
||||||
with:
|
with:
|
||||||
name: generated-test-files-${{ matrix.python-version }}-${{ matrix.torch-version }}
|
name: generated-test-files-${{ matrix.python-version }}-${{ matrix.torch-version }}
|
||||||
path: ./*.wav
|
path: ./*.wav
|
||||||
|
|
||||||
- uses: actions/upload-artifact@v4
|
|
||||||
if: matrix.python-version == '3.9' && matrix.torch-version == '2.2.0'
|
|
||||||
with:
|
|
||||||
name: generated-models-py${{ matrix.python-version }}-torch${{ matrix.torch-version }}
|
|
||||||
path: ./*.wav
|
|
||||||
|
|
||||||
- name: Release exported onnx models
|
- name: Release exported onnx models
|
||||||
if: matrix.python-version == '3.9' && matrix.torch-version == '2.2.0' && github.event_name == 'push'
|
if: matrix.python-version == '3.9' && matrix.torch-version == '2.3.0' && github.event_name == 'push'
|
||||||
uses: svenstaro/upload-release-action@v2
|
uses: svenstaro/upload-release-action@v2
|
||||||
with:
|
with:
|
||||||
file_glob: true
|
file_glob: true
|
||||||
@ -100,3 +99,68 @@ jobs:
|
|||||||
repo_token: ${{ secrets.UPLOAD_GH_SHERPA_ONNX_TOKEN }}
|
repo_token: ${{ secrets.UPLOAD_GH_SHERPA_ONNX_TOKEN }}
|
||||||
tag: tts-models
|
tag: tts-models
|
||||||
|
|
||||||
|
- uses: actions/upload-artifact@v4
|
||||||
|
if: matrix.python-version == '3.9' && matrix.torch-version == '2.3.0'
|
||||||
|
with:
|
||||||
|
name: step-2
|
||||||
|
path: ./model-steps-2.onnx
|
||||||
|
|
||||||
|
- uses: actions/upload-artifact@v4
|
||||||
|
if: matrix.python-version == '3.9' && matrix.torch-version == '2.3.0'
|
||||||
|
with:
|
||||||
|
name: step-3
|
||||||
|
path: ./model-steps-3.onnx
|
||||||
|
|
||||||
|
- uses: actions/upload-artifact@v4
|
||||||
|
if: matrix.python-version == '3.9' && matrix.torch-version == '2.3.0'
|
||||||
|
with:
|
||||||
|
name: step-4
|
||||||
|
path: ./model-steps-4.onnx
|
||||||
|
|
||||||
|
- uses: actions/upload-artifact@v4
|
||||||
|
if: matrix.python-version == '3.9' && matrix.torch-version == '2.3.0'
|
||||||
|
with:
|
||||||
|
name: step-5
|
||||||
|
path: ./model-steps-5.onnx
|
||||||
|
|
||||||
|
- uses: actions/upload-artifact@v4
|
||||||
|
if: matrix.python-version == '3.9' && matrix.torch-version == '2.3.0'
|
||||||
|
with:
|
||||||
|
name: step-6
|
||||||
|
path: ./model-steps-6.onnx
|
||||||
|
|
||||||
|
- name: Upload models to huggingface
|
||||||
|
if: matrix.python-version == '3.9' && matrix.torch-version == '2.3.0'
|
||||||
|
shell: bash
|
||||||
|
env:
|
||||||
|
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
||||||
|
run: |
|
||||||
|
d=matcha-icefall-en_US-ljspeech
|
||||||
|
|
||||||
|
GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/csukuangfj/$d hf
|
||||||
|
cp -av $d/* hf/
|
||||||
|
|
||||||
|
pushd hf
|
||||||
|
|
||||||
|
git lfs track "cmn_dict"
|
||||||
|
git lfs track "ru_dict"
|
||||||
|
|
||||||
|
git add .
|
||||||
|
|
||||||
|
git config --global user.name "csukuangfj"
|
||||||
|
git config --global user.email "csukuangfj@gmail.com"
|
||||||
|
git config --global lfs.allowincompletepush true
|
||||||
|
|
||||||
|
git commit -m "upload model" && git push https://csukuangfj:${HF_TOKEN}@huggingface.co/csukuangfj/$d main || true
|
||||||
|
popd
|
||||||
|
|
||||||
|
- name: Release exported onnx models
|
||||||
|
if: matrix.python-version == '3.9' && matrix.torch-version == '2.3.0'
|
||||||
|
uses: svenstaro/upload-release-action@v2
|
||||||
|
with:
|
||||||
|
file_glob: true
|
||||||
|
overwrite: true
|
||||||
|
file: matcha-icefall-*.tar.bz2
|
||||||
|
repo_name: k2-fsa/sherpa-onnx
|
||||||
|
repo_token: ${{ secrets.UPLOAD_GH_SHERPA_ONNX_TOKEN }}
|
||||||
|
tag: tts-models
|
||||||
|
10
.github/workflows/run-gigaspeech-2022-05-13.yml
vendored
10
.github/workflows/run-gigaspeech-2022-05-13.yml
vendored
@ -33,13 +33,15 @@ on:
|
|||||||
# nightly build at 15:50 UTC time every day
|
# nightly build at 15:50 UTC time every day
|
||||||
- cron: "50 15 * * *"
|
- cron: "50 15 * * *"
|
||||||
|
|
||||||
|
workflow_dispatch:
|
||||||
|
|
||||||
concurrency:
|
concurrency:
|
||||||
group: run_gigaspeech_2022_05_13-${{ github.ref }}
|
group: run_gigaspeech_2022_05_13-${{ github.ref }}
|
||||||
cancel-in-progress: true
|
cancel-in-progress: true
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
run_gigaspeech_2022_05_13:
|
run_gigaspeech_2022_05_13:
|
||||||
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
if: github.event_name == 'workflow_dispatch' || github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
||||||
runs-on: ${{ matrix.os }}
|
runs-on: ${{ matrix.os }}
|
||||||
strategy:
|
strategy:
|
||||||
matrix:
|
matrix:
|
||||||
@ -104,7 +106,7 @@ jobs:
|
|||||||
.github/scripts/run-gigaspeech-pruned-transducer-stateless2-2022-05-12.sh
|
.github/scripts/run-gigaspeech-pruned-transducer-stateless2-2022-05-12.sh
|
||||||
|
|
||||||
- name: Display decoding results for gigaspeech pruned_transducer_stateless2
|
- name: Display decoding results for gigaspeech pruned_transducer_stateless2
|
||||||
if: github.event_name == 'schedule' || github.event.label.name == 'run-decode'
|
if: github.event_name == 'schedule' || github.event_name == 'workflow_dispatch' || github.event.label.name == 'run-decode'
|
||||||
shell: bash
|
shell: bash
|
||||||
run: |
|
run: |
|
||||||
cd egs/gigaspeech/ASR/
|
cd egs/gigaspeech/ASR/
|
||||||
@ -119,8 +121,8 @@ jobs:
|
|||||||
find exp/greedy_search -name "log-*" -exec grep -n --color "best for test" {} + | sort -n -k2
|
find exp/greedy_search -name "log-*" -exec grep -n --color "best for test" {} + | sort -n -k2
|
||||||
|
|
||||||
- name: Upload decoding results for gigaspeech pruned_transducer_stateless2
|
- name: Upload decoding results for gigaspeech pruned_transducer_stateless2
|
||||||
uses: actions/upload-artifact@v2
|
uses: actions/upload-artifact@v4
|
||||||
if: github.event_name == 'schedule' || github.event.label.name == 'run-decode'
|
if: github.event_name == 'schedule' || github.event_name == 'workflow_dispatch' || github.event.label.name == 'run-decode'
|
||||||
with:
|
with:
|
||||||
name: torch-${{ matrix.torch }}-python-${{ matrix.python-version }}-ubuntu-latest-cpu-gigaspeech-pruned_transducer_stateless2-2022-05-12
|
name: torch-${{ matrix.torch }}-python-${{ matrix.python-version }}-ubuntu-latest-cpu-gigaspeech-pruned_transducer_stateless2-2022-05-12
|
||||||
path: egs/gigaspeech/ASR/pruned_transducer_stateless2/exp/
|
path: egs/gigaspeech/ASR/pruned_transducer_stateless2/exp/
|
||||||
|
@ -42,7 +42,7 @@ concurrency:
|
|||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
run_gigaspeech_2023_10_17_zipformer:
|
run_gigaspeech_2023_10_17_zipformer:
|
||||||
if: github.event.label.name == 'zipformer' ||github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
|
if: github.event.label.name == 'zipformer' ||github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule' || github.event_name == 'workflow_dispatch'
|
||||||
runs-on: ${{ matrix.os }}
|
runs-on: ${{ matrix.os }}
|
||||||
strategy:
|
strategy:
|
||||||
matrix:
|
matrix:
|
||||||
@ -90,10 +90,6 @@ jobs:
|
|||||||
GITHUB_EVENT_LABEL_NAME: ${{ github.event.label.name }}
|
GITHUB_EVENT_LABEL_NAME: ${{ github.event.label.name }}
|
||||||
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
||||||
run: |
|
run: |
|
||||||
mkdir -p egs/gigaspeech/ASR/data
|
|
||||||
ln -sfv ~/tmp/fbank-libri egs/gigaspeech/ASR/data/fbank
|
|
||||||
ls -lh egs/gigaspeech/ASR/data/*
|
|
||||||
|
|
||||||
sudo apt-get -qq install git-lfs tree
|
sudo apt-get -qq install git-lfs tree
|
||||||
export PYTHONPATH=$PWD:$PYTHONPATH
|
export PYTHONPATH=$PWD:$PYTHONPATH
|
||||||
export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
|
export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
|
||||||
@ -112,7 +108,7 @@ jobs:
|
|||||||
tag: asr-models
|
tag: asr-models
|
||||||
|
|
||||||
- name: Display decoding results for gigaspeech zipformer
|
- name: Display decoding results for gigaspeech zipformer
|
||||||
if: github.event_name == 'schedule' || github.event.label.name == 'run-decode'
|
if: github.event_name == 'schedule' || github.event.label.name == 'run-decode' || github.event_name == 'workflow_dispatch'
|
||||||
shell: bash
|
shell: bash
|
||||||
run: |
|
run: |
|
||||||
cd egs/gigaspeech/ASR/
|
cd egs/gigaspeech/ASR/
|
||||||
@ -124,17 +120,17 @@ jobs:
|
|||||||
find exp/greedy_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
find exp/greedy_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||||
find exp/greedy_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
find exp/greedy_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||||
|
|
||||||
echo "===fast_beam_search==="
|
# echo "===fast_beam_search==="
|
||||||
find exp/fast_beam_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
# find exp/fast_beam_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||||
find exp/fast_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
# find exp/fast_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||||
|
#
|
||||||
echo "===modified beam search==="
|
# echo "===modified beam search==="
|
||||||
find exp/modified_beam_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
# find exp/modified_beam_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||||
find exp/modified_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
# find exp/modified_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||||
|
|
||||||
- name: Upload decoding results for gigaspeech zipformer
|
- name: Upload decoding results for gigaspeech zipformer
|
||||||
uses: actions/upload-artifact@v2
|
uses: actions/upload-artifact@v4
|
||||||
if: github.event_name == 'schedule' || github.event.label.name == 'run-decode'
|
if: github.event_name == 'schedule' || github.event.label.name == 'run-decode' || github.event_name == 'workflow_dispatch'
|
||||||
with:
|
with:
|
||||||
name: torch-${{ matrix.torch }}-python-${{ matrix.python-version }}-ubuntu-latest-cpu-zipformer-2022-11-11
|
name: torch-${{ matrix.torch }}-python-${{ matrix.python-version }}-ubuntu-latest-cpu-zipformer-2022-11-11
|
||||||
path: egs/gigaspeech/ASR/zipformer/exp/
|
path: egs/gigaspeech/ASR/zipformer/exp/
|
||||||
|
@ -16,13 +16,15 @@ on:
|
|||||||
# nightly build at 15:50 UTC time every day
|
# nightly build at 15:50 UTC time every day
|
||||||
- cron: "50 15 * * *"
|
- cron: "50 15 * * *"
|
||||||
|
|
||||||
|
workflow_dispatch:
|
||||||
|
|
||||||
concurrency:
|
concurrency:
|
||||||
group: run_librispeech_lstm_transducer_stateless2_2022_09_03-${{ github.ref }}
|
group: run_librispeech_lstm_transducer_stateless2_2022_09_03-${{ github.ref }}
|
||||||
cancel-in-progress: true
|
cancel-in-progress: true
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
run_librispeech_lstm_transducer_stateless2_2022_09_03:
|
run_librispeech_lstm_transducer_stateless2_2022_09_03:
|
||||||
if: github.event.label.name == 'ready' || github.event.label.name == 'LODR' || github.event.label.name == 'shallow-fusion' || github.event_name == 'push' || github.event_name == 'schedule'
|
if: github.event.label.name == 'ready' || github.event.label.name == 'LODR' || github.event.label.name == 'shallow-fusion' || github.event_name == 'push' || github.event_name == 'schedule' || github.event_name == 'workflow_dispatch'
|
||||||
runs-on: ${{ matrix.os }}
|
runs-on: ${{ matrix.os }}
|
||||||
strategy:
|
strategy:
|
||||||
matrix:
|
matrix:
|
||||||
@ -114,7 +116,7 @@ jobs:
|
|||||||
.github/scripts/run-librispeech-lstm-transducer-stateless2-2022-09-03.sh
|
.github/scripts/run-librispeech-lstm-transducer-stateless2-2022-09-03.sh
|
||||||
|
|
||||||
- name: Display decoding results for lstm_transducer_stateless2
|
- name: Display decoding results for lstm_transducer_stateless2
|
||||||
if: github.event_name == 'schedule'
|
if: github.event_name == 'schedule' || github.event_name == 'workflow_dispatch'
|
||||||
shell: bash
|
shell: bash
|
||||||
run: |
|
run: |
|
||||||
cd egs/librispeech/ASR
|
cd egs/librispeech/ASR
|
||||||
@ -128,9 +130,9 @@ jobs:
|
|||||||
find fast_beam_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
find fast_beam_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||||
find fast_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
find fast_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||||
|
|
||||||
echo "===modified beam search==="
|
# echo "===modified beam search==="
|
||||||
find modified_beam_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
# find modified_beam_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||||
find modified_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
# find modified_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||||
|
|
||||||
- name: Display decoding results for lstm_transducer_stateless2
|
- name: Display decoding results for lstm_transducer_stateless2
|
||||||
if: github.event.label.name == 'shallow-fusion'
|
if: github.event.label.name == 'shallow-fusion'
|
||||||
@ -156,8 +158,8 @@ jobs:
|
|||||||
find modified_beam_search_LODR -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
find modified_beam_search_LODR -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||||
|
|
||||||
- name: Upload decoding results for lstm_transducer_stateless2
|
- name: Upload decoding results for lstm_transducer_stateless2
|
||||||
uses: actions/upload-artifact@v2
|
uses: actions/upload-artifact@v4
|
||||||
if: github.event_name == 'schedule' || github.event.label.name == 'shallow-fusion' || github.event.label.name == 'LODR'
|
if: github.event_name == 'schedule' || github.event.label.name == 'shallow-fusion' || github.event.label.name == 'LODR' || github.event_name == 'workflow_dispatch'
|
||||||
with:
|
with:
|
||||||
name: torch-${{ matrix.torch }}-python-${{ matrix.python-version }}-ubuntu-latest-cpu-lstm_transducer_stateless2-2022-09-03
|
name: torch-${{ matrix.torch }}-python-${{ matrix.python-version }}-ubuntu-latest-cpu-lstm_transducer_stateless2-2022-09-03
|
||||||
path: egs/librispeech/ASR/lstm_transducer_stateless2/exp/
|
path: egs/librispeech/ASR/lstm_transducer_stateless2/exp/
|
||||||
|
@ -23,6 +23,8 @@ on:
|
|||||||
pull_request:
|
pull_request:
|
||||||
types: [labeled]
|
types: [labeled]
|
||||||
|
|
||||||
|
workflow_dispatch:
|
||||||
|
|
||||||
concurrency:
|
concurrency:
|
||||||
group: run_multi-corpora_zipformer-${{ github.ref }}
|
group: run_multi-corpora_zipformer-${{ github.ref }}
|
||||||
cancel-in-progress: true
|
cancel-in-progress: true
|
||||||
|
4
.github/workflows/run-ptb-rnn-lm.yml
vendored
4
.github/workflows/run-ptb-rnn-lm.yml
vendored
@ -16,6 +16,8 @@ on:
|
|||||||
# nightly build at 15:50 UTC time every day
|
# nightly build at 15:50 UTC time every day
|
||||||
- cron: "50 15 * * *"
|
- cron: "50 15 * * *"
|
||||||
|
|
||||||
|
workflow_dispatch:
|
||||||
|
|
||||||
concurrency:
|
concurrency:
|
||||||
group: run_ptb_rnn_lm_training-${{ github.ref }}
|
group: run_ptb_rnn_lm_training-${{ github.ref }}
|
||||||
cancel-in-progress: true
|
cancel-in-progress: true
|
||||||
@ -64,7 +66,7 @@ jobs:
|
|||||||
./train-rnn-lm.sh --world-size 1 --num-epochs 5 --use-epoch 4 --use-avg 2
|
./train-rnn-lm.sh --world-size 1 --num-epochs 5 --use-epoch 4 --use-avg 2
|
||||||
|
|
||||||
- name: Upload pretrained models
|
- name: Upload pretrained models
|
||||||
uses: actions/upload-artifact@v2
|
uses: actions/upload-artifact@v4
|
||||||
if: github.event.label.name == 'ready' || github.event.label.name == 'rnnlm' || github.event_name == 'push' || github.event_name == 'schedule'
|
if: github.event.label.name == 'ready' || github.event.label.name == 'rnnlm' || github.event_name == 'push' || github.event_name == 'schedule'
|
||||||
with:
|
with:
|
||||||
name: python-${{ matrix.python-version }}-ubuntu-rnn-lm-ptb
|
name: python-${{ matrix.python-version }}-ubuntu-rnn-lm-ptb
|
||||||
|
2
.github/workflows/run-swbd-conformer-ctc.yml
vendored
2
.github/workflows/run-swbd-conformer-ctc.yml
vendored
@ -23,6 +23,8 @@ on:
|
|||||||
pull_request:
|
pull_request:
|
||||||
types: [labeled]
|
types: [labeled]
|
||||||
|
|
||||||
|
workflow_dispatch:
|
||||||
|
|
||||||
concurrency:
|
concurrency:
|
||||||
group: run-swbd-conformer_ctc-${{ github.ref }}
|
group: run-swbd-conformer_ctc-${{ github.ref }}
|
||||||
cancel-in-progress: true
|
cancel-in-progress: true
|
||||||
|
@ -23,6 +23,8 @@ on:
|
|||||||
pull_request:
|
pull_request:
|
||||||
types: [labeled]
|
types: [labeled]
|
||||||
|
|
||||||
|
workflow_dispatch:
|
||||||
|
|
||||||
concurrency:
|
concurrency:
|
||||||
group: run_wenetspeech_pruned_transducer_stateless2-${{ github.ref }}
|
group: run_wenetspeech_pruned_transducer_stateless2-${{ github.ref }}
|
||||||
cancel-in-progress: true
|
cancel-in-progress: true
|
||||||
|
4
.github/workflows/style_check.yml
vendored
4
.github/workflows/style_check.yml
vendored
@ -24,6 +24,8 @@ on:
|
|||||||
branches:
|
branches:
|
||||||
- master
|
- master
|
||||||
|
|
||||||
|
workflow_dispatch:
|
||||||
|
|
||||||
concurrency:
|
concurrency:
|
||||||
group: style_check-${{ github.ref }}
|
group: style_check-${{ github.ref }}
|
||||||
cancel-in-progress: true
|
cancel-in-progress: true
|
||||||
@ -34,7 +36,7 @@ jobs:
|
|||||||
strategy:
|
strategy:
|
||||||
matrix:
|
matrix:
|
||||||
os: [ubuntu-latest]
|
os: [ubuntu-latest]
|
||||||
python-version: [3.8]
|
python-version: [3.10.15]
|
||||||
fail-fast: false
|
fail-fast: false
|
||||||
|
|
||||||
steps:
|
steps:
|
||||||
|
2
.github/workflows/test-ncnn-export.yml
vendored
2
.github/workflows/test-ncnn-export.yml
vendored
@ -16,6 +16,8 @@ on:
|
|||||||
# nightly build at 15:50 UTC time every day
|
# nightly build at 15:50 UTC time every day
|
||||||
- cron: "50 15 * * *"
|
- cron: "50 15 * * *"
|
||||||
|
|
||||||
|
workflow_dispatch:
|
||||||
|
|
||||||
concurrency:
|
concurrency:
|
||||||
group: test_ncnn_export-${{ github.ref }}
|
group: test_ncnn_export-${{ github.ref }}
|
||||||
cancel-in-progress: true
|
cancel-in-progress: true
|
||||||
|
2
.github/workflows/test-onnx-export.yml
vendored
2
.github/workflows/test-onnx-export.yml
vendored
@ -16,6 +16,8 @@ on:
|
|||||||
# nightly build at 15:50 UTC time every day
|
# nightly build at 15:50 UTC time every day
|
||||||
- cron: "50 15 * * *"
|
- cron: "50 15 * * *"
|
||||||
|
|
||||||
|
workflow_dispatch:
|
||||||
|
|
||||||
concurrency:
|
concurrency:
|
||||||
group: test_onnx_export-${{ github.ref }}
|
group: test_onnx_export-${{ github.ref }}
|
||||||
cancel-in-progress: true
|
cancel-in-progress: true
|
||||||
|
4
.github/workflows/test.yml
vendored
4
.github/workflows/test.yml
vendored
@ -105,7 +105,7 @@ jobs:
|
|||||||
cd ../zipformer
|
cd ../zipformer
|
||||||
pytest -v -s
|
pytest -v -s
|
||||||
|
|
||||||
- uses: actions/upload-artifact@v2
|
- uses: actions/upload-artifact@v4
|
||||||
with:
|
with:
|
||||||
path: egs/librispeech/ASR/zipformer/swoosh.pdf
|
path: egs/librispeech/ASR/zipformer/swoosh.pdf
|
||||||
name: swoosh.pdf
|
name: swoosh-${{ matrix.python-version }}-${{ matrix.torch-version }}
|
||||||
|
1
.github/workflows/yesno.yml
vendored
1
.github/workflows/yesno.yml
vendored
@ -61,5 +61,6 @@ jobs:
|
|||||||
|
|
||||||
python3 -m torch.utils.collect_env
|
python3 -m torch.utils.collect_env
|
||||||
python3 -m k2.version
|
python3 -m k2.version
|
||||||
|
pip list
|
||||||
|
|
||||||
.github/scripts/yesno/ASR/run.sh
|
.github/scripts/yesno/ASR/run.sh
|
||||||
|
@ -42,7 +42,6 @@ for more details.
|
|||||||
- [LibriSpeech][librispeech]
|
- [LibriSpeech][librispeech]
|
||||||
- [Libriheavy][libriheavy]
|
- [Libriheavy][libriheavy]
|
||||||
- [Multi-Dialect Broadcast News Arabic Speech Recognition][mgb2]
|
- [Multi-Dialect Broadcast News Arabic Speech Recognition][mgb2]
|
||||||
- [PeopleSpeech][peoplespeech]
|
|
||||||
- [SPGISpeech][spgispeech]
|
- [SPGISpeech][spgispeech]
|
||||||
- [Switchboard][swbd]
|
- [Switchboard][swbd]
|
||||||
- [TIMIT][timit]
|
- [TIMIT][timit]
|
||||||
@ -334,6 +333,7 @@ We provide a Colab notebook to test the pre-trained model: [; do
|
for JOB in $(seq $nj); do
|
||||||
gss enhance cuts $EXP_DIR/cuts_train.jsonl.gz \
|
gss enhance cuts $EXP_DIR/cuts_train.jsonl.gz \
|
||||||
$EXP_DIR/cuts_per_segment_train_split$nj/cuts_per_segment_train.JOB.jsonl.gz $EXP_DIR/enhanced \
|
$EXP_DIR/cuts_per_segment_train_split$nj/cuts_per_segment_train.$JOB.jsonl.gz $EXP_DIR/enhanced \
|
||||||
--bss-iterations 10 \
|
--bss-iterations 10 \
|
||||||
--context-duration 5.0 \
|
--context-duration 5.0 \
|
||||||
--use-garbage-class \
|
--use-garbage-class \
|
||||||
@ -77,7 +77,7 @@ if [ $stage -le 5 ]; then
|
|||||||
for part in eval test; do
|
for part in eval test; do
|
||||||
for JOB in $(seq $nj); do
|
for JOB in $(seq $nj); do
|
||||||
gss enhance cuts $EXP_DIR/cuts_${part}.jsonl.gz \
|
gss enhance cuts $EXP_DIR/cuts_${part}.jsonl.gz \
|
||||||
$EXP_DIR/cuts_per_segment_${part}_split$nj/cuts_per_segment_${part}.JOB.jsonl.gz \
|
$EXP_DIR/cuts_per_segment_${part}_split$nj/cuts_per_segment_${part}.$JOB.jsonl.gz \
|
||||||
$EXP_DIR/enhanced \
|
$EXP_DIR/enhanced \
|
||||||
--bss-iterations 10 \
|
--bss-iterations 10 \
|
||||||
--context-duration 15.0 \
|
--context-duration 15.0 \
|
||||||
|
@ -65,7 +65,7 @@ fi
|
|||||||
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
||||||
log "Stage 2: Prepare musan manifest"
|
log "Stage 2: Prepare musan manifest"
|
||||||
# We assume that you have downloaded the musan corpus
|
# We assume that you have downloaded the musan corpus
|
||||||
# to data/musan
|
# to $dl_dir/musan
|
||||||
mkdir -p data/manifests
|
mkdir -p data/manifests
|
||||||
lhotse prepare musan $dl_dir/musan data/manifests
|
lhotse prepare musan $dl_dir/musan data/manifests
|
||||||
fi
|
fi
|
||||||
|
@ -82,7 +82,7 @@ class AlimeetingAsrDataModule:
|
|||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--manifest-dir",
|
"--manifest-dir",
|
||||||
type=Path,
|
type=Path,
|
||||||
default=Path("data/manifests"),
|
default=Path("data/fbank"),
|
||||||
help="Path to directory with train/valid/test cuts.",
|
help="Path to directory with train/valid/test cuts.",
|
||||||
)
|
)
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
@ -327,9 +327,11 @@ class AlimeetingAsrDataModule:
|
|||||||
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
|
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
|
||||||
logging.debug("About to create test dataset")
|
logging.debug("About to create test dataset")
|
||||||
test = K2SpeechRecognitionDataset(
|
test = K2SpeechRecognitionDataset(
|
||||||
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
|
input_strategy=(
|
||||||
if self.args.on_the_fly_feats
|
OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
|
||||||
else PrecomputedFeatures(),
|
if self.args.on_the_fly_feats
|
||||||
|
else PrecomputedFeatures()
|
||||||
|
),
|
||||||
return_cuts=True,
|
return_cuts=True,
|
||||||
)
|
)
|
||||||
sampler = DynamicBucketingSampler(
|
sampler = DynamicBucketingSampler(
|
||||||
|
@ -58,7 +58,7 @@ if [ $stage -le 4 ]; then
|
|||||||
# for train, we use smaller context and larger batches to speed-up processing
|
# for train, we use smaller context and larger batches to speed-up processing
|
||||||
for JOB in $(seq $nj); do
|
for JOB in $(seq $nj); do
|
||||||
gss enhance cuts $EXP_DIR/cuts_train.jsonl.gz \
|
gss enhance cuts $EXP_DIR/cuts_train.jsonl.gz \
|
||||||
$EXP_DIR/cuts_per_segment_train_split$nj/cuts_per_segment_train.JOB.jsonl.gz $EXP_DIR/enhanced \
|
$EXP_DIR/cuts_per_segment_train_split$nj/cuts_per_segment_train.$JOB.jsonl.gz $EXP_DIR/enhanced \
|
||||||
--bss-iterations 10 \
|
--bss-iterations 10 \
|
||||||
--context-duration 5.0 \
|
--context-duration 5.0 \
|
||||||
--use-garbage-class \
|
--use-garbage-class \
|
||||||
@ -77,7 +77,7 @@ if [ $stage -le 5 ]; then
|
|||||||
for part in dev test; do
|
for part in dev test; do
|
||||||
for JOB in $(seq $nj); do
|
for JOB in $(seq $nj); do
|
||||||
gss enhance cuts $EXP_DIR/cuts_${part}.jsonl.gz \
|
gss enhance cuts $EXP_DIR/cuts_${part}.jsonl.gz \
|
||||||
$EXP_DIR/cuts_per_segment_${part}_split$nj/cuts_per_segment_${part}.JOB.jsonl.gz \
|
$EXP_DIR/cuts_per_segment_${part}_split$nj/cuts_per_segment_${part}.$JOB.jsonl.gz \
|
||||||
$EXP_DIR/enhanced \
|
$EXP_DIR/enhanced \
|
||||||
--bss-iterations 10 \
|
--bss-iterations 10 \
|
||||||
--context-duration 15.0 \
|
--context-duration 15.0 \
|
||||||
|
@ -35,16 +35,40 @@ python zipformer/train.py \
|
|||||||
--master-port 13455
|
--master-port 13455
|
||||||
```
|
```
|
||||||
|
|
||||||
|
We recommend that you train the model with weighted sampler, as the model converges
|
||||||
|
faster with better performance:
|
||||||
|
|
||||||
|
| Model | mAP |
|
||||||
|
| ------ | ------- |
|
||||||
|
| Zipformer-AT, train with weighted sampler | 46.6 |
|
||||||
|
|
||||||
The evaluation command is:
|
The evaluation command is:
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
python zipformer/evaluate.py \
|
export CUDA_VISIBLE_DEVICES="4,5,6,7"
|
||||||
--epoch 32 \
|
subset=full
|
||||||
--avg 8 \
|
weighted_sampler=1
|
||||||
--exp-dir zipformer/exp_at_as_full \
|
bucket_sampler=0
|
||||||
--max-duration 500
|
lr_epochs=15
|
||||||
|
|
||||||
|
python zipformer/train.py \
|
||||||
|
--world-size 4 \
|
||||||
|
--audioset-subset $subset \
|
||||||
|
--num-epochs 120 \
|
||||||
|
--start-epoch 1 \
|
||||||
|
--use-fp16 1 \
|
||||||
|
--num-events 527 \
|
||||||
|
--lr-epochs $lr_epochs \
|
||||||
|
--exp-dir zipformer/exp_AS_${subset}_weighted_sampler${weighted_sampler} \
|
||||||
|
--weighted-sampler $weighted_sampler \
|
||||||
|
--bucketing-sampler $bucket_sampler \
|
||||||
|
--max-duration 1000 \
|
||||||
|
--enable-musan True \
|
||||||
|
--master-port 13452
|
||||||
```
|
```
|
||||||
|
|
||||||
|
The command for evaluation is the same. The pre-trained model can be downloaded from https://huggingface.co/marcoyang/icefall-audio-tagging-audioset-zipformer-M-weighted-sampler
|
||||||
|
|
||||||
|
|
||||||
#### small-scaled model, number of model parameters: 22125218, i.e., 22.13 M
|
#### small-scaled model, number of model parameters: 22125218, i.e., 22.13 M
|
||||||
|
|
||||||
@ -92,4 +116,4 @@ python zipformer/evaluate.py \
|
|||||||
--encoder-unmasked-dim 192,192,192,192,192,192 \
|
--encoder-unmasked-dim 192,192,192,192,192,192 \
|
||||||
--exp-dir zipformer/exp_small_at_as_full \
|
--exp-dir zipformer/exp_small_at_as_full \
|
||||||
--max-duration 500
|
--max-duration 500
|
||||||
```
|
```
|
||||||
|
73
egs/audioset/AT/local/compute_weight.py
Normal file
73
egs/audioset/AT/local/compute_weight.py
Normal file
@ -0,0 +1,73 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2023 Xiaomi Corp. (authors: Xiaoyu Yang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
"""
|
||||||
|
This file generates the manifest and computes the fbank features for AudioSet
|
||||||
|
dataset. The generated manifests and features are stored in data/fbank.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
|
||||||
|
import lhotse
|
||||||
|
from lhotse import load_manifest
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--input-manifest", type=str, default="data/fbank/cuts_audioset_full.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--output",
|
||||||
|
type=str,
|
||||||
|
required=True,
|
||||||
|
)
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
# Reference: https://github.com/YuanGongND/ast/blob/master/egs/audioset/gen_weight_file.py
|
||||||
|
parser = get_parser()
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
cuts = load_manifest(args.input_manifest)
|
||||||
|
|
||||||
|
print(f"A total of {len(cuts)} cuts.")
|
||||||
|
|
||||||
|
label_count = [0] * 527 # a total of 527 classes
|
||||||
|
for c in cuts:
|
||||||
|
audio_event = c.supervisions[0].audio_event
|
||||||
|
labels = list(map(int, audio_event.split(";")))
|
||||||
|
for label in labels:
|
||||||
|
label_count[label] += 1
|
||||||
|
|
||||||
|
with open(args.output, "w") as f:
|
||||||
|
for c in cuts:
|
||||||
|
audio_event = c.supervisions[0].audio_event
|
||||||
|
labels = list(map(int, audio_event.split(";")))
|
||||||
|
weight = 0
|
||||||
|
for label in labels:
|
||||||
|
weight += 1000 / (label_count[label] + 0.01)
|
||||||
|
f.write(f"{c.id} {weight}\n")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
@ -10,6 +10,7 @@ stage=-1
|
|||||||
stop_stage=4
|
stop_stage=4
|
||||||
|
|
||||||
dl_dir=$PWD/download
|
dl_dir=$PWD/download
|
||||||
|
fbank_dir=data/fbank
|
||||||
|
|
||||||
# we assume that you have your downloaded the AudioSet and placed
|
# we assume that you have your downloaded the AudioSet and placed
|
||||||
# it under $dl_dir/audioset, the folder structure should look like
|
# it under $dl_dir/audioset, the folder structure should look like
|
||||||
@ -49,7 +50,6 @@ fi
|
|||||||
|
|
||||||
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
|
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
|
||||||
log "Stage 0: Construct the audioset manifest and compute the fbank features for balanced set"
|
log "Stage 0: Construct the audioset manifest and compute the fbank features for balanced set"
|
||||||
fbank_dir=data/fbank
|
|
||||||
if [! -e $fbank_dir/.balanced.done]; then
|
if [! -e $fbank_dir/.balanced.done]; then
|
||||||
python local/generate_audioset_manifest.py \
|
python local/generate_audioset_manifest.py \
|
||||||
--dataset-dir $dl_dir/audioset \
|
--dataset-dir $dl_dir/audioset \
|
||||||
@ -102,3 +102,14 @@ if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
|||||||
touch data/fbank/.musan.done
|
touch data/fbank/.musan.done
|
||||||
fi
|
fi
|
||||||
fi
|
fi
|
||||||
|
|
||||||
|
# The following stages are required to do weighted-sampling training
|
||||||
|
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
||||||
|
log "Stage 5: Prepare for weighted-sampling training"
|
||||||
|
if [ ! -e $fbank_dir/cuts_audioset_full.jsonl.gz ]; then
|
||||||
|
lhotse combine $fbank_dir/cuts_audioset_balanced.jsonl.gz $fbank_dir/cuts_audioset_unbalanced.jsonl.gz $fbank_dir/cuts_audioset_full.jsonl.gz
|
||||||
|
fi
|
||||||
|
python ./local/compute_weight.py \
|
||||||
|
--input-manifest $fbank_dir/cuts_audioset_full.jsonl.gz \
|
||||||
|
--output $fbank_dir/sampling_weights_full.txt
|
||||||
|
fi
|
||||||
|
@ -31,6 +31,7 @@ from lhotse.dataset import ( # noqa F401 for PrecomputedFeatures
|
|||||||
PrecomputedFeatures,
|
PrecomputedFeatures,
|
||||||
SimpleCutSampler,
|
SimpleCutSampler,
|
||||||
SpecAugment,
|
SpecAugment,
|
||||||
|
WeightedSimpleCutSampler,
|
||||||
)
|
)
|
||||||
from lhotse.dataset.input_strategies import ( # noqa F401 For AudioSamples
|
from lhotse.dataset.input_strategies import ( # noqa F401 For AudioSamples
|
||||||
AudioSamples,
|
AudioSamples,
|
||||||
@ -99,6 +100,20 @@ class AudioSetATDatamodule:
|
|||||||
help="Maximum pooled recordings duration (seconds) in a "
|
help="Maximum pooled recordings duration (seconds) in a "
|
||||||
"single batch. You can reduce it if it causes CUDA OOM.",
|
"single batch. You can reduce it if it causes CUDA OOM.",
|
||||||
)
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--weighted-sampler",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="When enabled, samples are drawn from by their weights. "
|
||||||
|
"It cannot be used together with bucketing sampler",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--num-samples",
|
||||||
|
type=int,
|
||||||
|
default=200000,
|
||||||
|
help="The number of samples to be drawn in each epoch. Only be used"
|
||||||
|
"for weighed sampler",
|
||||||
|
)
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--bucketing-sampler",
|
"--bucketing-sampler",
|
||||||
type=str2bool,
|
type=str2bool,
|
||||||
@ -295,6 +310,9 @@ class AudioSetATDatamodule:
|
|||||||
)
|
)
|
||||||
|
|
||||||
if self.args.bucketing_sampler:
|
if self.args.bucketing_sampler:
|
||||||
|
assert (
|
||||||
|
not self.args.weighted_sampler
|
||||||
|
), "weighted sampling is not supported in bucket sampler"
|
||||||
logging.info("Using DynamicBucketingSampler.")
|
logging.info("Using DynamicBucketingSampler.")
|
||||||
train_sampler = DynamicBucketingSampler(
|
train_sampler = DynamicBucketingSampler(
|
||||||
cuts_train,
|
cuts_train,
|
||||||
@ -304,13 +322,26 @@ class AudioSetATDatamodule:
|
|||||||
drop_last=self.args.drop_last,
|
drop_last=self.args.drop_last,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
logging.info("Using SimpleCutSampler.")
|
if self.args.weighted_sampler:
|
||||||
train_sampler = SimpleCutSampler(
|
# assert self.args.audioset_subset == "full", "Only use weighted sampling for full audioset"
|
||||||
cuts_train,
|
logging.info("Using weighted SimpleCutSampler")
|
||||||
max_duration=self.args.max_duration,
|
weights = self.audioset_sampling_weights()
|
||||||
shuffle=self.args.shuffle,
|
train_sampler = WeightedSimpleCutSampler(
|
||||||
drop_last=self.args.drop_last,
|
cuts_train,
|
||||||
)
|
weights,
|
||||||
|
num_samples=self.args.num_samples,
|
||||||
|
max_duration=self.args.max_duration,
|
||||||
|
shuffle=False, # do not support shuffle
|
||||||
|
drop_last=self.args.drop_last,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
logging.info("Using SimpleCutSampler.")
|
||||||
|
train_sampler = SimpleCutSampler(
|
||||||
|
cuts_train,
|
||||||
|
max_duration=self.args.max_duration,
|
||||||
|
shuffle=self.args.shuffle,
|
||||||
|
drop_last=self.args.drop_last,
|
||||||
|
)
|
||||||
logging.info("About to create train dataloader")
|
logging.info("About to create train dataloader")
|
||||||
|
|
||||||
if sampler_state_dict is not None:
|
if sampler_state_dict is not None:
|
||||||
@ -373,11 +404,9 @@ class AudioSetATDatamodule:
|
|||||||
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
|
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
|
||||||
logging.debug("About to create test dataset")
|
logging.debug("About to create test dataset")
|
||||||
test = AudioTaggingDataset(
|
test = AudioTaggingDataset(
|
||||||
input_strategy=(
|
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
|
||||||
OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
|
if self.args.on_the_fly_feats
|
||||||
if self.args.on_the_fly_feats
|
else eval(self.args.input_strategy)(),
|
||||||
else eval(self.args.input_strategy)()
|
|
||||||
),
|
|
||||||
return_cuts=self.args.return_cuts,
|
return_cuts=self.args.return_cuts,
|
||||||
)
|
)
|
||||||
sampler = DynamicBucketingSampler(
|
sampler = DynamicBucketingSampler(
|
||||||
@ -397,21 +426,30 @@ class AudioSetATDatamodule:
|
|||||||
@lru_cache()
|
@lru_cache()
|
||||||
def audioset_train_cuts(self) -> CutSet:
|
def audioset_train_cuts(self) -> CutSet:
|
||||||
logging.info("About to get the audioset training cuts.")
|
logging.info("About to get the audioset training cuts.")
|
||||||
balanced_cuts = load_manifest_lazy(
|
if not self.args.weighted_sampler:
|
||||||
self.args.manifest_dir / "cuts_audioset_balanced.jsonl.gz"
|
balanced_cuts = load_manifest_lazy(
|
||||||
)
|
self.args.manifest_dir / "cuts_audioset_balanced.jsonl.gz"
|
||||||
if self.args.audioset_subset == "full":
|
|
||||||
unbalanced_cuts = load_manifest_lazy(
|
|
||||||
self.args.manifest_dir / "cuts_audioset_unbalanced.jsonl.gz"
|
|
||||||
)
|
|
||||||
cuts = CutSet.mux(
|
|
||||||
balanced_cuts,
|
|
||||||
unbalanced_cuts,
|
|
||||||
weights=[20000, 2000000],
|
|
||||||
stop_early=True,
|
|
||||||
)
|
)
|
||||||
|
if self.args.audioset_subset == "full":
|
||||||
|
unbalanced_cuts = load_manifest_lazy(
|
||||||
|
self.args.manifest_dir / "cuts_audioset_unbalanced.jsonl.gz"
|
||||||
|
)
|
||||||
|
cuts = CutSet.mux(
|
||||||
|
balanced_cuts,
|
||||||
|
unbalanced_cuts,
|
||||||
|
weights=[20000, 2000000],
|
||||||
|
stop_early=True,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
cuts = balanced_cuts
|
||||||
else:
|
else:
|
||||||
cuts = balanced_cuts
|
# assert self.args.audioset_subset == "full", "Only do weighted sampling for full AudioSet"
|
||||||
|
cuts = load_manifest(
|
||||||
|
self.args.manifest_dir
|
||||||
|
/ f"cuts_audioset_{self.args.audioset_subset}.jsonl.gz"
|
||||||
|
)
|
||||||
|
logging.info(f"Get {len(cuts)} cuts in total.")
|
||||||
|
|
||||||
return cuts
|
return cuts
|
||||||
|
|
||||||
@lru_cache()
|
@lru_cache()
|
||||||
@ -420,3 +458,22 @@ class AudioSetATDatamodule:
|
|||||||
return load_manifest_lazy(
|
return load_manifest_lazy(
|
||||||
self.args.manifest_dir / "cuts_audioset_eval.jsonl.gz"
|
self.args.manifest_dir / "cuts_audioset_eval.jsonl.gz"
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def audioset_sampling_weights(self):
|
||||||
|
logging.info(
|
||||||
|
f"About to get the sampling weight for {self.args.audioset_subset} in AudioSet"
|
||||||
|
)
|
||||||
|
weights = []
|
||||||
|
with open(
|
||||||
|
self.args.manifest_dir / f"sample_weights_{self.args.audioset_subset}.txt",
|
||||||
|
"r",
|
||||||
|
) as f:
|
||||||
|
while True:
|
||||||
|
line = f.readline()
|
||||||
|
if not line:
|
||||||
|
break
|
||||||
|
weight = float(line.split()[1])
|
||||||
|
weights.append(weight)
|
||||||
|
logging.info(f"Get the sampling weight for {len(weights)} cuts")
|
||||||
|
return weights
|
||||||
|
@ -789,12 +789,14 @@ def train_one_epoch(
|
|||||||
rank=0,
|
rank=0,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
num_samples = 0
|
||||||
for batch_idx, batch in enumerate(train_dl):
|
for batch_idx, batch in enumerate(train_dl):
|
||||||
if batch_idx % 10 == 0:
|
if batch_idx % 10 == 0:
|
||||||
set_batch_count(model, get_adjusted_batch_count(params))
|
set_batch_count(model, get_adjusted_batch_count(params))
|
||||||
|
|
||||||
params.batch_idx_train += 1
|
params.batch_idx_train += 1
|
||||||
batch_size = batch["inputs"].size(0)
|
batch_size = batch["inputs"].size(0)
|
||||||
|
num_samples += batch_size
|
||||||
|
|
||||||
try:
|
try:
|
||||||
with torch.cuda.amp.autocast(enabled=params.use_fp16):
|
with torch.cuda.amp.autocast(enabled=params.use_fp16):
|
||||||
@ -919,6 +921,12 @@ def train_one_epoch(
|
|||||||
tb_writer, "train/valid_", params.batch_idx_train
|
tb_writer, "train/valid_", params.batch_idx_train
|
||||||
)
|
)
|
||||||
|
|
||||||
|
if num_samples > params.num_samples:
|
||||||
|
logging.info(
|
||||||
|
f"Number of training samples exceeds {params.num_samples} in this epoch, move on to next epoch"
|
||||||
|
)
|
||||||
|
break
|
||||||
|
|
||||||
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||||||
params.train_loss = loss_value
|
params.train_loss = loss_value
|
||||||
if params.train_loss < params.best_train_loss:
|
if params.train_loss < params.best_train_loss:
|
||||||
@ -1032,7 +1040,8 @@ def run(rank, world_size, args):
|
|||||||
|
|
||||||
return True
|
return True
|
||||||
|
|
||||||
train_cuts = train_cuts.filter(remove_short_and_long_utt)
|
if not params.weighted_sampler:
|
||||||
|
train_cuts = train_cuts.filter(remove_short_and_long_utt)
|
||||||
|
|
||||||
if params.start_batch > 0 and checkpoints and "sampler" in checkpoints:
|
if params.start_batch > 0 and checkpoints and "sampler" in checkpoints:
|
||||||
# We only load the sampler's state dict when it loads a checkpoint
|
# We only load the sampler's state dict when it loads a checkpoint
|
||||||
|
6
egs/baker_zh/TTS/.gitignore
vendored
Normal file
6
egs/baker_zh/TTS/.gitignore
vendored
Normal file
@ -0,0 +1,6 @@
|
|||||||
|
path.sh
|
||||||
|
*.onnx
|
||||||
|
*.wav
|
||||||
|
generator_v1
|
||||||
|
generator_v2
|
||||||
|
generator_v3
|
146
egs/baker_zh/TTS/README.md
Normal file
146
egs/baker_zh/TTS/README.md
Normal file
@ -0,0 +1,146 @@
|
|||||||
|
# Introduction
|
||||||
|
|
||||||
|
It is for the dataset from
|
||||||
|
https://en.data-baker.com/datasets/freeDatasets/
|
||||||
|
|
||||||
|
The dataset contains 10000 Chinese sentences of a native Chinese female speaker,
|
||||||
|
which is about 12 hours.
|
||||||
|
|
||||||
|
|
||||||
|
**Note**: The dataset is for non-commercial use only.
|
||||||
|
|
||||||
|
|
||||||
|
# matcha
|
||||||
|
|
||||||
|
[./matcha](./matcha) contains the code for training [Matcha-TTS](https://github.com/shivammehta25/Matcha-TTS)
|
||||||
|
|
||||||
|
Checkpoints and training logs can be found [here](https://huggingface.co/csukuangfj/icefall-tts-baker-matcha-zh-2024-12-27).
|
||||||
|
The pull-request for this recipe can be found at <https://github.com/k2-fsa/icefall/pull/1849>
|
||||||
|
|
||||||
|
The training command is given below:
|
||||||
|
```bash
|
||||||
|
python3 ./matcha/train.py \
|
||||||
|
--exp-dir ./matcha/exp-1/ \
|
||||||
|
--num-workers 4 \
|
||||||
|
--world-size 1 \
|
||||||
|
--num-epochs 2000 \
|
||||||
|
--max-duration 1200 \
|
||||||
|
--bucketing-sampler 1 \
|
||||||
|
--start-epoch 1
|
||||||
|
```
|
||||||
|
|
||||||
|
To inference, use:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Download Hifigan vocoder. We use Hifigan v2 below. You can select from v1, v2, or v3
|
||||||
|
|
||||||
|
wget https://github.com/csukuangfj/models/raw/refs/heads/master/hifigan/generator_v2
|
||||||
|
|
||||||
|
python3 ./matcha/infer.py \
|
||||||
|
--epoch 2000 \
|
||||||
|
--exp-dir ./matcha/exp-1 \
|
||||||
|
--vocoder ./generator_v2 \
|
||||||
|
--tokens ./data/tokens.txt \
|
||||||
|
--cmvn ./data/fbank/cmvn.json \
|
||||||
|
--input-text "当夜幕降临,星光点点,伴随着微风拂面,我在静谧中感受着时光的流转,思念如涟漪荡漾,梦境如画卷展开,我与自然融为一体,沉静在这片宁静的美丽之中,感受着生命的奇迹与温柔。" \
|
||||||
|
--output-wav ./generated.wav
|
||||||
|
```
|
||||||
|
|
||||||
|
```bash
|
||||||
|
soxi ./generated.wav
|
||||||
|
```
|
||||||
|
|
||||||
|
prints:
|
||||||
|
```
|
||||||
|
Input File : './generated.wav'
|
||||||
|
Channels : 1
|
||||||
|
Sample Rate : 22050
|
||||||
|
Precision : 16-bit
|
||||||
|
Duration : 00:00:17.31 = 381696 samples ~ 1298.29 CDDA sectors
|
||||||
|
File Size : 763k
|
||||||
|
Bit Rate : 353k
|
||||||
|
Sample Encoding: 16-bit Signed Integer PCM
|
||||||
|
```
|
||||||
|
|
||||||
|
https://github.com/user-attachments/assets/88d4e88f-ebc4-4f32-b216-16d46b966024
|
||||||
|
|
||||||
|
|
||||||
|
To export the checkpoint to onnx:
|
||||||
|
```bash
|
||||||
|
python3 ./matcha/export_onnx.py \
|
||||||
|
--exp-dir ./matcha/exp-1 \
|
||||||
|
--epoch 2000 \
|
||||||
|
--tokens ./data/tokens.txt \
|
||||||
|
--cmvn ./data/fbank/cmvn.json
|
||||||
|
```
|
||||||
|
|
||||||
|
The above command generates the following files:
|
||||||
|
```
|
||||||
|
-rw-r--r-- 1 kuangfangjun root 72M Dec 27 18:53 model-steps-2.onnx
|
||||||
|
-rw-r--r-- 1 kuangfangjun root 73M Dec 27 18:54 model-steps-3.onnx
|
||||||
|
-rw-r--r-- 1 kuangfangjun root 73M Dec 27 18:54 model-steps-4.onnx
|
||||||
|
-rw-r--r-- 1 kuangfangjun root 74M Dec 27 18:55 model-steps-5.onnx
|
||||||
|
-rw-r--r-- 1 kuangfangjun root 74M Dec 27 18:57 model-steps-6.onnx
|
||||||
|
```
|
||||||
|
|
||||||
|
where the 2 in `model-steps-2.onnx` means it uses 2 steps for the ODE solver.
|
||||||
|
|
||||||
|
**HINT**: If you get the following error while running `export_onnx.py`:
|
||||||
|
|
||||||
|
```
|
||||||
|
torch.onnx.errors.UnsupportedOperatorError: Exporting the operator
|
||||||
|
'aten::scaled_dot_product_attention' to ONNX opset version 14 is not supported.
|
||||||
|
```
|
||||||
|
|
||||||
|
please use `torch>=2.2.0`.
|
||||||
|
|
||||||
|
To export the Hifigan vocoder to onnx, please use:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
wget https://github.com/csukuangfj/models/raw/refs/heads/master/hifigan/generator_v1
|
||||||
|
wget https://github.com/csukuangfj/models/raw/refs/heads/master/hifigan/generator_v2
|
||||||
|
wget https://github.com/csukuangfj/models/raw/refs/heads/master/hifigan/generator_v3
|
||||||
|
|
||||||
|
python3 ./matcha/export_onnx_hifigan.py
|
||||||
|
```
|
||||||
|
|
||||||
|
The above command generates 3 files:
|
||||||
|
|
||||||
|
- hifigan_v1.onnx
|
||||||
|
- hifigan_v2.onnx
|
||||||
|
- hifigan_v3.onnx
|
||||||
|
|
||||||
|
**HINT**: You can download pre-exported hifigan ONNX models from
|
||||||
|
<https://github.com/k2-fsa/sherpa-onnx/releases/tag/vocoder-models>
|
||||||
|
|
||||||
|
To use the generated onnx files to generate speech from text, please run:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
|
||||||
|
# First, generate ./lexicon.txt
|
||||||
|
python3 ./matcha/generate_lexicon.py
|
||||||
|
|
||||||
|
python3 ./matcha/onnx_pretrained.py \
|
||||||
|
--acoustic-model ./model-steps-4.onnx \
|
||||||
|
--vocoder ./hifigan_v2.onnx \
|
||||||
|
--tokens ./data/tokens.txt \
|
||||||
|
--lexicon ./lexicon.txt \
|
||||||
|
--input-text "在一个阳光明媚的夏天,小马、小羊和小狗它们一块儿在广阔的草地上,嬉戏玩耍,这时小猴来了,还带着它心爱的足球活蹦乱跳地跑前、跑后教小马、小羊、小狗踢足球。" \
|
||||||
|
--output-wav ./1.wav
|
||||||
|
```
|
||||||
|
|
||||||
|
```bash
|
||||||
|
soxi ./1.wav
|
||||||
|
|
||||||
|
Input File : './1.wav'
|
||||||
|
Channels : 1
|
||||||
|
Sample Rate : 22050
|
||||||
|
Precision : 16-bit
|
||||||
|
Duration : 00:00:16.37 = 360960 samples ~ 1227.76 CDDA sectors
|
||||||
|
File Size : 722k
|
||||||
|
Bit Rate : 353k
|
||||||
|
Sample Encoding: 16-bit Signed Integer PCM
|
||||||
|
```
|
||||||
|
|
||||||
|
https://github.com/user-attachments/assets/578d04bb-fee8-47e5-9984-a868dcce610e
|
||||||
|
|
1
egs/baker_zh/TTS/local/audio.py
Symbolic link
1
egs/baker_zh/TTS/local/audio.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../matcha/audio.py
|
110
egs/baker_zh/TTS/local/compute_fbank_baker_zh.py
Executable file
110
egs/baker_zh/TTS/local/compute_fbank_baker_zh.py
Executable file
@ -0,0 +1,110 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021-2023 Xiaomi Corp. (authors: Fangjun Kuang,
|
||||||
|
# Zengwei Yao)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
This file computes fbank features of the baker-zh dataset.
|
||||||
|
It looks for manifests in the directory data/manifests.
|
||||||
|
|
||||||
|
The generated fbank features are saved in data/fbank.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import os
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from fbank import MatchaFbank, MatchaFbankConfig
|
||||||
|
from lhotse import CutSet, LilcomChunkyWriter, load_manifest
|
||||||
|
from lhotse.audio import RecordingSet
|
||||||
|
from lhotse.supervision import SupervisionSet
|
||||||
|
|
||||||
|
from icefall.utils import get_executor
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-jobs",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="""It specifies the checkpoint to use for decoding.
|
||||||
|
Note: Epoch counts from 1.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def compute_fbank_baker_zh(num_jobs: int):
|
||||||
|
src_dir = Path("data/manifests")
|
||||||
|
output_dir = Path("data/fbank")
|
||||||
|
|
||||||
|
if num_jobs < 1:
|
||||||
|
num_jobs = os.cpu_count()
|
||||||
|
|
||||||
|
logging.info(f"num_jobs: {num_jobs}")
|
||||||
|
logging.info(f"src_dir: {src_dir}")
|
||||||
|
logging.info(f"output_dir: {output_dir}")
|
||||||
|
config = MatchaFbankConfig(
|
||||||
|
n_fft=1024,
|
||||||
|
n_mels=80,
|
||||||
|
sampling_rate=22050,
|
||||||
|
hop_length=256,
|
||||||
|
win_length=1024,
|
||||||
|
f_min=0,
|
||||||
|
f_max=8000,
|
||||||
|
)
|
||||||
|
|
||||||
|
prefix = "baker_zh"
|
||||||
|
suffix = "jsonl.gz"
|
||||||
|
|
||||||
|
extractor = MatchaFbank(config)
|
||||||
|
|
||||||
|
with get_executor() as ex: # Initialize the executor only once.
|
||||||
|
cuts_filename = f"{prefix}_cuts.{suffix}"
|
||||||
|
logging.info(f"Processing {cuts_filename}")
|
||||||
|
cut_set = load_manifest(src_dir / cuts_filename).resample(22050)
|
||||||
|
|
||||||
|
cut_set = cut_set.compute_and_store_features(
|
||||||
|
extractor=extractor,
|
||||||
|
storage_path=f"{output_dir}/{prefix}_feats",
|
||||||
|
num_jobs=num_jobs if ex is None else 80,
|
||||||
|
executor=ex,
|
||||||
|
storage_type=LilcomChunkyWriter,
|
||||||
|
)
|
||||||
|
|
||||||
|
cut_set.to_file(output_dir / cuts_filename)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
# Torch's multithreaded behavior needs to be disabled or
|
||||||
|
# it wastes a lot of CPU and slow things down.
|
||||||
|
# Do this outside of main() in case it needs to take effect
|
||||||
|
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
||||||
|
torch.set_num_threads(1)
|
||||||
|
torch.set_num_interop_threads(1)
|
||||||
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
|
||||||
|
args = get_parser().parse_args()
|
||||||
|
compute_fbank_baker_zh(args.num_jobs)
|
1
egs/baker_zh/TTS/local/compute_fbank_statistics.py
Symbolic link
1
egs/baker_zh/TTS/local/compute_fbank_statistics.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../ljspeech/TTS/local/compute_fbank_statistics.py
|
121
egs/baker_zh/TTS/local/convert_text_to_tokens.py
Executable file
121
egs/baker_zh/TTS/local/convert_text_to_tokens.py
Executable file
@ -0,0 +1,121 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import re
|
||||||
|
from typing import List
|
||||||
|
|
||||||
|
import jieba
|
||||||
|
from lhotse import load_manifest
|
||||||
|
from pypinyin import Style, lazy_pinyin, load_phrases_dict
|
||||||
|
|
||||||
|
load_phrases_dict(
|
||||||
|
{
|
||||||
|
"行长": [["hang2"], ["zhang3"]],
|
||||||
|
"银行行长": [["yin2"], ["hang2"], ["hang2"], ["zhang3"]],
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
whiter_space_re = re.compile(r"\s+")
|
||||||
|
|
||||||
|
punctuations_re = [
|
||||||
|
(re.compile(x[0], re.IGNORECASE), x[1])
|
||||||
|
for x in [
|
||||||
|
(",", ","),
|
||||||
|
("。", "."),
|
||||||
|
("!", "!"),
|
||||||
|
("?", "?"),
|
||||||
|
("“", '"'),
|
||||||
|
("”", '"'),
|
||||||
|
("‘", "'"),
|
||||||
|
("’", "'"),
|
||||||
|
(":", ":"),
|
||||||
|
("、", ","),
|
||||||
|
("B", "逼"),
|
||||||
|
("P", "批"),
|
||||||
|
]
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--in-file",
|
||||||
|
type=str,
|
||||||
|
required=True,
|
||||||
|
help="Input cutset.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--out-file",
|
||||||
|
type=str,
|
||||||
|
required=True,
|
||||||
|
help="Output cutset.",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def normalize_white_spaces(text):
|
||||||
|
return whiter_space_re.sub(" ", text)
|
||||||
|
|
||||||
|
|
||||||
|
def normalize_punctuations(text):
|
||||||
|
for regex, replacement in punctuations_re:
|
||||||
|
text = re.sub(regex, replacement, text)
|
||||||
|
return text
|
||||||
|
|
||||||
|
|
||||||
|
def split_text(text: str) -> List[str]:
|
||||||
|
"""
|
||||||
|
Example input: '你好呀,You are 一个好人。 去银行存钱?How about you?'
|
||||||
|
Example output: ['你好', '呀', ',', 'you are', '一个', '好人', '.', '去', '银行', '存钱', '?', 'how about you', '?']
|
||||||
|
"""
|
||||||
|
text = text.lower()
|
||||||
|
text = normalize_white_spaces(text)
|
||||||
|
text = normalize_punctuations(text)
|
||||||
|
ans = []
|
||||||
|
|
||||||
|
for seg in jieba.cut(text):
|
||||||
|
if seg in ",.!?:\"'":
|
||||||
|
ans.append(seg)
|
||||||
|
elif seg == " " and len(ans) > 0:
|
||||||
|
if ord("a") <= ord(ans[-1][-1]) <= ord("z"):
|
||||||
|
ans[-1] += seg
|
||||||
|
elif ord("a") <= ord(seg[0]) <= ord("z"):
|
||||||
|
if len(ans) == 0:
|
||||||
|
ans.append(seg)
|
||||||
|
continue
|
||||||
|
|
||||||
|
if ans[-1][-1] == " ":
|
||||||
|
ans[-1] += seg
|
||||||
|
continue
|
||||||
|
|
||||||
|
ans.append(seg)
|
||||||
|
else:
|
||||||
|
ans.append(seg)
|
||||||
|
|
||||||
|
ans = [s.strip() for s in ans]
|
||||||
|
return ans
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
args = get_parser().parse_args()
|
||||||
|
cuts = load_manifest(args.in_file)
|
||||||
|
for c in cuts:
|
||||||
|
assert len(c.supervisions) == 1, (len(c.supervisions), c.supervisions)
|
||||||
|
text = c.supervisions[0].normalized_text
|
||||||
|
|
||||||
|
text_list = split_text(text)
|
||||||
|
tokens = lazy_pinyin(text_list, style=Style.TONE3, tone_sandhi=True)
|
||||||
|
|
||||||
|
c.tokens = tokens
|
||||||
|
|
||||||
|
cuts.to_file(args.out_file)
|
||||||
|
|
||||||
|
print(f"saved to {args.out_file}")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
1
egs/baker_zh/TTS/local/fbank.py
Symbolic link
1
egs/baker_zh/TTS/local/fbank.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../matcha/fbank.py
|
85
egs/baker_zh/TTS/local/generate_tokens.py
Executable file
85
egs/baker_zh/TTS/local/generate_tokens.py
Executable file
@ -0,0 +1,85 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
|
"""
|
||||||
|
This file generates the file tokens.txt.
|
||||||
|
|
||||||
|
Usage:
|
||||||
|
|
||||||
|
python3 ./local/generate_tokens.py > data/tokens.txt
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
from typing import List
|
||||||
|
|
||||||
|
import jieba
|
||||||
|
from pypinyin import Style, lazy_pinyin, pinyin_dict
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--tokens",
|
||||||
|
type=str,
|
||||||
|
required=True,
|
||||||
|
help="Path to to save tokens.txt.",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def generate_token_list() -> List[str]:
|
||||||
|
token_set = set()
|
||||||
|
|
||||||
|
word_dict = pinyin_dict.pinyin_dict
|
||||||
|
i = 0
|
||||||
|
for key in word_dict:
|
||||||
|
if not (0x4E00 <= key <= 0x9FFF):
|
||||||
|
continue
|
||||||
|
|
||||||
|
w = chr(key)
|
||||||
|
t = lazy_pinyin(w, style=Style.TONE3, tone_sandhi=True)[0]
|
||||||
|
token_set.add(t)
|
||||||
|
|
||||||
|
no_digit = set()
|
||||||
|
for t in token_set:
|
||||||
|
if t[-1] not in "1234":
|
||||||
|
no_digit.add(t)
|
||||||
|
else:
|
||||||
|
no_digit.add(t[:-1])
|
||||||
|
|
||||||
|
no_digit.add("dei")
|
||||||
|
no_digit.add("tou")
|
||||||
|
no_digit.add("dia")
|
||||||
|
|
||||||
|
for t in no_digit:
|
||||||
|
token_set.add(t)
|
||||||
|
for i in range(1, 5):
|
||||||
|
token_set.add(f"{t}{i}")
|
||||||
|
|
||||||
|
ans = list(token_set)
|
||||||
|
ans.sort()
|
||||||
|
|
||||||
|
punctuations = list(",.!?:\"'")
|
||||||
|
ans = punctuations + ans
|
||||||
|
|
||||||
|
# use ID 0 for blank
|
||||||
|
# Use ID 1 of _ for padding
|
||||||
|
ans.insert(0, " ")
|
||||||
|
ans.insert(1, "_") #
|
||||||
|
|
||||||
|
return ans
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
args = get_parser().parse_args()
|
||||||
|
token_list = generate_token_list()
|
||||||
|
with open(args.tokens, "w", encoding="utf-8") as f:
|
||||||
|
for indx, token in enumerate(token_list):
|
||||||
|
f.write(f"{token} {indx}\n")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
70
egs/baker_zh/TTS/local/validate_manifest.py
Executable file
70
egs/baker_zh/TTS/local/validate_manifest.py
Executable file
@ -0,0 +1,70 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2022-2023 Xiaomi Corp. (authors: Fangjun Kuang,
|
||||||
|
# Zengwei Yao)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""
|
||||||
|
This script checks the following assumptions of the generated manifest:
|
||||||
|
|
||||||
|
- Single supervision per cut
|
||||||
|
|
||||||
|
We will add more checks later if needed.
|
||||||
|
|
||||||
|
Usage example:
|
||||||
|
|
||||||
|
python3 ./local/validate_manifest.py \
|
||||||
|
./data/spectrogram/baker_zh_cuts_all.jsonl.gz
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
from lhotse import CutSet, load_manifest_lazy
|
||||||
|
from lhotse.dataset.speech_synthesis import validate_for_tts
|
||||||
|
|
||||||
|
|
||||||
|
def get_args():
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"manifest",
|
||||||
|
type=Path,
|
||||||
|
help="Path to the manifest file",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
args = get_args()
|
||||||
|
|
||||||
|
manifest = args.manifest
|
||||||
|
logging.info(f"Validating {manifest}")
|
||||||
|
|
||||||
|
assert manifest.is_file(), f"{manifest} does not exist"
|
||||||
|
cut_set = load_manifest_lazy(manifest)
|
||||||
|
assert isinstance(cut_set, CutSet), type(cut_set)
|
||||||
|
|
||||||
|
validate_for_tts(cut_set)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
|
||||||
|
main()
|
1
egs/baker_zh/TTS/matcha/audio.py
Symbolic link
1
egs/baker_zh/TTS/matcha/audio.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../ljspeech/TTS/matcha/audio.py
|
207
egs/baker_zh/TTS/matcha/export_onnx.py
Executable file
207
egs/baker_zh/TTS/matcha/export_onnx.py
Executable file
@ -0,0 +1,207 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2024 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
|
||||||
|
"""
|
||||||
|
This script exports a Matcha-TTS model to ONNX.
|
||||||
|
Note that the model outputs fbank. You need to use a vocoder to convert
|
||||||
|
it to audio. See also ./export_onnx_hifigan.py
|
||||||
|
|
||||||
|
python3 ./matcha/export_onnx.py \
|
||||||
|
--exp-dir ./matcha/exp-1 \
|
||||||
|
--epoch 2000 \
|
||||||
|
--tokens ./data/tokens.txt \
|
||||||
|
--cmvn ./data/fbank/cmvn.json
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import json
|
||||||
|
import logging
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Any, Dict
|
||||||
|
|
||||||
|
import onnx
|
||||||
|
import torch
|
||||||
|
from tokenizer import Tokenizer
|
||||||
|
from train import get_model, get_params
|
||||||
|
|
||||||
|
from icefall.checkpoint import load_checkpoint
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--epoch",
|
||||||
|
type=int,
|
||||||
|
default=2000,
|
||||||
|
help="""It specifies the checkpoint to use for decoding.
|
||||||
|
Note: Epoch counts from 1.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=Path,
|
||||||
|
default="matcha/exp-new-3",
|
||||||
|
help="""The experiment dir.
|
||||||
|
It specifies the directory where all training related
|
||||||
|
files, e.g., checkpoints, log, etc, are saved
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--tokens",
|
||||||
|
type=Path,
|
||||||
|
default="data/tokens.txt",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--cmvn",
|
||||||
|
type=str,
|
||||||
|
default="data/fbank/cmvn.json",
|
||||||
|
help="""Path to vocabulary.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def add_meta_data(filename: str, meta_data: Dict[str, Any]):
|
||||||
|
"""Add meta data to an ONNX model. It is changed in-place.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
filename:
|
||||||
|
Filename of the ONNX model to be changed.
|
||||||
|
meta_data:
|
||||||
|
Key-value pairs.
|
||||||
|
"""
|
||||||
|
model = onnx.load(filename)
|
||||||
|
|
||||||
|
while len(model.metadata_props):
|
||||||
|
model.metadata_props.pop()
|
||||||
|
|
||||||
|
for key, value in meta_data.items():
|
||||||
|
meta = model.metadata_props.add()
|
||||||
|
meta.key = key
|
||||||
|
meta.value = str(value)
|
||||||
|
|
||||||
|
onnx.save(model, filename)
|
||||||
|
|
||||||
|
|
||||||
|
class ModelWrapper(torch.nn.Module):
|
||||||
|
def __init__(self, model, num_steps: int = 5):
|
||||||
|
super().__init__()
|
||||||
|
self.model = model
|
||||||
|
self.num_steps = num_steps
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
x: torch.Tensor,
|
||||||
|
x_lengths: torch.Tensor,
|
||||||
|
noise_scale: torch.Tensor,
|
||||||
|
length_scale: torch.Tensor,
|
||||||
|
) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Args: :
|
||||||
|
x: (batch_size, num_tokens), torch.int64
|
||||||
|
x_lengths: (batch_size,), torch.int64
|
||||||
|
noise_scale: (1,), torch.float32
|
||||||
|
length_scale (1,), torch.float32
|
||||||
|
Returns:
|
||||||
|
audio: (batch_size, num_samples)
|
||||||
|
|
||||||
|
"""
|
||||||
|
mel = self.model.synthesise(
|
||||||
|
x=x,
|
||||||
|
x_lengths=x_lengths,
|
||||||
|
n_timesteps=self.num_steps,
|
||||||
|
temperature=noise_scale,
|
||||||
|
length_scale=length_scale,
|
||||||
|
)["mel"]
|
||||||
|
# mel: (batch_size, feat_dim, num_frames)
|
||||||
|
|
||||||
|
return mel
|
||||||
|
|
||||||
|
|
||||||
|
@torch.inference_mode()
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
args = parser.parse_args()
|
||||||
|
params = get_params()
|
||||||
|
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
tokenizer = Tokenizer(params.tokens)
|
||||||
|
params.pad_id = tokenizer.pad_id
|
||||||
|
params.vocab_size = tokenizer.vocab_size
|
||||||
|
params.model_args.n_vocab = params.vocab_size
|
||||||
|
|
||||||
|
with open(params.cmvn) as f:
|
||||||
|
stats = json.load(f)
|
||||||
|
params.data_args.data_statistics.mel_mean = stats["fbank_mean"]
|
||||||
|
params.data_args.data_statistics.mel_std = stats["fbank_std"]
|
||||||
|
|
||||||
|
params.model_args.data_statistics.mel_mean = stats["fbank_mean"]
|
||||||
|
params.model_args.data_statistics.mel_std = stats["fbank_std"]
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
logging.info("About to create model")
|
||||||
|
model = get_model(params)
|
||||||
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||||
|
|
||||||
|
for num_steps in [2, 3, 4, 5, 6]:
|
||||||
|
logging.info(f"num_steps: {num_steps}")
|
||||||
|
wrapper = ModelWrapper(model, num_steps=num_steps)
|
||||||
|
wrapper.eval()
|
||||||
|
|
||||||
|
# Use a large value so the rotary position embedding in the text
|
||||||
|
# encoder has a large initial length
|
||||||
|
x = torch.ones(1, 1000, dtype=torch.int64)
|
||||||
|
x_lengths = torch.tensor([x.shape[1]], dtype=torch.int64)
|
||||||
|
noise_scale = torch.tensor([1.0])
|
||||||
|
length_scale = torch.tensor([1.0])
|
||||||
|
|
||||||
|
opset_version = 14
|
||||||
|
filename = f"model-steps-{num_steps}.onnx"
|
||||||
|
torch.onnx.export(
|
||||||
|
wrapper,
|
||||||
|
(x, x_lengths, noise_scale, length_scale),
|
||||||
|
filename,
|
||||||
|
opset_version=opset_version,
|
||||||
|
input_names=["x", "x_length", "noise_scale", "length_scale"],
|
||||||
|
output_names=["mel"],
|
||||||
|
dynamic_axes={
|
||||||
|
"x": {0: "N", 1: "L"},
|
||||||
|
"x_length": {0: "N"},
|
||||||
|
"mel": {0: "N", 2: "L"},
|
||||||
|
},
|
||||||
|
)
|
||||||
|
|
||||||
|
meta_data = {
|
||||||
|
"model_type": "matcha-tts",
|
||||||
|
"language": "Chinese",
|
||||||
|
"has_espeak": 0,
|
||||||
|
"n_speakers": 1,
|
||||||
|
"jieba": 1,
|
||||||
|
"sample_rate": 22050,
|
||||||
|
"version": 1,
|
||||||
|
"pad_id": params.pad_id,
|
||||||
|
"model_author": "icefall",
|
||||||
|
"maintainer": "k2-fsa",
|
||||||
|
"dataset": "baker-zh",
|
||||||
|
"use_eos_bos": 0,
|
||||||
|
"dataset_url": "https://www.data-baker.com/open_source.html",
|
||||||
|
"dataset_comment": "The dataset is for non-commercial use only.",
|
||||||
|
"num_ode_steps": num_steps,
|
||||||
|
}
|
||||||
|
add_meta_data(filename=filename, meta_data=meta_data)
|
||||||
|
print(meta_data)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
main()
|
1
egs/baker_zh/TTS/matcha/export_onnx_hifigan.py
Symbolic link
1
egs/baker_zh/TTS/matcha/export_onnx_hifigan.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../ljspeech/TTS/matcha/export_onnx_hifigan.py
|
1
egs/baker_zh/TTS/matcha/fbank.py
Symbolic link
1
egs/baker_zh/TTS/matcha/fbank.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../ljspeech/TTS/matcha/fbank.py
|
42
egs/baker_zh/TTS/matcha/generate_lexicon.py
Executable file
42
egs/baker_zh/TTS/matcha/generate_lexicon.py
Executable file
@ -0,0 +1,42 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
|
import jieba
|
||||||
|
from pypinyin import Style, lazy_pinyin, load_phrases_dict, phrases_dict, pinyin_dict
|
||||||
|
from tokenizer import Tokenizer
|
||||||
|
|
||||||
|
load_phrases_dict(
|
||||||
|
{
|
||||||
|
"行长": [["hang2"], ["zhang3"]],
|
||||||
|
"银行行长": [["yin2"], ["hang2"], ["hang2"], ["zhang3"]],
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
filename = "lexicon.txt"
|
||||||
|
tokens = "./data/tokens.txt"
|
||||||
|
tokenizer = Tokenizer(tokens)
|
||||||
|
|
||||||
|
word_dict = pinyin_dict.pinyin_dict
|
||||||
|
phrases = phrases_dict.phrases_dict
|
||||||
|
|
||||||
|
i = 0
|
||||||
|
with open(filename, "w", encoding="utf-8") as f:
|
||||||
|
for key in word_dict:
|
||||||
|
if not (0x4E00 <= key <= 0x9FFF):
|
||||||
|
continue
|
||||||
|
|
||||||
|
w = chr(key)
|
||||||
|
tokens = lazy_pinyin(w, style=Style.TONE3, tone_sandhi=True)[0]
|
||||||
|
|
||||||
|
f.write(f"{w} {tokens}\n")
|
||||||
|
|
||||||
|
for key in phrases:
|
||||||
|
tokens = lazy_pinyin(key, style=Style.TONE3, tone_sandhi=True)
|
||||||
|
tokens = " ".join(tokens)
|
||||||
|
|
||||||
|
f.write(f"{key} {tokens}\n")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
1
egs/baker_zh/TTS/matcha/hifigan
Symbolic link
1
egs/baker_zh/TTS/matcha/hifigan
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../ljspeech/TTS/matcha/hifigan
|
342
egs/baker_zh/TTS/matcha/infer.py
Executable file
342
egs/baker_zh/TTS/matcha/infer.py
Executable file
@ -0,0 +1,342 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2024 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
"""
|
||||||
|
python3 ./matcha/infer.py \
|
||||||
|
--epoch 2000 \
|
||||||
|
--exp-dir ./matcha/exp-1 \
|
||||||
|
--vocoder ./generator_v2 \
|
||||||
|
--tokens ./data/tokens.txt \
|
||||||
|
--cmvn ./data/fbank/cmvn.json \
|
||||||
|
--input-text "当夜幕降临,星光点点,伴随着微风拂面,我在静谧中感受着时光的流转,思念如涟漪荡漾,梦境如画卷展开,我与自然融为一体,沉静在这片宁静的美丽之中,感受着生命的奇迹与温柔。" \
|
||||||
|
--output-wav ./generated.wav
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import datetime as dt
|
||||||
|
import json
|
||||||
|
import logging
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import soundfile as sf
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from hifigan.config import v1, v2, v3
|
||||||
|
from hifigan.denoiser import Denoiser
|
||||||
|
from hifigan.models import Generator as HiFiGAN
|
||||||
|
from local.convert_text_to_tokens import split_text
|
||||||
|
from pypinyin import Style, lazy_pinyin
|
||||||
|
from tokenizer import Tokenizer
|
||||||
|
from train import get_model, get_params
|
||||||
|
from tts_datamodule import BakerZhTtsDataModule
|
||||||
|
|
||||||
|
from icefall.checkpoint import load_checkpoint
|
||||||
|
from icefall.utils import AttributeDict, setup_logger
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--epoch",
|
||||||
|
type=int,
|
||||||
|
default=4000,
|
||||||
|
help="""It specifies the checkpoint to use for decoding.
|
||||||
|
Note: Epoch counts from 1.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=Path,
|
||||||
|
default="matcha/exp",
|
||||||
|
help="""The experiment dir.
|
||||||
|
It specifies the directory where all training related
|
||||||
|
files, e.g., checkpoints, log, etc, are saved
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--vocoder",
|
||||||
|
type=Path,
|
||||||
|
default="./generator_v1",
|
||||||
|
help="Path to the vocoder",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--tokens",
|
||||||
|
type=Path,
|
||||||
|
default="data/tokens.txt",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--cmvn",
|
||||||
|
type=str,
|
||||||
|
default="data/fbank/cmvn.json",
|
||||||
|
help="""Path to vocabulary.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
# The following arguments are used for inference on single text
|
||||||
|
parser.add_argument(
|
||||||
|
"--input-text",
|
||||||
|
type=str,
|
||||||
|
required=False,
|
||||||
|
help="The text to generate speech for",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--output-wav",
|
||||||
|
type=str,
|
||||||
|
required=False,
|
||||||
|
help="The filename of the wave to save the generated speech",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--sampling-rate",
|
||||||
|
type=int,
|
||||||
|
default=22050,
|
||||||
|
help="The sampling rate of the generated speech (default: 22050 for baker_zh)",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def load_vocoder(checkpoint_path: Path) -> nn.Module:
|
||||||
|
checkpoint_path = str(checkpoint_path)
|
||||||
|
if checkpoint_path.endswith("v1"):
|
||||||
|
h = AttributeDict(v1)
|
||||||
|
elif checkpoint_path.endswith("v2"):
|
||||||
|
h = AttributeDict(v2)
|
||||||
|
elif checkpoint_path.endswith("v3"):
|
||||||
|
h = AttributeDict(v3)
|
||||||
|
else:
|
||||||
|
raise ValueError(f"supports only v1, v2, and v3, given {checkpoint_path}")
|
||||||
|
|
||||||
|
hifigan = HiFiGAN(h).to("cpu")
|
||||||
|
hifigan.load_state_dict(
|
||||||
|
torch.load(checkpoint_path, map_location="cpu")["generator"]
|
||||||
|
)
|
||||||
|
_ = hifigan.eval()
|
||||||
|
hifigan.remove_weight_norm()
|
||||||
|
return hifigan
|
||||||
|
|
||||||
|
|
||||||
|
def to_waveform(
|
||||||
|
mel: torch.Tensor, vocoder: nn.Module, denoiser: nn.Module
|
||||||
|
) -> torch.Tensor:
|
||||||
|
audio = vocoder(mel).clamp(-1, 1)
|
||||||
|
audio = denoiser(audio.squeeze(0), strength=0.00025).cpu().squeeze()
|
||||||
|
return audio.squeeze()
|
||||||
|
|
||||||
|
|
||||||
|
def process_text(text: str, tokenizer: Tokenizer, device: str = "cpu") -> dict:
|
||||||
|
text = split_text(text)
|
||||||
|
tokens = lazy_pinyin(text, style=Style.TONE3, tone_sandhi=True)
|
||||||
|
|
||||||
|
x = tokenizer.texts_to_token_ids([tokens])
|
||||||
|
x = torch.tensor(x, dtype=torch.long, device=device)
|
||||||
|
x_lengths = torch.tensor([x.shape[-1]], dtype=torch.long, device=device)
|
||||||
|
return {"x_orig": text, "x": x, "x_lengths": x_lengths}
|
||||||
|
|
||||||
|
|
||||||
|
def synthesize(
|
||||||
|
model: nn.Module,
|
||||||
|
tokenizer: Tokenizer,
|
||||||
|
n_timesteps: int,
|
||||||
|
text: str,
|
||||||
|
length_scale: float,
|
||||||
|
temperature: float,
|
||||||
|
device: str = "cpu",
|
||||||
|
spks=None,
|
||||||
|
) -> dict:
|
||||||
|
text_processed = process_text(text=text, tokenizer=tokenizer, device=device)
|
||||||
|
start_t = dt.datetime.now()
|
||||||
|
output = model.synthesise(
|
||||||
|
text_processed["x"],
|
||||||
|
text_processed["x_lengths"],
|
||||||
|
n_timesteps=n_timesteps,
|
||||||
|
temperature=temperature,
|
||||||
|
spks=spks,
|
||||||
|
length_scale=length_scale,
|
||||||
|
)
|
||||||
|
# merge everything to one dict
|
||||||
|
output.update({"start_t": start_t, **text_processed})
|
||||||
|
return output
|
||||||
|
|
||||||
|
|
||||||
|
def infer_dataset(
|
||||||
|
dl: torch.utils.data.DataLoader,
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
vocoder: nn.Module,
|
||||||
|
denoiser: nn.Module,
|
||||||
|
tokenizer: Tokenizer,
|
||||||
|
) -> None:
|
||||||
|
"""Decode dataset.
|
||||||
|
The ground-truth and generated audio pairs will be saved to `params.save_wav_dir`.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
dl:
|
||||||
|
PyTorch's dataloader containing the dataset to decode.
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
tokenizer:
|
||||||
|
Used to convert text to phonemes.
|
||||||
|
"""
|
||||||
|
|
||||||
|
device = next(model.parameters()).device
|
||||||
|
num_cuts = 0
|
||||||
|
log_interval = 5
|
||||||
|
|
||||||
|
try:
|
||||||
|
num_batches = len(dl)
|
||||||
|
except TypeError:
|
||||||
|
num_batches = "?"
|
||||||
|
|
||||||
|
for batch_idx, batch in enumerate(dl):
|
||||||
|
batch_size = len(batch["tokens"])
|
||||||
|
|
||||||
|
texts = [c.supervisions[0].normalized_text for c in batch["cut"]]
|
||||||
|
|
||||||
|
audio = batch["audio"]
|
||||||
|
audio_lens = batch["audio_lens"].tolist()
|
||||||
|
cut_ids = [cut.id for cut in batch["cut"]]
|
||||||
|
|
||||||
|
for i in range(batch_size):
|
||||||
|
output = synthesize(
|
||||||
|
model=model,
|
||||||
|
tokenizer=tokenizer,
|
||||||
|
n_timesteps=params.n_timesteps,
|
||||||
|
text=texts[i],
|
||||||
|
length_scale=params.length_scale,
|
||||||
|
temperature=params.temperature,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
output["waveform"] = to_waveform(output["mel"], vocoder, denoiser)
|
||||||
|
|
||||||
|
sf.write(
|
||||||
|
file=params.save_wav_dir / f"{cut_ids[i]}_pred.wav",
|
||||||
|
data=output["waveform"],
|
||||||
|
samplerate=params.data_args.sampling_rate,
|
||||||
|
subtype="PCM_16",
|
||||||
|
)
|
||||||
|
sf.write(
|
||||||
|
file=params.save_wav_dir / f"{cut_ids[i]}_gt.wav",
|
||||||
|
data=audio[i].numpy(),
|
||||||
|
samplerate=params.data_args.sampling_rate,
|
||||||
|
subtype="PCM_16",
|
||||||
|
)
|
||||||
|
|
||||||
|
num_cuts += batch_size
|
||||||
|
|
||||||
|
if batch_idx % log_interval == 0:
|
||||||
|
batch_str = f"{batch_idx}/{num_batches}"
|
||||||
|
|
||||||
|
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
|
||||||
|
|
||||||
|
|
||||||
|
@torch.inference_mode()
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
BakerZhTtsDataModule.add_arguments(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
args.exp_dir = Path(args.exp_dir)
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
params.suffix = f"epoch-{params.epoch}"
|
||||||
|
|
||||||
|
params.res_dir = params.exp_dir / "infer" / params.suffix
|
||||||
|
params.save_wav_dir = params.res_dir / "wav"
|
||||||
|
params.save_wav_dir.mkdir(parents=True, exist_ok=True)
|
||||||
|
|
||||||
|
setup_logger(f"{params.res_dir}/log-infer-{params.suffix}")
|
||||||
|
logging.info("Infer started")
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
logging.info(f"Device: {device}")
|
||||||
|
|
||||||
|
tokenizer = Tokenizer(params.tokens)
|
||||||
|
params.vocab_size = tokenizer.vocab_size
|
||||||
|
params.model_args.n_vocab = params.vocab_size
|
||||||
|
|
||||||
|
with open(params.cmvn) as f:
|
||||||
|
stats = json.load(f)
|
||||||
|
params.data_args.data_statistics.mel_mean = stats["fbank_mean"]
|
||||||
|
params.data_args.data_statistics.mel_std = stats["fbank_std"]
|
||||||
|
|
||||||
|
params.model_args.data_statistics.mel_mean = stats["fbank_mean"]
|
||||||
|
params.model_args.data_statistics.mel_std = stats["fbank_std"]
|
||||||
|
|
||||||
|
# Number of ODE Solver steps
|
||||||
|
params.n_timesteps = 2
|
||||||
|
|
||||||
|
# Changes to the speaking rate
|
||||||
|
params.length_scale = 1.0
|
||||||
|
|
||||||
|
# Sampling temperature
|
||||||
|
params.temperature = 0.667
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
logging.info("About to create model")
|
||||||
|
model = get_model(params)
|
||||||
|
|
||||||
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||||
|
model.to(device)
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
# we need cut ids to organize tts results.
|
||||||
|
args.return_cuts = True
|
||||||
|
baker_zh = BakerZhTtsDataModule(args)
|
||||||
|
|
||||||
|
test_cuts = baker_zh.test_cuts()
|
||||||
|
test_dl = baker_zh.test_dataloaders(test_cuts)
|
||||||
|
|
||||||
|
if not Path(params.vocoder).is_file():
|
||||||
|
raise ValueError(f"{params.vocoder} does not exist")
|
||||||
|
|
||||||
|
vocoder = load_vocoder(params.vocoder)
|
||||||
|
vocoder.to(device)
|
||||||
|
|
||||||
|
denoiser = Denoiser(vocoder, mode="zeros")
|
||||||
|
denoiser.to(device)
|
||||||
|
|
||||||
|
if params.input_text is not None and params.output_wav is not None:
|
||||||
|
logging.info("Synthesizing a single text")
|
||||||
|
output = synthesize(
|
||||||
|
model=model,
|
||||||
|
tokenizer=tokenizer,
|
||||||
|
n_timesteps=params.n_timesteps,
|
||||||
|
text=params.input_text,
|
||||||
|
length_scale=params.length_scale,
|
||||||
|
temperature=params.temperature,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
output["waveform"] = to_waveform(output["mel"], vocoder, denoiser)
|
||||||
|
|
||||||
|
sf.write(
|
||||||
|
file=params.output_wav,
|
||||||
|
data=output["waveform"],
|
||||||
|
samplerate=params.sampling_rate,
|
||||||
|
subtype="PCM_16",
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
logging.info("Decoding the test set")
|
||||||
|
infer_dataset(
|
||||||
|
dl=test_dl,
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
vocoder=vocoder,
|
||||||
|
denoiser=denoiser,
|
||||||
|
tokenizer=tokenizer,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
1
egs/baker_zh/TTS/matcha/model.py
Symbolic link
1
egs/baker_zh/TTS/matcha/model.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../ljspeech/TTS/matcha/model.py
|
1
egs/baker_zh/TTS/matcha/models
Symbolic link
1
egs/baker_zh/TTS/matcha/models
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../ljspeech/TTS/matcha/models
|
1
egs/baker_zh/TTS/matcha/monotonic_align
Symbolic link
1
egs/baker_zh/TTS/matcha/monotonic_align
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../ljspeech/TTS/matcha/monotonic_align
|
316
egs/baker_zh/TTS/matcha/onnx_pretrained.py
Executable file
316
egs/baker_zh/TTS/matcha/onnx_pretrained.py
Executable file
@ -0,0 +1,316 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2024 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
|
||||||
|
"""
|
||||||
|
python3 ./matcha/onnx_pretrained.py \
|
||||||
|
--acoustic-model ./model-steps-4.onnx \
|
||||||
|
--vocoder ./hifigan_v2.onnx \
|
||||||
|
--tokens ./data/tokens.txt \
|
||||||
|
--lexicon ./lexicon.txt \
|
||||||
|
--input-text "当夜幕降临,星光点点,伴随着微风拂面,我在静谧中感受着时光的流转,思念如涟漪荡漾,梦境如画卷展开,我与自然融为一体,沉静在这片宁静的美丽之中,感受着生命的奇迹与温柔。" \
|
||||||
|
--output-wav ./b.wav
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import datetime as dt
|
||||||
|
import logging
|
||||||
|
import re
|
||||||
|
from typing import Dict, List
|
||||||
|
|
||||||
|
import jieba
|
||||||
|
import onnxruntime as ort
|
||||||
|
import soundfile as sf
|
||||||
|
import torch
|
||||||
|
from infer import load_vocoder
|
||||||
|
from utils import intersperse
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--acoustic-model",
|
||||||
|
type=str,
|
||||||
|
required=True,
|
||||||
|
help="Path to the acoustic model",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--tokens",
|
||||||
|
type=str,
|
||||||
|
required=True,
|
||||||
|
help="Path to the tokens.txt",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--lexicon",
|
||||||
|
type=str,
|
||||||
|
required=True,
|
||||||
|
help="Path to the lexicon.txt",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--vocoder",
|
||||||
|
type=str,
|
||||||
|
required=True,
|
||||||
|
help="Path to the vocoder",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--input-text",
|
||||||
|
type=str,
|
||||||
|
required=True,
|
||||||
|
help="The text to generate speech for",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--output-wav",
|
||||||
|
type=str,
|
||||||
|
required=True,
|
||||||
|
help="The filename of the wave to save the generated speech",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
class OnnxHifiGANModel:
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
filename: str,
|
||||||
|
):
|
||||||
|
session_opts = ort.SessionOptions()
|
||||||
|
session_opts.inter_op_num_threads = 1
|
||||||
|
session_opts.intra_op_num_threads = 1
|
||||||
|
|
||||||
|
self.session_opts = session_opts
|
||||||
|
self.model = ort.InferenceSession(
|
||||||
|
filename,
|
||||||
|
sess_options=self.session_opts,
|
||||||
|
providers=["CPUExecutionProvider"],
|
||||||
|
)
|
||||||
|
|
||||||
|
for i in self.model.get_inputs():
|
||||||
|
print(i)
|
||||||
|
|
||||||
|
print("-----")
|
||||||
|
|
||||||
|
for i in self.model.get_outputs():
|
||||||
|
print(i)
|
||||||
|
|
||||||
|
def __call__(self, x: torch.tensor):
|
||||||
|
assert x.ndim == 3, x.shape
|
||||||
|
assert x.shape[0] == 1, x.shape
|
||||||
|
|
||||||
|
audio = self.model.run(
|
||||||
|
[self.model.get_outputs()[0].name],
|
||||||
|
{
|
||||||
|
self.model.get_inputs()[0].name: x.numpy(),
|
||||||
|
},
|
||||||
|
)[0]
|
||||||
|
# audio: (batch_size, num_samples)
|
||||||
|
|
||||||
|
return torch.from_numpy(audio)
|
||||||
|
|
||||||
|
|
||||||
|
class OnnxModel:
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
filename: str,
|
||||||
|
):
|
||||||
|
session_opts = ort.SessionOptions()
|
||||||
|
session_opts.inter_op_num_threads = 1
|
||||||
|
session_opts.intra_op_num_threads = 2
|
||||||
|
|
||||||
|
self.session_opts = session_opts
|
||||||
|
self.model = ort.InferenceSession(
|
||||||
|
filename,
|
||||||
|
sess_options=self.session_opts,
|
||||||
|
providers=["CPUExecutionProvider"],
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info(f"{self.model.get_modelmeta().custom_metadata_map}")
|
||||||
|
metadata = self.model.get_modelmeta().custom_metadata_map
|
||||||
|
self.sample_rate = int(metadata["sample_rate"])
|
||||||
|
|
||||||
|
for i in self.model.get_inputs():
|
||||||
|
print(i)
|
||||||
|
|
||||||
|
print("-----")
|
||||||
|
|
||||||
|
for i in self.model.get_outputs():
|
||||||
|
print(i)
|
||||||
|
|
||||||
|
def __call__(self, x: torch.tensor):
|
||||||
|
assert x.ndim == 2, x.shape
|
||||||
|
assert x.shape[0] == 1, x.shape
|
||||||
|
|
||||||
|
x_lengths = torch.tensor([x.shape[1]], dtype=torch.int64)
|
||||||
|
print("x_lengths", x_lengths)
|
||||||
|
print("x", x.shape)
|
||||||
|
|
||||||
|
noise_scale = torch.tensor([1.0], dtype=torch.float32)
|
||||||
|
length_scale = torch.tensor([1.0], dtype=torch.float32)
|
||||||
|
|
||||||
|
mel = self.model.run(
|
||||||
|
[self.model.get_outputs()[0].name],
|
||||||
|
{
|
||||||
|
self.model.get_inputs()[0].name: x.numpy(),
|
||||||
|
self.model.get_inputs()[1].name: x_lengths.numpy(),
|
||||||
|
self.model.get_inputs()[2].name: noise_scale.numpy(),
|
||||||
|
self.model.get_inputs()[3].name: length_scale.numpy(),
|
||||||
|
},
|
||||||
|
)[0]
|
||||||
|
# mel: (batch_size, feat_dim, num_frames)
|
||||||
|
|
||||||
|
return torch.from_numpy(mel)
|
||||||
|
|
||||||
|
|
||||||
|
def read_tokens(filename: str) -> Dict[str, int]:
|
||||||
|
token2id = dict()
|
||||||
|
with open(filename, encoding="utf-8") as f:
|
||||||
|
for line in f.readlines():
|
||||||
|
info = line.rstrip().split()
|
||||||
|
if len(info) == 1:
|
||||||
|
# case of space
|
||||||
|
token = " "
|
||||||
|
idx = int(info[0])
|
||||||
|
else:
|
||||||
|
token, idx = info[0], int(info[1])
|
||||||
|
assert token not in token2id, token
|
||||||
|
token2id[token] = idx
|
||||||
|
return token2id
|
||||||
|
|
||||||
|
|
||||||
|
def read_lexicon(filename: str) -> Dict[str, List[str]]:
|
||||||
|
word2token = dict()
|
||||||
|
with open(filename, encoding="utf-8") as f:
|
||||||
|
for line in f.readlines():
|
||||||
|
info = line.rstrip().split()
|
||||||
|
w = info[0]
|
||||||
|
tokens = info[1:]
|
||||||
|
word2token[w] = tokens
|
||||||
|
return word2token
|
||||||
|
|
||||||
|
|
||||||
|
def convert_word_to_tokens(word2tokens: Dict[str, List[str]], word: str) -> List[str]:
|
||||||
|
if word in word2tokens:
|
||||||
|
return word2tokens[word]
|
||||||
|
|
||||||
|
if len(word) == 1:
|
||||||
|
return []
|
||||||
|
|
||||||
|
ans = []
|
||||||
|
for w in word:
|
||||||
|
t = convert_word_to_tokens(word2tokens, w)
|
||||||
|
ans.extend(t)
|
||||||
|
return ans
|
||||||
|
|
||||||
|
|
||||||
|
def normalize_text(text):
|
||||||
|
whiter_space_re = re.compile(r"\s+")
|
||||||
|
|
||||||
|
punctuations_re = [
|
||||||
|
(re.compile(x[0], re.IGNORECASE), x[1])
|
||||||
|
for x in [
|
||||||
|
(",", ","),
|
||||||
|
("。", "."),
|
||||||
|
("!", "!"),
|
||||||
|
("?", "?"),
|
||||||
|
("“", '"'),
|
||||||
|
("”", '"'),
|
||||||
|
("‘", "'"),
|
||||||
|
("’", "'"),
|
||||||
|
(":", ":"),
|
||||||
|
("、", ","),
|
||||||
|
]
|
||||||
|
]
|
||||||
|
|
||||||
|
for regex, replacement in punctuations_re:
|
||||||
|
text = re.sub(regex, replacement, text)
|
||||||
|
return text
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def main():
|
||||||
|
params = get_parser().parse_args()
|
||||||
|
logging.info(vars(params))
|
||||||
|
token2id = read_tokens(params.tokens)
|
||||||
|
word2tokens = read_lexicon(params.lexicon)
|
||||||
|
|
||||||
|
text = normalize_text(params.input_text)
|
||||||
|
seg = jieba.cut(text)
|
||||||
|
tokens = []
|
||||||
|
for s in seg:
|
||||||
|
if s in token2id:
|
||||||
|
tokens.append(s)
|
||||||
|
continue
|
||||||
|
|
||||||
|
t = convert_word_to_tokens(word2tokens, s)
|
||||||
|
if t:
|
||||||
|
tokens.extend(t)
|
||||||
|
|
||||||
|
model = OnnxModel(params.acoustic_model)
|
||||||
|
vocoder = OnnxHifiGANModel(params.vocoder)
|
||||||
|
|
||||||
|
x = []
|
||||||
|
for t in tokens:
|
||||||
|
if t in token2id:
|
||||||
|
x.append(token2id[t])
|
||||||
|
|
||||||
|
x = intersperse(x, item=token2id["_"])
|
||||||
|
|
||||||
|
x = torch.tensor(x, dtype=torch.int64).unsqueeze(0)
|
||||||
|
|
||||||
|
start_t = dt.datetime.now()
|
||||||
|
mel = model(x)
|
||||||
|
end_t = dt.datetime.now()
|
||||||
|
|
||||||
|
start_t2 = dt.datetime.now()
|
||||||
|
audio = vocoder(mel)
|
||||||
|
end_t2 = dt.datetime.now()
|
||||||
|
|
||||||
|
print("audio", audio.shape) # (1, 1, num_samples)
|
||||||
|
audio = audio.squeeze()
|
||||||
|
|
||||||
|
sample_rate = model.sample_rate
|
||||||
|
|
||||||
|
t = (end_t - start_t).total_seconds()
|
||||||
|
t2 = (end_t2 - start_t2).total_seconds()
|
||||||
|
rtf_am = t * sample_rate / audio.shape[-1]
|
||||||
|
rtf_vocoder = t2 * sample_rate / audio.shape[-1]
|
||||||
|
print("RTF for acoustic model ", rtf_am)
|
||||||
|
print("RTF for vocoder", rtf_vocoder)
|
||||||
|
|
||||||
|
# skip denoiser
|
||||||
|
sf.write(params.output_wav, audio, sample_rate, "PCM_16")
|
||||||
|
logging.info(f"Saved to {params.output_wav}")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
torch.set_num_threads(1)
|
||||||
|
torch.set_num_interop_threads(1)
|
||||||
|
|
||||||
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
main()
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
|HifiGAN |RTF |#Parameters (M)|
|
||||||
|
|----------|-----|---------------|
|
||||||
|
|v1 |0.818| 13.926 |
|
||||||
|
|v2 |0.101| 0.925 |
|
||||||
|
|v3 |0.118| 1.462 |
|
||||||
|
|
||||||
|
|Num steps|Acoustic Model RTF|
|
||||||
|
|---------|------------------|
|
||||||
|
| 2 | 0.039 |
|
||||||
|
| 3 | 0.047 |
|
||||||
|
| 4 | 0.071 |
|
||||||
|
| 5 | 0.076 |
|
||||||
|
| 6 | 0.103 |
|
||||||
|
|
||||||
|
"""
|
119
egs/baker_zh/TTS/matcha/tokenizer.py
Normal file
119
egs/baker_zh/TTS/matcha/tokenizer.py
Normal file
@ -0,0 +1,119 @@
|
|||||||
|
# Copyright 2024 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
|
||||||
|
import logging
|
||||||
|
from typing import Dict, List
|
||||||
|
|
||||||
|
import tacotron_cleaner.cleaners
|
||||||
|
|
||||||
|
try:
|
||||||
|
from piper_phonemize import phonemize_espeak
|
||||||
|
except Exception as ex:
|
||||||
|
raise RuntimeError(
|
||||||
|
f"{ex}\nPlease run\n"
|
||||||
|
"pip install piper_phonemize -f https://k2-fsa.github.io/icefall/piper_phonemize.html"
|
||||||
|
)
|
||||||
|
|
||||||
|
from utils import intersperse
|
||||||
|
|
||||||
|
|
||||||
|
# This tokenizer supports both English and Chinese.
|
||||||
|
# We assume you have used
|
||||||
|
# ../local/convert_text_to_tokens.py
|
||||||
|
# to process your text
|
||||||
|
class Tokenizer(object):
|
||||||
|
def __init__(self, tokens: str):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
tokens: the file that maps tokens to ids
|
||||||
|
"""
|
||||||
|
# Parse token file
|
||||||
|
self.token2id: Dict[str, int] = {}
|
||||||
|
with open(tokens, "r", encoding="utf-8") as f:
|
||||||
|
for line in f.readlines():
|
||||||
|
info = line.rstrip().split()
|
||||||
|
if len(info) == 1:
|
||||||
|
# case of space
|
||||||
|
token = " "
|
||||||
|
id = int(info[0])
|
||||||
|
else:
|
||||||
|
token, id = info[0], int(info[1])
|
||||||
|
assert token not in self.token2id, token
|
||||||
|
self.token2id[token] = id
|
||||||
|
|
||||||
|
# Refer to https://github.com/rhasspy/piper/blob/master/TRAINING.md
|
||||||
|
self.pad_id = self.token2id["_"] # padding
|
||||||
|
self.space_id = self.token2id[" "] # word separator (whitespace)
|
||||||
|
|
||||||
|
self.vocab_size = len(self.token2id)
|
||||||
|
|
||||||
|
def texts_to_token_ids(
|
||||||
|
self,
|
||||||
|
sentence_list: List[List[str]],
|
||||||
|
intersperse_blank: bool = True,
|
||||||
|
lang: str = "en-us",
|
||||||
|
) -> List[List[int]]:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
sentence_list:
|
||||||
|
A list of sentences.
|
||||||
|
intersperse_blank:
|
||||||
|
Whether to intersperse blanks in the token sequence.
|
||||||
|
lang:
|
||||||
|
Language argument passed to phonemize_espeak().
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Return a list of token id list [utterance][token_id]
|
||||||
|
"""
|
||||||
|
token_ids_list = []
|
||||||
|
|
||||||
|
for sentence in sentence_list:
|
||||||
|
tokens_list = []
|
||||||
|
for word in sentence:
|
||||||
|
if word in self.token2id:
|
||||||
|
tokens_list.append(word)
|
||||||
|
continue
|
||||||
|
|
||||||
|
tmp_tokens_list = phonemize_espeak(word, lang)
|
||||||
|
for t in tmp_tokens_list:
|
||||||
|
tokens_list.extend(t)
|
||||||
|
|
||||||
|
token_ids = []
|
||||||
|
for t in tokens_list:
|
||||||
|
if t not in self.token2id:
|
||||||
|
logging.warning(f"Skip OOV {t} {sentence}")
|
||||||
|
continue
|
||||||
|
|
||||||
|
if t == " " and len(token_ids) > 0 and token_ids[-1] == self.space_id:
|
||||||
|
continue
|
||||||
|
|
||||||
|
token_ids.append(self.token2id[t])
|
||||||
|
|
||||||
|
if intersperse_blank:
|
||||||
|
token_ids = intersperse(token_ids, self.pad_id)
|
||||||
|
|
||||||
|
token_ids_list.append(token_ids)
|
||||||
|
|
||||||
|
return token_ids_list
|
||||||
|
|
||||||
|
|
||||||
|
def test_tokenizer():
|
||||||
|
import jieba
|
||||||
|
from pypinyin import Style, lazy_pinyin
|
||||||
|
|
||||||
|
tokenizer = Tokenizer("data/tokens.txt")
|
||||||
|
text1 = "今天is Monday, tomorrow is 星期二"
|
||||||
|
text2 = "你好吗? 我很好, how about you?"
|
||||||
|
|
||||||
|
text1 = list(jieba.cut(text1))
|
||||||
|
text2 = list(jieba.cut(text2))
|
||||||
|
tokens1 = lazy_pinyin(text1, style=Style.TONE3, tone_sandhi=True)
|
||||||
|
tokens2 = lazy_pinyin(text2, style=Style.TONE3, tone_sandhi=True)
|
||||||
|
print(tokens1)
|
||||||
|
print(tokens2)
|
||||||
|
|
||||||
|
ids = tokenizer.texts_to_token_ids([tokens1, tokens2])
|
||||||
|
print(ids)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
test_tokenizer()
|
717
egs/baker_zh/TTS/matcha/train.py
Executable file
717
egs/baker_zh/TTS/matcha/train.py
Executable file
@ -0,0 +1,717 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2024 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import json
|
||||||
|
import logging
|
||||||
|
from pathlib import Path
|
||||||
|
from shutil import copyfile
|
||||||
|
from typing import Any, Dict, Optional, Union
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import torch
|
||||||
|
import torch.multiprocessing as mp
|
||||||
|
import torch.nn as nn
|
||||||
|
from lhotse.utils import fix_random_seed
|
||||||
|
from model import fix_len_compatibility
|
||||||
|
from models.matcha_tts import MatchaTTS
|
||||||
|
from tokenizer import Tokenizer
|
||||||
|
from torch.cuda.amp import GradScaler, autocast
|
||||||
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||||
|
from torch.optim import Optimizer
|
||||||
|
from torch.utils.tensorboard import SummaryWriter
|
||||||
|
from tts_datamodule import BakerZhTtsDataModule
|
||||||
|
from utils import MetricsTracker
|
||||||
|
|
||||||
|
from icefall.checkpoint import load_checkpoint, save_checkpoint
|
||||||
|
from icefall.dist import cleanup_dist, setup_dist
|
||||||
|
from icefall.env import get_env_info
|
||||||
|
from icefall.utils import AttributeDict, setup_logger, str2bool
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--world-size",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help="Number of GPUs for DDP training.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--master-port",
|
||||||
|
type=int,
|
||||||
|
default=12335,
|
||||||
|
help="Master port to use for DDP training.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--tensorboard",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Should various information be logged in tensorboard.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-epochs",
|
||||||
|
type=int,
|
||||||
|
default=1000,
|
||||||
|
help="Number of epochs to train.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--start-epoch",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help="""Resume training from this epoch. It should be positive.
|
||||||
|
If larger than 1, it will load checkpoint from
|
||||||
|
exp-dir/epoch-{start_epoch-1}.pt
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=Path,
|
||||||
|
default="matcha/exp",
|
||||||
|
help="""The experiment dir.
|
||||||
|
It specifies the directory where all training related
|
||||||
|
files, e.g., checkpoints, log, etc, are saved
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--tokens",
|
||||||
|
type=str,
|
||||||
|
default="data/tokens.txt",
|
||||||
|
help="""Path to vocabulary.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--cmvn",
|
||||||
|
type=str,
|
||||||
|
default="data/fbank/cmvn.json",
|
||||||
|
help="""Path to vocabulary.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--seed",
|
||||||
|
type=int,
|
||||||
|
default=42,
|
||||||
|
help="The seed for random generators intended for reproducibility",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--save-every-n",
|
||||||
|
type=int,
|
||||||
|
default=10,
|
||||||
|
help="""Save checkpoint after processing this number of epochs"
|
||||||
|
periodically. We save checkpoint to exp-dir/ whenever
|
||||||
|
params.cur_epoch % save_every_n == 0. The checkpoint filename
|
||||||
|
has the form: f'exp-dir/epoch-{params.cur_epoch}.pt'.
|
||||||
|
Since it will take around 1000 epochs, we suggest using a large
|
||||||
|
save_every_n to save disk space.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--use-fp16",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="Whether to use half precision training.",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def get_data_statistics():
|
||||||
|
return AttributeDict(
|
||||||
|
{
|
||||||
|
"mel_mean": 0,
|
||||||
|
"mel_std": 1,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def _get_data_params() -> AttributeDict:
|
||||||
|
params = AttributeDict(
|
||||||
|
{
|
||||||
|
"name": "baker-zh",
|
||||||
|
"train_filelist_path": "./filelists/ljs_audio_text_train_filelist.txt",
|
||||||
|
"valid_filelist_path": "./filelists/ljs_audio_text_val_filelist.txt",
|
||||||
|
# "batch_size": 64,
|
||||||
|
# "num_workers": 1,
|
||||||
|
# "pin_memory": False,
|
||||||
|
"cleaners": ["english_cleaners2"],
|
||||||
|
"add_blank": True,
|
||||||
|
"n_spks": 1,
|
||||||
|
"n_fft": 1024,
|
||||||
|
"n_feats": 80,
|
||||||
|
"sampling_rate": 22050,
|
||||||
|
"hop_length": 256,
|
||||||
|
"win_length": 1024,
|
||||||
|
"f_min": 0,
|
||||||
|
"f_max": 8000,
|
||||||
|
"seed": 1234,
|
||||||
|
"load_durations": False,
|
||||||
|
"data_statistics": get_data_statistics(),
|
||||||
|
}
|
||||||
|
)
|
||||||
|
return params
|
||||||
|
|
||||||
|
|
||||||
|
def _get_model_params() -> AttributeDict:
|
||||||
|
n_feats = 80
|
||||||
|
filter_channels_dp = 256
|
||||||
|
encoder_params_p_dropout = 0.1
|
||||||
|
params = AttributeDict(
|
||||||
|
{
|
||||||
|
"n_spks": 1, # for baker-zh.
|
||||||
|
"spk_emb_dim": 64,
|
||||||
|
"n_feats": n_feats,
|
||||||
|
"out_size": None, # or use 172
|
||||||
|
"prior_loss": True,
|
||||||
|
"use_precomputed_durations": False,
|
||||||
|
"data_statistics": get_data_statistics(),
|
||||||
|
"encoder": AttributeDict(
|
||||||
|
{
|
||||||
|
"encoder_type": "RoPE Encoder", # not used
|
||||||
|
"encoder_params": AttributeDict(
|
||||||
|
{
|
||||||
|
"n_feats": n_feats,
|
||||||
|
"n_channels": 192,
|
||||||
|
"filter_channels": 768,
|
||||||
|
"filter_channels_dp": filter_channels_dp,
|
||||||
|
"n_heads": 2,
|
||||||
|
"n_layers": 6,
|
||||||
|
"kernel_size": 3,
|
||||||
|
"p_dropout": encoder_params_p_dropout,
|
||||||
|
"spk_emb_dim": 64,
|
||||||
|
"n_spks": 1,
|
||||||
|
"prenet": True,
|
||||||
|
}
|
||||||
|
),
|
||||||
|
"duration_predictor_params": AttributeDict(
|
||||||
|
{
|
||||||
|
"filter_channels_dp": filter_channels_dp,
|
||||||
|
"kernel_size": 3,
|
||||||
|
"p_dropout": encoder_params_p_dropout,
|
||||||
|
}
|
||||||
|
),
|
||||||
|
}
|
||||||
|
),
|
||||||
|
"decoder": AttributeDict(
|
||||||
|
{
|
||||||
|
"channels": [256, 256],
|
||||||
|
"dropout": 0.05,
|
||||||
|
"attention_head_dim": 64,
|
||||||
|
"n_blocks": 1,
|
||||||
|
"num_mid_blocks": 2,
|
||||||
|
"num_heads": 2,
|
||||||
|
"act_fn": "snakebeta",
|
||||||
|
}
|
||||||
|
),
|
||||||
|
"cfm": AttributeDict(
|
||||||
|
{
|
||||||
|
"name": "CFM",
|
||||||
|
"solver": "euler",
|
||||||
|
"sigma_min": 1e-4,
|
||||||
|
}
|
||||||
|
),
|
||||||
|
"optimizer": AttributeDict(
|
||||||
|
{
|
||||||
|
"lr": 1e-4,
|
||||||
|
"weight_decay": 0.0,
|
||||||
|
}
|
||||||
|
),
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
return params
|
||||||
|
|
||||||
|
|
||||||
|
def get_params():
|
||||||
|
params = AttributeDict(
|
||||||
|
{
|
||||||
|
"model_args": _get_model_params(),
|
||||||
|
"data_args": _get_data_params(),
|
||||||
|
"best_train_loss": float("inf"),
|
||||||
|
"best_valid_loss": float("inf"),
|
||||||
|
"best_train_epoch": -1,
|
||||||
|
"best_valid_epoch": -1,
|
||||||
|
"batch_idx_train": -1, # 0
|
||||||
|
"log_interval": 10,
|
||||||
|
"valid_interval": 1500,
|
||||||
|
"env_info": get_env_info(),
|
||||||
|
}
|
||||||
|
)
|
||||||
|
return params
|
||||||
|
|
||||||
|
|
||||||
|
def get_model(params):
|
||||||
|
m = MatchaTTS(**params.model_args)
|
||||||
|
return m
|
||||||
|
|
||||||
|
|
||||||
|
def load_checkpoint_if_available(
|
||||||
|
params: AttributeDict, model: nn.Module
|
||||||
|
) -> Optional[Dict[str, Any]]:
|
||||||
|
"""Load checkpoint from file.
|
||||||
|
|
||||||
|
If params.start_epoch is larger than 1, it will load the checkpoint from
|
||||||
|
`params.start_epoch - 1`.
|
||||||
|
|
||||||
|
Apart from loading state dict for `model` and `optimizer` it also updates
|
||||||
|
`best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
|
||||||
|
and `best_valid_loss` in `params`.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
The return value of :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The training model.
|
||||||
|
Returns:
|
||||||
|
Return a dict containing previously saved training info.
|
||||||
|
"""
|
||||||
|
if params.start_epoch > 1:
|
||||||
|
filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
|
||||||
|
else:
|
||||||
|
return None
|
||||||
|
|
||||||
|
assert filename.is_file(), f"{filename} does not exist!"
|
||||||
|
|
||||||
|
saved_params = load_checkpoint(filename, model=model)
|
||||||
|
|
||||||
|
keys = [
|
||||||
|
"best_train_epoch",
|
||||||
|
"best_valid_epoch",
|
||||||
|
"batch_idx_train",
|
||||||
|
"best_train_loss",
|
||||||
|
"best_valid_loss",
|
||||||
|
]
|
||||||
|
for k in keys:
|
||||||
|
params[k] = saved_params[k]
|
||||||
|
|
||||||
|
return saved_params
|
||||||
|
|
||||||
|
|
||||||
|
def prepare_input(batch: dict, tokenizer: Tokenizer, device: torch.device, params):
|
||||||
|
"""Parse batch data"""
|
||||||
|
mel_mean = params.data_args.data_statistics.mel_mean
|
||||||
|
mel_std_inv = 1 / params.data_args.data_statistics.mel_std
|
||||||
|
for i in range(batch["features"].shape[0]):
|
||||||
|
n = batch["features_lens"][i]
|
||||||
|
batch["features"][i : i + 1, :n, :] = (
|
||||||
|
batch["features"][i : i + 1, :n, :] - mel_mean
|
||||||
|
) * mel_std_inv
|
||||||
|
batch["features"][i : i + 1, n:, :] = 0
|
||||||
|
|
||||||
|
audio = batch["audio"].to(device)
|
||||||
|
features = batch["features"].to(device)
|
||||||
|
audio_lens = batch["audio_lens"].to(device)
|
||||||
|
features_lens = batch["features_lens"].to(device)
|
||||||
|
tokens = batch["tokens"]
|
||||||
|
|
||||||
|
tokens = tokenizer.texts_to_token_ids(tokens, intersperse_blank=True)
|
||||||
|
tokens = k2.RaggedTensor(tokens)
|
||||||
|
row_splits = tokens.shape.row_splits(1)
|
||||||
|
tokens_lens = row_splits[1:] - row_splits[:-1]
|
||||||
|
tokens = tokens.to(device)
|
||||||
|
tokens_lens = tokens_lens.to(device)
|
||||||
|
# a tensor of shape (B, T)
|
||||||
|
tokens = tokens.pad(mode="constant", padding_value=tokenizer.pad_id)
|
||||||
|
|
||||||
|
max_feature_length = fix_len_compatibility(features.shape[1])
|
||||||
|
if max_feature_length > features.shape[1]:
|
||||||
|
pad = max_feature_length - features.shape[1]
|
||||||
|
features = torch.nn.functional.pad(features, (0, 0, 0, pad))
|
||||||
|
|
||||||
|
# features_lens[features_lens.argmax()] += pad
|
||||||
|
|
||||||
|
return audio, audio_lens, features, features_lens.long(), tokens, tokens_lens.long()
|
||||||
|
|
||||||
|
|
||||||
|
def compute_validation_loss(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: Union[nn.Module, DDP],
|
||||||
|
tokenizer: Tokenizer,
|
||||||
|
valid_dl: torch.utils.data.DataLoader,
|
||||||
|
world_size: int = 1,
|
||||||
|
rank: int = 0,
|
||||||
|
) -> MetricsTracker:
|
||||||
|
"""Run the validation process."""
|
||||||
|
model.eval()
|
||||||
|
device = model.device if isinstance(model, DDP) else next(model.parameters()).device
|
||||||
|
get_losses = model.module.get_losses if isinstance(model, DDP) else model.get_losses
|
||||||
|
|
||||||
|
# used to summary the stats over iterations
|
||||||
|
tot_loss = MetricsTracker()
|
||||||
|
|
||||||
|
with torch.no_grad():
|
||||||
|
for batch_idx, batch in enumerate(valid_dl):
|
||||||
|
(
|
||||||
|
audio,
|
||||||
|
audio_lens,
|
||||||
|
features,
|
||||||
|
features_lens,
|
||||||
|
tokens,
|
||||||
|
tokens_lens,
|
||||||
|
) = prepare_input(batch, tokenizer, device, params)
|
||||||
|
|
||||||
|
losses = get_losses(
|
||||||
|
{
|
||||||
|
"x": tokens,
|
||||||
|
"x_lengths": tokens_lens,
|
||||||
|
"y": features.permute(0, 2, 1),
|
||||||
|
"y_lengths": features_lens,
|
||||||
|
"spks": None, # should change it for multi-speakers
|
||||||
|
"durations": None,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
batch_size = len(batch["tokens"])
|
||||||
|
|
||||||
|
loss_info = MetricsTracker()
|
||||||
|
loss_info["samples"] = batch_size
|
||||||
|
|
||||||
|
s = 0
|
||||||
|
|
||||||
|
for key, value in losses.items():
|
||||||
|
v = value.detach().item()
|
||||||
|
loss_info[key] = v * batch_size
|
||||||
|
s += v * batch_size
|
||||||
|
|
||||||
|
loss_info["tot_loss"] = s
|
||||||
|
|
||||||
|
# summary stats
|
||||||
|
tot_loss = tot_loss + loss_info
|
||||||
|
|
||||||
|
if world_size > 1:
|
||||||
|
tot_loss.reduce(device)
|
||||||
|
|
||||||
|
loss_value = tot_loss["tot_loss"] / tot_loss["samples"]
|
||||||
|
if loss_value < params.best_valid_loss:
|
||||||
|
params.best_valid_epoch = params.cur_epoch
|
||||||
|
params.best_valid_loss = loss_value
|
||||||
|
|
||||||
|
return tot_loss
|
||||||
|
|
||||||
|
|
||||||
|
def train_one_epoch(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: Union[nn.Module, DDP],
|
||||||
|
tokenizer: Tokenizer,
|
||||||
|
optimizer: Optimizer,
|
||||||
|
train_dl: torch.utils.data.DataLoader,
|
||||||
|
valid_dl: torch.utils.data.DataLoader,
|
||||||
|
scaler: GradScaler,
|
||||||
|
tb_writer: Optional[SummaryWriter] = None,
|
||||||
|
world_size: int = 1,
|
||||||
|
rank: int = 0,
|
||||||
|
) -> None:
|
||||||
|
"""Train the model for one epoch.
|
||||||
|
|
||||||
|
The training loss from the mean of all frames is saved in
|
||||||
|
`params.train_loss`. It runs the validation process every
|
||||||
|
`params.valid_interval` batches.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The model for training.
|
||||||
|
optimizer:
|
||||||
|
The optimizer.
|
||||||
|
train_dl:
|
||||||
|
Dataloader for the training dataset.
|
||||||
|
valid_dl:
|
||||||
|
Dataloader for the validation dataset.
|
||||||
|
scaler:
|
||||||
|
The scaler used for mix precision training.
|
||||||
|
tb_writer:
|
||||||
|
Writer to write log messages to tensorboard.
|
||||||
|
"""
|
||||||
|
model.train()
|
||||||
|
device = model.device if isinstance(model, DDP) else next(model.parameters()).device
|
||||||
|
get_losses = model.module.get_losses if isinstance(model, DDP) else model.get_losses
|
||||||
|
|
||||||
|
# used to track the stats over iterations in one epoch
|
||||||
|
tot_loss = MetricsTracker()
|
||||||
|
|
||||||
|
saved_bad_model = False
|
||||||
|
|
||||||
|
def save_bad_model(suffix: str = ""):
|
||||||
|
save_checkpoint(
|
||||||
|
filename=params.exp_dir / f"bad-model{suffix}-{rank}.pt",
|
||||||
|
model=model,
|
||||||
|
params=params,
|
||||||
|
optimizer=optimizer,
|
||||||
|
scaler=scaler,
|
||||||
|
rank=0,
|
||||||
|
)
|
||||||
|
|
||||||
|
for batch_idx, batch in enumerate(train_dl):
|
||||||
|
params.batch_idx_train += 1
|
||||||
|
# audio: (N, T), float32
|
||||||
|
# features: (N, T, C), float32
|
||||||
|
# audio_lens, (N,), int32
|
||||||
|
# features_lens, (N,), int32
|
||||||
|
# tokens: List[List[str]], len(tokens) == N
|
||||||
|
|
||||||
|
batch_size = len(batch["tokens"])
|
||||||
|
|
||||||
|
(
|
||||||
|
audio,
|
||||||
|
audio_lens,
|
||||||
|
features,
|
||||||
|
features_lens,
|
||||||
|
tokens,
|
||||||
|
tokens_lens,
|
||||||
|
) = prepare_input(batch, tokenizer, device, params)
|
||||||
|
try:
|
||||||
|
with autocast(enabled=params.use_fp16):
|
||||||
|
losses = get_losses(
|
||||||
|
{
|
||||||
|
"x": tokens,
|
||||||
|
"x_lengths": tokens_lens,
|
||||||
|
"y": features.permute(0, 2, 1),
|
||||||
|
"y_lengths": features_lens,
|
||||||
|
"spks": None, # should change it for multi-speakers
|
||||||
|
"durations": None,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
loss = sum(losses.values())
|
||||||
|
|
||||||
|
scaler.scale(loss).backward()
|
||||||
|
scaler.step(optimizer)
|
||||||
|
scaler.update()
|
||||||
|
optimizer.zero_grad()
|
||||||
|
|
||||||
|
loss_info = MetricsTracker()
|
||||||
|
loss_info["samples"] = batch_size
|
||||||
|
|
||||||
|
s = 0
|
||||||
|
|
||||||
|
for key, value in losses.items():
|
||||||
|
v = value.detach().item()
|
||||||
|
loss_info[key] = v * batch_size
|
||||||
|
s += v * batch_size
|
||||||
|
|
||||||
|
loss_info["tot_loss"] = s
|
||||||
|
|
||||||
|
tot_loss = tot_loss + loss_info
|
||||||
|
except: # noqa
|
||||||
|
save_bad_model()
|
||||||
|
raise
|
||||||
|
|
||||||
|
if params.batch_idx_train % 100 == 0 and params.use_fp16:
|
||||||
|
# If the grad scale was less than 1, try increasing it.
|
||||||
|
# The _growth_interval of the grad scaler is configurable,
|
||||||
|
# but we can't configure it to have different
|
||||||
|
# behavior depending on the current grad scale.
|
||||||
|
cur_grad_scale = scaler._scale.item()
|
||||||
|
|
||||||
|
if cur_grad_scale < 8.0 or (
|
||||||
|
cur_grad_scale < 32.0 and params.batch_idx_train % 400 == 0
|
||||||
|
):
|
||||||
|
scaler.update(cur_grad_scale * 2.0)
|
||||||
|
if cur_grad_scale < 0.01:
|
||||||
|
if not saved_bad_model:
|
||||||
|
save_bad_model(suffix="-first-warning")
|
||||||
|
saved_bad_model = True
|
||||||
|
logging.warning(f"Grad scale is small: {cur_grad_scale}")
|
||||||
|
if cur_grad_scale < 1.0e-05:
|
||||||
|
save_bad_model()
|
||||||
|
raise RuntimeError(
|
||||||
|
f"grad_scale is too small, exiting: {cur_grad_scale}"
|
||||||
|
)
|
||||||
|
|
||||||
|
if params.batch_idx_train % params.log_interval == 0:
|
||||||
|
cur_grad_scale = scaler._scale.item() if params.use_fp16 else 1.0
|
||||||
|
|
||||||
|
logging.info(
|
||||||
|
f"Epoch {params.cur_epoch}, batch {batch_idx}, "
|
||||||
|
f"global_batch_idx: {params.batch_idx_train}, "
|
||||||
|
f"batch size: {batch_size}, "
|
||||||
|
f"loss[{loss_info}], tot_loss[{tot_loss}], "
|
||||||
|
+ (f"grad_scale: {scaler._scale.item()}" if params.use_fp16 else "")
|
||||||
|
)
|
||||||
|
|
||||||
|
if tb_writer is not None:
|
||||||
|
loss_info.write_summary(
|
||||||
|
tb_writer, "train/current_", params.batch_idx_train
|
||||||
|
)
|
||||||
|
tot_loss.write_summary(tb_writer, "train/tot_", params.batch_idx_train)
|
||||||
|
if params.use_fp16:
|
||||||
|
tb_writer.add_scalar(
|
||||||
|
"train/grad_scale", cur_grad_scale, params.batch_idx_train
|
||||||
|
)
|
||||||
|
|
||||||
|
if params.batch_idx_train % params.valid_interval == 1:
|
||||||
|
logging.info("Computing validation loss")
|
||||||
|
valid_info = compute_validation_loss(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
tokenizer=tokenizer,
|
||||||
|
valid_dl=valid_dl,
|
||||||
|
world_size=world_size,
|
||||||
|
rank=rank,
|
||||||
|
)
|
||||||
|
model.train()
|
||||||
|
logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}")
|
||||||
|
logging.info(
|
||||||
|
"Maximum memory allocated so far is "
|
||||||
|
f"{torch.cuda.max_memory_allocated()//1000000}MB"
|
||||||
|
)
|
||||||
|
if tb_writer is not None:
|
||||||
|
valid_info.write_summary(
|
||||||
|
tb_writer, "train/valid_", params.batch_idx_train
|
||||||
|
)
|
||||||
|
|
||||||
|
loss_value = tot_loss["tot_loss"] / tot_loss["samples"]
|
||||||
|
params.train_loss = loss_value
|
||||||
|
if params.train_loss < params.best_train_loss:
|
||||||
|
params.best_train_epoch = params.cur_epoch
|
||||||
|
params.best_train_loss = params.train_loss
|
||||||
|
|
||||||
|
|
||||||
|
def run(rank, world_size, args):
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
fix_random_seed(params.seed)
|
||||||
|
if world_size > 1:
|
||||||
|
setup_dist(rank, world_size, params.master_port)
|
||||||
|
|
||||||
|
setup_logger(f"{params.exp_dir}/log/log-train")
|
||||||
|
logging.info("Training started")
|
||||||
|
|
||||||
|
if args.tensorboard and rank == 0:
|
||||||
|
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
|
||||||
|
else:
|
||||||
|
tb_writer = None
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", rank)
|
||||||
|
logging.info(f"Device: {device}")
|
||||||
|
|
||||||
|
tokenizer = Tokenizer(params.tokens)
|
||||||
|
params.pad_id = tokenizer.pad_id
|
||||||
|
params.vocab_size = tokenizer.vocab_size
|
||||||
|
params.model_args.n_vocab = params.vocab_size
|
||||||
|
|
||||||
|
with open(params.cmvn) as f:
|
||||||
|
stats = json.load(f)
|
||||||
|
params.data_args.data_statistics.mel_mean = stats["fbank_mean"]
|
||||||
|
params.data_args.data_statistics.mel_std = stats["fbank_std"]
|
||||||
|
|
||||||
|
params.model_args.data_statistics.mel_mean = stats["fbank_mean"]
|
||||||
|
params.model_args.data_statistics.mel_std = stats["fbank_std"]
|
||||||
|
|
||||||
|
logging.info(params)
|
||||||
|
print(params)
|
||||||
|
|
||||||
|
logging.info("About to create model")
|
||||||
|
model = get_model(params)
|
||||||
|
|
||||||
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
|
logging.info(f"Number of parameters: {num_param}")
|
||||||
|
|
||||||
|
assert params.start_epoch > 0, params.start_epoch
|
||||||
|
checkpoints = load_checkpoint_if_available(params=params, model=model)
|
||||||
|
|
||||||
|
model.to(device)
|
||||||
|
|
||||||
|
if world_size > 1:
|
||||||
|
logging.info("Using DDP")
|
||||||
|
model = DDP(model, device_ids=[rank], find_unused_parameters=True)
|
||||||
|
|
||||||
|
optimizer = torch.optim.Adam(model.parameters(), **params.model_args.optimizer)
|
||||||
|
|
||||||
|
logging.info("About to create datamodule")
|
||||||
|
|
||||||
|
baker_zh = BakerZhTtsDataModule(args)
|
||||||
|
|
||||||
|
train_cuts = baker_zh.train_cuts()
|
||||||
|
train_dl = baker_zh.train_dataloaders(train_cuts)
|
||||||
|
|
||||||
|
valid_cuts = baker_zh.valid_cuts()
|
||||||
|
valid_dl = baker_zh.valid_dataloaders(valid_cuts)
|
||||||
|
|
||||||
|
scaler = GradScaler(enabled=params.use_fp16, init_scale=1.0)
|
||||||
|
if checkpoints and "grad_scaler" in checkpoints:
|
||||||
|
logging.info("Loading grad scaler state dict")
|
||||||
|
scaler.load_state_dict(checkpoints["grad_scaler"])
|
||||||
|
|
||||||
|
for epoch in range(params.start_epoch, params.num_epochs + 1):
|
||||||
|
logging.info(f"Start epoch {epoch}")
|
||||||
|
fix_random_seed(params.seed + epoch - 1)
|
||||||
|
if "sampler" in train_dl:
|
||||||
|
train_dl.sampler.set_epoch(epoch - 1)
|
||||||
|
|
||||||
|
params.cur_epoch = epoch
|
||||||
|
|
||||||
|
if tb_writer is not None:
|
||||||
|
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
|
||||||
|
|
||||||
|
train_one_epoch(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
tokenizer=tokenizer,
|
||||||
|
optimizer=optimizer,
|
||||||
|
train_dl=train_dl,
|
||||||
|
valid_dl=valid_dl,
|
||||||
|
scaler=scaler,
|
||||||
|
tb_writer=tb_writer,
|
||||||
|
world_size=world_size,
|
||||||
|
rank=rank,
|
||||||
|
)
|
||||||
|
|
||||||
|
if epoch % params.save_every_n == 0 or epoch == params.num_epochs:
|
||||||
|
filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
|
||||||
|
save_checkpoint(
|
||||||
|
filename=filename,
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
optimizer=optimizer,
|
||||||
|
scaler=scaler,
|
||||||
|
rank=rank,
|
||||||
|
)
|
||||||
|
if rank == 0:
|
||||||
|
if params.best_train_epoch == params.cur_epoch:
|
||||||
|
best_train_filename = params.exp_dir / "best-train-loss.pt"
|
||||||
|
copyfile(src=filename, dst=best_train_filename)
|
||||||
|
|
||||||
|
if params.best_valid_epoch == params.cur_epoch:
|
||||||
|
best_valid_filename = params.exp_dir / "best-valid-loss.pt"
|
||||||
|
copyfile(src=filename, dst=best_valid_filename)
|
||||||
|
|
||||||
|
logging.info("Done!")
|
||||||
|
|
||||||
|
if world_size > 1:
|
||||||
|
torch.distributed.barrier()
|
||||||
|
cleanup_dist()
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
BakerZhTtsDataModule.add_arguments(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
world_size = args.world_size
|
||||||
|
assert world_size >= 1
|
||||||
|
if world_size > 1:
|
||||||
|
mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
|
||||||
|
else:
|
||||||
|
run(rank=0, world_size=1, args=args)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
torch.set_num_threads(1)
|
||||||
|
torch.set_num_interop_threads(1)
|
||||||
|
main()
|
340
egs/baker_zh/TTS/matcha/tts_datamodule.py
Normal file
340
egs/baker_zh/TTS/matcha/tts_datamodule.py
Normal file
@ -0,0 +1,340 @@
|
|||||||
|
# Copyright 2021 Piotr Żelasko
|
||||||
|
# Copyright 2022-2023 Xiaomi Corporation (Authors: Mingshuang Luo,
|
||||||
|
# Zengwei Yao)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from functools import lru_cache
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Any, Dict, Optional
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from fbank import MatchaFbank, MatchaFbankConfig
|
||||||
|
from lhotse import CutSet, load_manifest_lazy
|
||||||
|
from lhotse.dataset import ( # noqa F401 for PrecomputedFeatures
|
||||||
|
CutConcatenate,
|
||||||
|
CutMix,
|
||||||
|
DynamicBucketingSampler,
|
||||||
|
PrecomputedFeatures,
|
||||||
|
SimpleCutSampler,
|
||||||
|
SpeechSynthesisDataset,
|
||||||
|
)
|
||||||
|
from lhotse.dataset.input_strategies import ( # noqa F401 For AudioSamples
|
||||||
|
AudioSamples,
|
||||||
|
OnTheFlyFeatures,
|
||||||
|
)
|
||||||
|
from lhotse.utils import fix_random_seed
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
|
|
||||||
|
from icefall.utils import str2bool
|
||||||
|
|
||||||
|
|
||||||
|
class _SeedWorkers:
|
||||||
|
def __init__(self, seed: int):
|
||||||
|
self.seed = seed
|
||||||
|
|
||||||
|
def __call__(self, worker_id: int):
|
||||||
|
fix_random_seed(self.seed + worker_id)
|
||||||
|
|
||||||
|
|
||||||
|
class BakerZhTtsDataModule:
|
||||||
|
"""
|
||||||
|
DataModule for tts experiments.
|
||||||
|
It assumes there is always one train and valid dataloader,
|
||||||
|
but there can be multiple test dataloaders (e.g. LibriSpeech test-clean
|
||||||
|
and test-other).
|
||||||
|
|
||||||
|
It contains all the common data pipeline modules used in ASR
|
||||||
|
experiments, e.g.:
|
||||||
|
- dynamic batch size,
|
||||||
|
- bucketing samplers,
|
||||||
|
- cut concatenation,
|
||||||
|
- on-the-fly feature extraction
|
||||||
|
|
||||||
|
This class should be derived for specific corpora used in ASR tasks.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, args: argparse.Namespace):
|
||||||
|
self.args = args
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def add_arguments(cls, parser: argparse.ArgumentParser):
|
||||||
|
group = parser.add_argument_group(
|
||||||
|
title="TTS data related options",
|
||||||
|
description="These options are used for the preparation of "
|
||||||
|
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
||||||
|
"effective batch sizes, sampling strategies, applied data "
|
||||||
|
"augmentations, etc.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--manifest-dir",
|
||||||
|
type=Path,
|
||||||
|
default=Path("data/fbank"),
|
||||||
|
help="Path to directory with train/valid/test cuts.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--max-duration",
|
||||||
|
type=int,
|
||||||
|
default=200.0,
|
||||||
|
help="Maximum pooled recordings duration (seconds) in a "
|
||||||
|
"single batch. You can reduce it if it causes CUDA OOM.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--bucketing-sampler",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled, the batches will come from buckets of "
|
||||||
|
"similar duration (saves padding frames).",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--num-buckets",
|
||||||
|
type=int,
|
||||||
|
default=30,
|
||||||
|
help="The number of buckets for the DynamicBucketingSampler"
|
||||||
|
"(you might want to increase it for larger datasets).",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--on-the-fly-feats",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="When enabled, use on-the-fly cut mixing and feature "
|
||||||
|
"extraction. Will drop existing precomputed feature manifests "
|
||||||
|
"if available.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--shuffle",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled (=default), the examples will be "
|
||||||
|
"shuffled for each epoch.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--drop-last",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Whether to drop last batch. Used by sampler.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--return-cuts",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="When enabled, each batch will have the "
|
||||||
|
"field: batch['cut'] with the cuts that "
|
||||||
|
"were used to construct it.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--num-workers",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The number of training dataloader workers that "
|
||||||
|
"collect the batches.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--input-strategy",
|
||||||
|
type=str,
|
||||||
|
default="PrecomputedFeatures",
|
||||||
|
help="AudioSamples or PrecomputedFeatures",
|
||||||
|
)
|
||||||
|
|
||||||
|
def train_dataloaders(
|
||||||
|
self,
|
||||||
|
cuts_train: CutSet,
|
||||||
|
sampler_state_dict: Optional[Dict[str, Any]] = None,
|
||||||
|
) -> DataLoader:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
cuts_train:
|
||||||
|
CutSet for training.
|
||||||
|
sampler_state_dict:
|
||||||
|
The state dict for the training sampler.
|
||||||
|
"""
|
||||||
|
logging.info("About to create train dataset")
|
||||||
|
train = SpeechSynthesisDataset(
|
||||||
|
return_text=False,
|
||||||
|
return_tokens=True,
|
||||||
|
feature_input_strategy=eval(self.args.input_strategy)(),
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
|
||||||
|
if self.args.on_the_fly_feats:
|
||||||
|
sampling_rate = 22050
|
||||||
|
config = MatchaFbankConfig(
|
||||||
|
n_fft=1024,
|
||||||
|
n_mels=80,
|
||||||
|
sampling_rate=sampling_rate,
|
||||||
|
hop_length=256,
|
||||||
|
win_length=1024,
|
||||||
|
f_min=0,
|
||||||
|
f_max=8000,
|
||||||
|
)
|
||||||
|
train = SpeechSynthesisDataset(
|
||||||
|
return_text=False,
|
||||||
|
return_tokens=True,
|
||||||
|
feature_input_strategy=OnTheFlyFeatures(MatchaFbank(config)),
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
|
||||||
|
if self.args.bucketing_sampler:
|
||||||
|
logging.info("Using DynamicBucketingSampler.")
|
||||||
|
train_sampler = DynamicBucketingSampler(
|
||||||
|
cuts_train,
|
||||||
|
max_duration=self.args.max_duration,
|
||||||
|
shuffle=self.args.shuffle,
|
||||||
|
num_buckets=self.args.num_buckets,
|
||||||
|
buffer_size=self.args.num_buckets * 2000,
|
||||||
|
shuffle_buffer_size=self.args.num_buckets * 5000,
|
||||||
|
drop_last=self.args.drop_last,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
logging.info("Using SimpleCutSampler.")
|
||||||
|
train_sampler = SimpleCutSampler(
|
||||||
|
cuts_train,
|
||||||
|
max_duration=self.args.max_duration,
|
||||||
|
shuffle=self.args.shuffle,
|
||||||
|
)
|
||||||
|
logging.info("About to create train dataloader")
|
||||||
|
|
||||||
|
if sampler_state_dict is not None:
|
||||||
|
logging.info("Loading sampler state dict")
|
||||||
|
train_sampler.load_state_dict(sampler_state_dict)
|
||||||
|
|
||||||
|
# 'seed' is derived from the current random state, which will have
|
||||||
|
# previously been set in the main process.
|
||||||
|
seed = torch.randint(0, 100000, ()).item()
|
||||||
|
worker_init_fn = _SeedWorkers(seed)
|
||||||
|
|
||||||
|
train_dl = DataLoader(
|
||||||
|
train,
|
||||||
|
sampler=train_sampler,
|
||||||
|
batch_size=None,
|
||||||
|
num_workers=self.args.num_workers,
|
||||||
|
persistent_workers=True,
|
||||||
|
pin_memory=True,
|
||||||
|
worker_init_fn=worker_init_fn,
|
||||||
|
)
|
||||||
|
|
||||||
|
return train_dl
|
||||||
|
|
||||||
|
def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader:
|
||||||
|
logging.info("About to create dev dataset")
|
||||||
|
if self.args.on_the_fly_feats:
|
||||||
|
sampling_rate = 22050
|
||||||
|
config = MatchaFbankConfig(
|
||||||
|
n_fft=1024,
|
||||||
|
n_mels=80,
|
||||||
|
sampling_rate=sampling_rate,
|
||||||
|
hop_length=256,
|
||||||
|
win_length=1024,
|
||||||
|
f_min=0,
|
||||||
|
f_max=8000,
|
||||||
|
)
|
||||||
|
validate = SpeechSynthesisDataset(
|
||||||
|
return_text=False,
|
||||||
|
return_tokens=True,
|
||||||
|
feature_input_strategy=OnTheFlyFeatures(MatchaFbank(config)),
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
validate = SpeechSynthesisDataset(
|
||||||
|
return_text=False,
|
||||||
|
return_tokens=True,
|
||||||
|
feature_input_strategy=eval(self.args.input_strategy)(),
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
valid_sampler = DynamicBucketingSampler(
|
||||||
|
cuts_valid,
|
||||||
|
max_duration=self.args.max_duration,
|
||||||
|
num_buckets=self.args.num_buckets,
|
||||||
|
shuffle=False,
|
||||||
|
)
|
||||||
|
logging.info("About to create valid dataloader")
|
||||||
|
valid_dl = DataLoader(
|
||||||
|
validate,
|
||||||
|
sampler=valid_sampler,
|
||||||
|
batch_size=None,
|
||||||
|
num_workers=2,
|
||||||
|
persistent_workers=True,
|
||||||
|
pin_memory=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
return valid_dl
|
||||||
|
|
||||||
|
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
|
||||||
|
logging.info("About to create test dataset")
|
||||||
|
if self.args.on_the_fly_feats:
|
||||||
|
sampling_rate = 22050
|
||||||
|
config = MatchaFbankConfig(
|
||||||
|
n_fft=1024,
|
||||||
|
n_mels=80,
|
||||||
|
sampling_rate=sampling_rate,
|
||||||
|
hop_length=256,
|
||||||
|
win_length=1024,
|
||||||
|
f_min=0,
|
||||||
|
f_max=8000,
|
||||||
|
)
|
||||||
|
test = SpeechSynthesisDataset(
|
||||||
|
return_text=False,
|
||||||
|
return_tokens=True,
|
||||||
|
feature_input_strategy=OnTheFlyFeatures(MatchaFbank(config)),
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
test = SpeechSynthesisDataset(
|
||||||
|
return_text=False,
|
||||||
|
return_tokens=True,
|
||||||
|
feature_input_strategy=eval(self.args.input_strategy)(),
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
test_sampler = DynamicBucketingSampler(
|
||||||
|
cuts,
|
||||||
|
max_duration=self.args.max_duration,
|
||||||
|
num_buckets=self.args.num_buckets,
|
||||||
|
shuffle=False,
|
||||||
|
)
|
||||||
|
logging.info("About to create test dataloader")
|
||||||
|
test_dl = DataLoader(
|
||||||
|
test,
|
||||||
|
batch_size=None,
|
||||||
|
sampler=test_sampler,
|
||||||
|
num_workers=self.args.num_workers,
|
||||||
|
)
|
||||||
|
return test_dl
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def train_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get train cuts")
|
||||||
|
return load_manifest_lazy(
|
||||||
|
self.args.manifest_dir / "baker_zh_cuts_train.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def valid_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get validation cuts")
|
||||||
|
return load_manifest_lazy(
|
||||||
|
self.args.manifest_dir / "baker_zh_cuts_valid.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def test_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get test cuts")
|
||||||
|
return load_manifest_lazy(
|
||||||
|
self.args.manifest_dir / "baker_zh_cuts_test.jsonl.gz"
|
||||||
|
)
|
1
egs/baker_zh/TTS/matcha/utils.py
Symbolic link
1
egs/baker_zh/TTS/matcha/utils.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../ljspeech/TTS/matcha/utils.py
|
151
egs/baker_zh/TTS/prepare.sh
Executable file
151
egs/baker_zh/TTS/prepare.sh
Executable file
@ -0,0 +1,151 @@
|
|||||||
|
#!/usr/bin/env bash
|
||||||
|
|
||||||
|
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
|
||||||
|
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
|
||||||
|
|
||||||
|
set -eou pipefail
|
||||||
|
|
||||||
|
stage=-1
|
||||||
|
stop_stage=100
|
||||||
|
|
||||||
|
dl_dir=$PWD/download
|
||||||
|
mkdir -p $dl_dir
|
||||||
|
|
||||||
|
. shared/parse_options.sh || exit 1
|
||||||
|
|
||||||
|
# All files generated by this script are saved in "data".
|
||||||
|
# You can safely remove "data" and rerun this script to regenerate it.
|
||||||
|
mkdir -p data
|
||||||
|
|
||||||
|
log() {
|
||||||
|
# This function is from espnet
|
||||||
|
local fname=${BASH_SOURCE[1]##*/}
|
||||||
|
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
||||||
|
}
|
||||||
|
|
||||||
|
log "dl_dir: $dl_dir"
|
||||||
|
|
||||||
|
if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then
|
||||||
|
log "Stage -1: build monotonic_align lib (used by ./matcha)"
|
||||||
|
for recipe in matcha; do
|
||||||
|
if [ ! -d $recipe/monotonic_align/build ]; then
|
||||||
|
cd $recipe/monotonic_align
|
||||||
|
python3 setup.py build_ext --inplace
|
||||||
|
cd ../../
|
||||||
|
else
|
||||||
|
log "monotonic_align lib for $recipe already built"
|
||||||
|
fi
|
||||||
|
done
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
|
||||||
|
log "Stage 0: Download data"
|
||||||
|
|
||||||
|
# The directory $dl_dir/BANSYP contains the following 3 directories
|
||||||
|
|
||||||
|
# ls -lh $dl_dir/BZNSYP/
|
||||||
|
# total 0
|
||||||
|
# drwxr-xr-x 10002 kuangfangjun root 0 Jan 4 2019 PhoneLabeling
|
||||||
|
# drwxr-xr-x 3 kuangfangjun root 0 Jan 31 2019 ProsodyLabeling
|
||||||
|
# drwxr-xr-x 10003 kuangfangjun root 0 Aug 26 17:45 Wave
|
||||||
|
|
||||||
|
# If you have trouble accessing huggingface.co, please use
|
||||||
|
#
|
||||||
|
# cd $dl_dir
|
||||||
|
# wget https://huggingface.co/openspeech/BZNSYP/resolve/main/BZNSYP.tar.bz2
|
||||||
|
# tar xf BZNSYP.tar.bz2
|
||||||
|
# cd ..
|
||||||
|
|
||||||
|
# If you have pre-downloaded it to /path/to/BZNSYP, you can create a symlink
|
||||||
|
#
|
||||||
|
# ln -sfv /path/to/BZNSYP $dl_dir/BZNSYP
|
||||||
|
#
|
||||||
|
if [ ! -d $dl_dir/BZNSYP/Wave ]; then
|
||||||
|
lhotse download baker-zh $dl_dir
|
||||||
|
fi
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
||||||
|
log "Stage 1: Prepare baker-zh manifest"
|
||||||
|
# We assume that you have downloaded the baker corpus
|
||||||
|
# to $dl_dir/BZNSYP
|
||||||
|
mkdir -p data/manifests
|
||||||
|
if [ ! -e data/manifests/.baker-zh.done ]; then
|
||||||
|
lhotse prepare baker-zh $dl_dir/BZNSYP data/manifests
|
||||||
|
touch data/manifests/.baker-zh.done
|
||||||
|
fi
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
||||||
|
log "Stage 2: Generate tokens.txt"
|
||||||
|
if [ ! -e data/tokens.txt ]; then
|
||||||
|
python3 ./local/generate_tokens.py --tokens data/tokens.txt
|
||||||
|
fi
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
||||||
|
log "Stage 3: Generate raw cutset"
|
||||||
|
if [ ! -e data/manifests/baker_zh_cuts_raw.jsonl.gz ]; then
|
||||||
|
lhotse cut simple \
|
||||||
|
-r ./data/manifests/baker_zh_recordings_all.jsonl.gz \
|
||||||
|
-s ./data/manifests/baker_zh_supervisions_all.jsonl.gz \
|
||||||
|
./data/manifests/baker_zh_cuts_raw.jsonl.gz
|
||||||
|
fi
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
||||||
|
log "Stage 4: Convert text to tokens"
|
||||||
|
if [ ! -e data/manifests/baker_zh_cuts.jsonl.gz ]; then
|
||||||
|
python3 ./local/convert_text_to_tokens.py \
|
||||||
|
--in-file ./data/manifests/baker_zh_cuts_raw.jsonl.gz \
|
||||||
|
--out-file ./data/manifests/baker_zh_cuts.jsonl.gz
|
||||||
|
fi
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
||||||
|
log "Stage 5: Generate fbank (used by ./matcha)"
|
||||||
|
mkdir -p data/fbank
|
||||||
|
if [ ! -e data/fbank/.baker-zh.done ]; then
|
||||||
|
./local/compute_fbank_baker_zh.py
|
||||||
|
touch data/fbank/.baker-zh.done
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ! -e data/fbank/.baker-zh-validated.done ]; then
|
||||||
|
log "Validating data/fbank for baker-zh (used by ./matcha)"
|
||||||
|
python3 ./local/validate_manifest.py \
|
||||||
|
data/fbank/baker_zh_cuts.jsonl.gz
|
||||||
|
touch data/fbank/.baker-zh-validated.done
|
||||||
|
fi
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
|
||||||
|
log "Stage 6: Split the baker-zh cuts into train, valid and test sets (used by ./matcha)"
|
||||||
|
if [ ! -e data/fbank/.baker_zh_split.done ]; then
|
||||||
|
lhotse subset --last 600 \
|
||||||
|
data/fbank/baker_zh_cuts.jsonl.gz \
|
||||||
|
data/fbank/baker_zh_cuts_validtest.jsonl.gz
|
||||||
|
lhotse subset --first 100 \
|
||||||
|
data/fbank/baker_zh_cuts_validtest.jsonl.gz \
|
||||||
|
data/fbank/baker_zh_cuts_valid.jsonl.gz
|
||||||
|
lhotse subset --last 500 \
|
||||||
|
data/fbank/baker_zh_cuts_validtest.jsonl.gz \
|
||||||
|
data/fbank/baker_zh_cuts_test.jsonl.gz
|
||||||
|
|
||||||
|
rm data/fbank/baker_zh_cuts_validtest.jsonl.gz
|
||||||
|
|
||||||
|
n=$(( $(gunzip -c data/fbank/baker_zh_cuts.jsonl.gz | wc -l) - 600 ))
|
||||||
|
|
||||||
|
lhotse subset --first $n \
|
||||||
|
data/fbank/baker_zh_cuts.jsonl.gz \
|
||||||
|
data/fbank/baker_zh_cuts_train.jsonl.gz
|
||||||
|
|
||||||
|
touch data/fbank/.baker_zh_split.done
|
||||||
|
fi
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
|
||||||
|
log "Stage 6: Compute fbank mean and std (used by ./matcha)"
|
||||||
|
if [ ! -f ./data/fbank/cmvn.json ]; then
|
||||||
|
./local/compute_fbank_statistics.py ./data/fbank/baker_zh_cuts_train.jsonl.gz ./data/fbank/cmvn.json
|
||||||
|
fi
|
||||||
|
fi
|
1
egs/baker_zh/TTS/shared
Symbolic link
1
egs/baker_zh/TTS/shared
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../icefall/shared
|
@ -339,7 +339,7 @@ if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
|
|||||||
# 2. chmod +x ./jq
|
# 2. chmod +x ./jq
|
||||||
# 3. cp jq /usr/bin
|
# 3. cp jq /usr/bin
|
||||||
gunzip -c ${file} \
|
gunzip -c ${file} \
|
||||||
| jq '.text' | sed 's/"//g' > $lang_dir/transcript_words.txt
|
| jq '.supervisions[].text' | sed 's/"//g' > $lang_dir/transcript_words.txt
|
||||||
|
|
||||||
# Ensure space only appears once
|
# Ensure space only appears once
|
||||||
sed -i 's/\t/ /g' $lang_dir/transcript_words.txt
|
sed -i 's/\t/ /g' $lang_dir/transcript_words.txt
|
||||||
|
@ -161,14 +161,14 @@ if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
|||||||
log "Stage 5: Split XL subset into pieces (may take 30 minutes)"
|
log "Stage 5: Split XL subset into pieces (may take 30 minutes)"
|
||||||
split_dir=data/fbank/XL_split
|
split_dir=data/fbank/XL_split
|
||||||
if [ ! -f $split_dir/.split_completed ]; then
|
if [ ! -f $split_dir/.split_completed ]; then
|
||||||
lhotse split-lazy ./data/fbank/cuts_XL_raw.jsonl.gz $split_dir $num_per_split
|
lhotse split-lazy ./data/fbank/gigaspeech_cuts_XL_raw.jsonl.gz $split_dir $num_per_split
|
||||||
touch $split_dir/.split_completed
|
touch $split_dir/.split_completed
|
||||||
fi
|
fi
|
||||||
fi
|
fi
|
||||||
|
|
||||||
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
|
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
|
||||||
log "Stage 6: Compute features for XL"
|
log "Stage 6: Compute features for XL"
|
||||||
num_splits=$(find data/fbank/XL_split -name "cuts_XL_raw.*.jsonl.gz" | wc -l)
|
num_splits=$(find data/fbank/XL_split -name "gigaspeech_cuts_XL_raw.*.jsonl.gz" | wc -l)
|
||||||
python3 ./local/compute_fbank_gigaspeech_splits.py \
|
python3 ./local/compute_fbank_gigaspeech_splits.py \
|
||||||
--num-workers 20 \
|
--num-workers 20 \
|
||||||
--batch-duration 600 \
|
--batch-duration 600 \
|
||||||
@ -177,9 +177,9 @@ fi
|
|||||||
|
|
||||||
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
|
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
|
||||||
log "Stage 7: Combine features for XL (may take 3 hours)"
|
log "Stage 7: Combine features for XL (may take 3 hours)"
|
||||||
if [ ! -f data/fbank/cuts_XL.jsonl.gz ]; then
|
if [ ! -f data/fbank/gigaspeech_cuts_XL.jsonl.gz ]; then
|
||||||
pieces=$(find data/fbank/XL_split -name "cuts_XL.*.jsonl.gz")
|
pieces=$(find data/fbank/XL_split -name "gigaspeech_cuts_XL.*.jsonl.gz")
|
||||||
lhotse combine $pieces data/fbank/cuts_XL.jsonl.gz
|
lhotse combine $pieces data/fbank/gigaspeech_cuts_XL.jsonl.gz
|
||||||
fi
|
fi
|
||||||
fi
|
fi
|
||||||
|
|
||||||
|
@ -260,7 +260,7 @@ def decode_one_batch(
|
|||||||
Return the decoding result. See above description for the format of
|
Return the decoding result. See above description for the format of
|
||||||
the returned dict.
|
the returned dict.
|
||||||
"""
|
"""
|
||||||
device = model.device
|
device = next(model.parameters()).device
|
||||||
feature = batch["inputs"]
|
feature = batch["inputs"]
|
||||||
assert feature.ndim == 3
|
assert feature.ndim == 3
|
||||||
|
|
||||||
|
@ -1,158 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
|
|
||||||
"""
|
|
||||||
This file computes fbank features of the musan dataset.
|
|
||||||
It looks for manifests in the directory `src_dir` (default is data/manifests).
|
|
||||||
|
|
||||||
The generated fbank features are saved in data/fbank.
|
|
||||||
"""
|
|
||||||
import argparse
|
|
||||||
import logging
|
|
||||||
import os
|
|
||||||
from pathlib import Path
|
|
||||||
|
|
||||||
import torch
|
|
||||||
from lhotse import (
|
|
||||||
CutSet,
|
|
||||||
Fbank,
|
|
||||||
FbankConfig,
|
|
||||||
LilcomChunkyWriter,
|
|
||||||
MonoCut,
|
|
||||||
WhisperFbank,
|
|
||||||
WhisperFbankConfig,
|
|
||||||
combine,
|
|
||||||
)
|
|
||||||
from lhotse.recipes.utils import read_manifests_if_cached
|
|
||||||
|
|
||||||
from icefall.utils import get_executor, str2bool
|
|
||||||
|
|
||||||
# Torch's multithreaded behavior needs to be disabled or
|
|
||||||
# it wastes a lot of CPU and slow things down.
|
|
||||||
# Do this outside of main() in case it needs to take effect
|
|
||||||
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
|
||||||
torch.set_num_threads(1)
|
|
||||||
torch.set_num_interop_threads(1)
|
|
||||||
|
|
||||||
|
|
||||||
def is_cut_long(c: MonoCut) -> bool:
|
|
||||||
return c.duration > 5
|
|
||||||
|
|
||||||
|
|
||||||
def compute_fbank_musan(
|
|
||||||
src_dir: str = "data/manifests",
|
|
||||||
num_mel_bins: int = 80,
|
|
||||||
whisper_fbank: bool = False,
|
|
||||||
output_dir: str = "data/fbank",
|
|
||||||
):
|
|
||||||
src_dir = Path(src_dir)
|
|
||||||
output_dir = Path(output_dir)
|
|
||||||
num_jobs = min(15, os.cpu_count())
|
|
||||||
|
|
||||||
dataset_parts = (
|
|
||||||
"music",
|
|
||||||
"speech",
|
|
||||||
"noise",
|
|
||||||
)
|
|
||||||
prefix = "musan"
|
|
||||||
suffix = "jsonl.gz"
|
|
||||||
manifests = read_manifests_if_cached(
|
|
||||||
dataset_parts=dataset_parts,
|
|
||||||
output_dir=src_dir,
|
|
||||||
prefix=prefix,
|
|
||||||
suffix=suffix,
|
|
||||||
)
|
|
||||||
assert manifests is not None
|
|
||||||
|
|
||||||
assert len(manifests) == len(dataset_parts), (
|
|
||||||
len(manifests),
|
|
||||||
len(dataset_parts),
|
|
||||||
list(manifests.keys()),
|
|
||||||
dataset_parts,
|
|
||||||
)
|
|
||||||
|
|
||||||
musan_cuts_path = output_dir / "musan_cuts.jsonl.gz"
|
|
||||||
|
|
||||||
if musan_cuts_path.is_file():
|
|
||||||
logging.info(f"{musan_cuts_path} already exists - skipping")
|
|
||||||
return
|
|
||||||
|
|
||||||
logging.info("Extracting features for Musan")
|
|
||||||
|
|
||||||
if whisper_fbank:
|
|
||||||
extractor = WhisperFbank(
|
|
||||||
WhisperFbankConfig(num_filters=num_mel_bins, device="cuda")
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins))
|
|
||||||
|
|
||||||
with get_executor() as ex: # Initialize the executor only once.
|
|
||||||
# create chunks of Musan with duration 5 - 10 seconds
|
|
||||||
musan_cuts = (
|
|
||||||
CutSet.from_manifests(
|
|
||||||
recordings=combine(part["recordings"] for part in manifests.values())
|
|
||||||
)
|
|
||||||
.cut_into_windows(10.0)
|
|
||||||
.filter(is_cut_long)
|
|
||||||
.compute_and_store_features(
|
|
||||||
extractor=extractor,
|
|
||||||
storage_path=f"{output_dir}/musan_feats",
|
|
||||||
num_jobs=num_jobs if ex is None else 80,
|
|
||||||
executor=ex,
|
|
||||||
storage_type=LilcomChunkyWriter,
|
|
||||||
)
|
|
||||||
)
|
|
||||||
musan_cuts.to_file(musan_cuts_path)
|
|
||||||
|
|
||||||
|
|
||||||
def get_args():
|
|
||||||
parser = argparse.ArgumentParser()
|
|
||||||
parser.add_argument(
|
|
||||||
"--src-dir",
|
|
||||||
type=str,
|
|
||||||
default="data/manifests",
|
|
||||||
help="Source manifests directory.",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--num-mel-bins",
|
|
||||||
type=int,
|
|
||||||
default=80,
|
|
||||||
help="""The number of mel bins for Fbank""",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--whisper-fbank",
|
|
||||||
type=str2bool,
|
|
||||||
default=False,
|
|
||||||
help="Use WhisperFbank instead of Fbank. Default: False.",
|
|
||||||
)
|
|
||||||
parser.add_argument(
|
|
||||||
"--output-dir",
|
|
||||||
type=str,
|
|
||||||
default="data/fbank",
|
|
||||||
help="Output directory. Default: data/fbank.",
|
|
||||||
)
|
|
||||||
return parser.parse_args()
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
||||||
|
|
||||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
||||||
args = get_args()
|
|
||||||
compute_fbank_musan(
|
|
||||||
src_dir=args.src_dir,
|
|
||||||
num_mel_bins=args.num_mel_bins,
|
|
||||||
whisper_fbank=args.whisper_fbank,
|
|
||||||
output_dir=args.output_dir,
|
|
||||||
)
|
|
1
egs/ksponspeech/ASR/local/compute_fbank_musan.py
Symbolic link
1
egs/ksponspeech/ASR/local/compute_fbank_musan.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/local/compute_fbank_musan.py
|
@ -1,157 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
"""
|
|
||||||
This script removes short and long utterances from a cutset.
|
|
||||||
|
|
||||||
Caution:
|
|
||||||
You may need to tune the thresholds for your own dataset.
|
|
||||||
|
|
||||||
Usage example:
|
|
||||||
|
|
||||||
python3 ./local/filter_cuts.py \
|
|
||||||
--bpe-model data/lang_bpe_5000/bpe.model \
|
|
||||||
--in-cuts data/fbank/speechtools_cuts_test.jsonl.gz \
|
|
||||||
--out-cuts data/fbank-filtered/speechtools_cuts_test.jsonl.gz
|
|
||||||
"""
|
|
||||||
|
|
||||||
import argparse
|
|
||||||
import logging
|
|
||||||
from pathlib import Path
|
|
||||||
|
|
||||||
import sentencepiece as spm
|
|
||||||
from lhotse import CutSet, load_manifest_lazy
|
|
||||||
from lhotse.cut import Cut
|
|
||||||
|
|
||||||
|
|
||||||
def get_args():
|
|
||||||
parser = argparse.ArgumentParser()
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--bpe-model",
|
|
||||||
type=Path,
|
|
||||||
help="Path to the bpe.model",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--in-cuts",
|
|
||||||
type=Path,
|
|
||||||
help="Path to the input cutset",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--out-cuts",
|
|
||||||
type=Path,
|
|
||||||
help="Path to the output cutset",
|
|
||||||
)
|
|
||||||
|
|
||||||
return parser.parse_args()
|
|
||||||
|
|
||||||
|
|
||||||
def filter_cuts(cut_set: CutSet, sp: spm.SentencePieceProcessor):
|
|
||||||
total = 0 # number of total utterances before removal
|
|
||||||
removed = 0 # number of removed utterances
|
|
||||||
|
|
||||||
def remove_short_and_long_utterances(c: Cut):
|
|
||||||
"""Return False to exclude the input cut"""
|
|
||||||
nonlocal removed, total
|
|
||||||
# Keep only utterances with duration between 1 second and 20 seconds
|
|
||||||
#
|
|
||||||
# Caution: There is a reason to select 20.0 here. Please see
|
|
||||||
# ./display_manifest_statistics.py
|
|
||||||
#
|
|
||||||
# You should use ./display_manifest_statistics.py to get
|
|
||||||
# an utterance duration distribution for your dataset to select
|
|
||||||
# the threshold
|
|
||||||
total += 1
|
|
||||||
if c.duration < 1.0 or c.duration > 20.0:
|
|
||||||
logging.warning(
|
|
||||||
f"Exclude cut with ID {c.id} from training. Duration: {c.duration}"
|
|
||||||
)
|
|
||||||
removed += 1
|
|
||||||
return False
|
|
||||||
|
|
||||||
# In pruned RNN-T, we require that T >= S
|
|
||||||
# where T is the number of feature frames after subsampling
|
|
||||||
# and S is the number of tokens in the utterance
|
|
||||||
|
|
||||||
# In ./pruned_transducer_stateless2/conformer.py, the
|
|
||||||
# conv module uses the following expression
|
|
||||||
# for subsampling
|
|
||||||
if c.num_frames is None:
|
|
||||||
num_frames = c.duration * 100 # approximate
|
|
||||||
else:
|
|
||||||
num_frames = c.num_frames
|
|
||||||
|
|
||||||
T = ((num_frames - 1) // 2 - 1) // 2
|
|
||||||
# Note: for ./lstm_transducer_stateless/lstm.py, the formula is
|
|
||||||
# T = ((num_frames - 3) // 2 - 1) // 2
|
|
||||||
|
|
||||||
# Note: for ./pruned_transducer_stateless7/zipformer.py, the formula is
|
|
||||||
# T = ((num_frames - 7) // 2 + 1) // 2
|
|
||||||
|
|
||||||
tokens = sp.encode(c.supervisions[0].text, out_type=str)
|
|
||||||
|
|
||||||
if T < len(tokens):
|
|
||||||
logging.warning(
|
|
||||||
f"Exclude cut with ID {c.id} from training. "
|
|
||||||
f"Number of frames (before subsampling): {c.num_frames}. "
|
|
||||||
f"Number of frames (after subsampling): {T}. "
|
|
||||||
f"Text: {c.supervisions[0].text}. "
|
|
||||||
f"Tokens: {tokens}. "
|
|
||||||
f"Number of tokens: {len(tokens)}"
|
|
||||||
)
|
|
||||||
removed += 1
|
|
||||||
return False
|
|
||||||
|
|
||||||
return True
|
|
||||||
|
|
||||||
# We use to_eager() here so that we can print out the value of total
|
|
||||||
# and removed below.
|
|
||||||
ans = cut_set.filter(remove_short_and_long_utterances).to_eager()
|
|
||||||
ratio = removed / total * 100
|
|
||||||
logging.info(
|
|
||||||
f"Removed {removed} cuts from {total} cuts. {ratio:.3f}% data is removed."
|
|
||||||
)
|
|
||||||
return ans
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
args = get_args()
|
|
||||||
logging.info(vars(args))
|
|
||||||
|
|
||||||
if args.out_cuts.is_file():
|
|
||||||
logging.info(f"{args.out_cuts} already exists - skipping")
|
|
||||||
return
|
|
||||||
|
|
||||||
assert args.in_cuts.is_file(), f"{args.in_cuts} does not exist"
|
|
||||||
assert args.bpe_model.is_file(), f"{args.bpe_model} does not exist"
|
|
||||||
|
|
||||||
sp = spm.SentencePieceProcessor()
|
|
||||||
sp.load(str(args.bpe_model))
|
|
||||||
|
|
||||||
cut_set = load_manifest_lazy(args.in_cuts)
|
|
||||||
assert isinstance(cut_set, CutSet)
|
|
||||||
|
|
||||||
cut_set = filter_cuts(cut_set, sp)
|
|
||||||
logging.info(f"Saving to {args.out_cuts}")
|
|
||||||
args.out_cuts.parent.mkdir(parents=True, exist_ok=True)
|
|
||||||
cut_set.to_file(args.out_cuts)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
||||||
|
|
||||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
||||||
|
|
||||||
main()
|
|
1
egs/ksponspeech/ASR/local/filter_cuts.py
Symbolic link
1
egs/ksponspeech/ASR/local/filter_cuts.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/local/filter_cuts.py
|
@ -1,115 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
|
||||||
#
|
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
|
|
||||||
# You can install sentencepiece via:
|
|
||||||
#
|
|
||||||
# pip install sentencepiece
|
|
||||||
#
|
|
||||||
# Due to an issue reported in
|
|
||||||
# https://github.com/google/sentencepiece/pull/642#issuecomment-857972030
|
|
||||||
#
|
|
||||||
# Please install a version >=0.1.96
|
|
||||||
|
|
||||||
import argparse
|
|
||||||
import shutil
|
|
||||||
from pathlib import Path
|
|
||||||
from typing import Dict
|
|
||||||
|
|
||||||
import sentencepiece as spm
|
|
||||||
|
|
||||||
|
|
||||||
def get_args():
|
|
||||||
parser = argparse.ArgumentParser()
|
|
||||||
parser.add_argument(
|
|
||||||
"--lang-dir",
|
|
||||||
type=str,
|
|
||||||
help="""Input and output directory.
|
|
||||||
The generated bpe.model is saved to this directory.
|
|
||||||
""",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--transcript",
|
|
||||||
type=str,
|
|
||||||
help="Training transcript.",
|
|
||||||
)
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"--vocab-size",
|
|
||||||
type=int,
|
|
||||||
help="Vocabulary size for BPE training",
|
|
||||||
)
|
|
||||||
|
|
||||||
return parser.parse_args()
|
|
||||||
|
|
||||||
|
|
||||||
def generate_tokens(lang_dir: Path):
|
|
||||||
"""
|
|
||||||
Generate the tokens.txt from a bpe model.
|
|
||||||
"""
|
|
||||||
sp = spm.SentencePieceProcessor()
|
|
||||||
sp.load(str(lang_dir / "bpe.model"))
|
|
||||||
token2id: Dict[str, int] = {sp.id_to_piece(i): i for i in range(sp.vocab_size())}
|
|
||||||
with open(lang_dir / "tokens.txt", "w", encoding="utf-8") as f:
|
|
||||||
for sym, i in token2id.items():
|
|
||||||
f.write(f"{sym} {i}\n")
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
args = get_args()
|
|
||||||
vocab_size = args.vocab_size
|
|
||||||
lang_dir = Path(args.lang_dir)
|
|
||||||
|
|
||||||
model_type = "unigram"
|
|
||||||
|
|
||||||
model_prefix = f"{lang_dir}/{model_type}_{vocab_size}"
|
|
||||||
train_text = args.transcript
|
|
||||||
character_coverage = 1.0
|
|
||||||
input_sentence_size = 100000000
|
|
||||||
|
|
||||||
user_defined_symbols = ["<blk>", "<sos/eos>"]
|
|
||||||
unk_id = len(user_defined_symbols)
|
|
||||||
# Note: unk_id is fixed to 2.
|
|
||||||
# If you change it, you should also change other
|
|
||||||
# places that are using it.
|
|
||||||
|
|
||||||
model_file = Path(model_prefix + ".model")
|
|
||||||
if not model_file.is_file():
|
|
||||||
spm.SentencePieceTrainer.train(
|
|
||||||
input=train_text,
|
|
||||||
vocab_size=vocab_size,
|
|
||||||
model_type=model_type,
|
|
||||||
model_prefix=model_prefix,
|
|
||||||
input_sentence_size=input_sentence_size,
|
|
||||||
character_coverage=character_coverage,
|
|
||||||
user_defined_symbols=user_defined_symbols,
|
|
||||||
unk_id=unk_id,
|
|
||||||
bos_id=-1,
|
|
||||||
eos_id=-1,
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
print(f"{model_file} exists - skipping")
|
|
||||||
return
|
|
||||||
|
|
||||||
shutil.copyfile(model_file, f"{lang_dir}/bpe.model")
|
|
||||||
|
|
||||||
generate_tokens(lang_dir)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
main()
|
|
1
egs/ksponspeech/ASR/local/train_bpe_model.py
Symbolic link
1
egs/ksponspeech/ASR/local/train_bpe_model.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/local/train_bpe_model.py
|
@ -1,101 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
"""
|
|
||||||
This script checks the following assumptions of the generated manifest:
|
|
||||||
|
|
||||||
- Single supervision per cut
|
|
||||||
- Supervision time bounds are within cut time bounds
|
|
||||||
|
|
||||||
We will add more checks later if needed.
|
|
||||||
|
|
||||||
Usage example:
|
|
||||||
|
|
||||||
python3 ./local/validate_manifest.py \
|
|
||||||
./data/fbank/speechtools_cuts_train.jsonl.gz
|
|
||||||
|
|
||||||
"""
|
|
||||||
|
|
||||||
import argparse
|
|
||||||
import logging
|
|
||||||
from pathlib import Path
|
|
||||||
|
|
||||||
from lhotse import CutSet, load_manifest_lazy
|
|
||||||
from lhotse.cut import Cut
|
|
||||||
from lhotse.dataset.speech_recognition import validate_for_asr
|
|
||||||
|
|
||||||
|
|
||||||
def get_args():
|
|
||||||
parser = argparse.ArgumentParser()
|
|
||||||
|
|
||||||
parser.add_argument(
|
|
||||||
"manifest",
|
|
||||||
type=Path,
|
|
||||||
help="Path to the manifest file",
|
|
||||||
)
|
|
||||||
|
|
||||||
return parser.parse_args()
|
|
||||||
|
|
||||||
|
|
||||||
def validate_one_supervision_per_cut(c: Cut):
|
|
||||||
if len(c.supervisions) != 1:
|
|
||||||
raise ValueError(f"{c.id} has {len(c.supervisions)} supervisions")
|
|
||||||
|
|
||||||
|
|
||||||
def validate_supervision_and_cut_time_bounds(c: Cut):
|
|
||||||
tol = 2e-3 # same tolerance as in 'validate_for_asr()'
|
|
||||||
s = c.supervisions[0]
|
|
||||||
|
|
||||||
# Supervision start time is relative to Cut ...
|
|
||||||
# https://lhotse.readthedocs.io/en/v0.10_e/cuts.html
|
|
||||||
if s.start < -tol:
|
|
||||||
raise ValueError(
|
|
||||||
f"{c.id}: Supervision start time {s.start} must not be negative."
|
|
||||||
)
|
|
||||||
if s.start > tol:
|
|
||||||
raise ValueError(
|
|
||||||
f"{c.id}: Supervision start time {s.start} is not at the beginning of the Cut. Please apply `lhotse cut trim-to-supervisions`."
|
|
||||||
)
|
|
||||||
if c.start + s.end > c.end + tol:
|
|
||||||
raise ValueError(
|
|
||||||
f"{c.id}: Supervision end time {c.start+s.end} is larger "
|
|
||||||
f"than cut end time {c.end}"
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
args = get_args()
|
|
||||||
|
|
||||||
manifest = args.manifest
|
|
||||||
logging.info(f"Validating {manifest}")
|
|
||||||
|
|
||||||
assert manifest.is_file(), f"{manifest} does not exist"
|
|
||||||
cut_set = load_manifest_lazy(manifest)
|
|
||||||
assert isinstance(cut_set, CutSet)
|
|
||||||
|
|
||||||
for c in cut_set:
|
|
||||||
validate_one_supervision_per_cut(c)
|
|
||||||
validate_supervision_and_cut_time_bounds(c)
|
|
||||||
|
|
||||||
# Validation from K2 training
|
|
||||||
# - checks supervision start is 0
|
|
||||||
# - checks supervision.duration is not longer than cut.duration
|
|
||||||
# - there is tolerance 2ms
|
|
||||||
validate_for_asr(cut_set)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
|
||||||
|
|
||||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
|
||||||
|
|
||||||
main()
|
|
1
egs/ksponspeech/ASR/local/validate_manifest.py
Symbolic link
1
egs/ksponspeech/ASR/local/validate_manifest.py
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../librispeech/ASR/local/validate_manifest.py
|
@ -1 +0,0 @@
|
|||||||
This recipe implements Zipformer model.
|
|
303
egs/libricss/SURT/dprnn_zipformer/pretrained.py
Executable file
303
egs/libricss/SURT/dprnn_zipformer/pretrained.py
Executable file
@ -0,0 +1,303 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
"""
|
||||||
|
Usage:
|
||||||
|
|
||||||
|
1. Download pre-trained models from
|
||||||
|
https://huggingface.co/desh2608/icefall-surt-libricss-dprnn-zipformer
|
||||||
|
|
||||||
|
2.
|
||||||
|
|
||||||
|
./dprnn_zipformer/pretrained.py \
|
||||||
|
--checkpoint /path/to/pretrained.pt \
|
||||||
|
--tokens /path/to/data/lang_bpe_500/tokens.txt \
|
||||||
|
/path/to/foo.wav
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import math
|
||||||
|
from typing import List
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import kaldifeat
|
||||||
|
import torch
|
||||||
|
import torchaudio
|
||||||
|
from beam_search import (
|
||||||
|
beam_search,
|
||||||
|
greedy_search,
|
||||||
|
greedy_search_batch,
|
||||||
|
modified_beam_search,
|
||||||
|
)
|
||||||
|
from torch.nn.utils.rnn import pad_sequence
|
||||||
|
from train import add_model_arguments, get_params, get_surt_model
|
||||||
|
|
||||||
|
from icefall.utils import num_tokens
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--checkpoint",
|
||||||
|
type=str,
|
||||||
|
required=True,
|
||||||
|
help="Path to the checkpoint. "
|
||||||
|
"The checkpoint is assumed to be saved by "
|
||||||
|
"icefall.checkpoint.save_checkpoint().",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--tokens",
|
||||||
|
type=str,
|
||||||
|
required=True,
|
||||||
|
help="""Path to tokens.txt.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--method",
|
||||||
|
type=str,
|
||||||
|
default="greedy_search",
|
||||||
|
help="""Possible values are:
|
||||||
|
- greedy_search
|
||||||
|
- modified_beam_search
|
||||||
|
- fast_beam_search
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"sound_files",
|
||||||
|
type=str,
|
||||||
|
nargs="+",
|
||||||
|
help="The input sound file(s) to transcribe. "
|
||||||
|
"Supported formats are those supported by torchaudio.load(). "
|
||||||
|
"For example, wav and flac are supported. "
|
||||||
|
"The sample rate has to be 16kHz.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--sample-rate",
|
||||||
|
type=int,
|
||||||
|
default=16000,
|
||||||
|
help="The sample rate of the input sound file",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--beam-size",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="""An integer indicating how many candidates we will keep for each
|
||||||
|
frame. Used only when --method is beam_search or
|
||||||
|
modified_beam_search.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--decoding-method",
|
||||||
|
type=str,
|
||||||
|
default="greedy_search",
|
||||||
|
help="""Possible values are:
|
||||||
|
- greedy_search
|
||||||
|
- beam_search
|
||||||
|
- modified_beam_search
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--context-size",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-sym-per-frame",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help="""Maximum number of symbols per frame. Used only when
|
||||||
|
--method is greedy_search.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
add_model_arguments(parser)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def read_sound_files(
|
||||||
|
filenames: List[str], expected_sample_rate: float
|
||||||
|
) -> List[torch.Tensor]:
|
||||||
|
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
||||||
|
Args:
|
||||||
|
filenames:
|
||||||
|
A list of sound filenames.
|
||||||
|
expected_sample_rate:
|
||||||
|
The expected sample rate of the sound files.
|
||||||
|
Returns:
|
||||||
|
Return a list of 1-D float32 torch tensors.
|
||||||
|
"""
|
||||||
|
ans = []
|
||||||
|
for f in filenames:
|
||||||
|
wave, sample_rate = torchaudio.load(f)
|
||||||
|
assert (
|
||||||
|
sample_rate == expected_sample_rate
|
||||||
|
), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}"
|
||||||
|
# We use only the first channel
|
||||||
|
ans.append(wave[0].contiguous())
|
||||||
|
return ans
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
token_table = k2.SymbolTable.from_file(params.tokens)
|
||||||
|
|
||||||
|
params.blank_id = token_table["<blk>"]
|
||||||
|
params.unk_id = token_table["<unk>"]
|
||||||
|
params.vocab_size = num_tokens(token_table) + 1
|
||||||
|
|
||||||
|
logging.info(f"{params}")
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"device: {device}")
|
||||||
|
|
||||||
|
logging.info("Creating model")
|
||||||
|
model = get_surt_model(params)
|
||||||
|
|
||||||
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
|
logging.info(f"Number of model parameters: {num_param}")
|
||||||
|
|
||||||
|
checkpoint = torch.load(args.checkpoint, map_location="cpu")
|
||||||
|
model.load_state_dict(checkpoint["model"], strict=False)
|
||||||
|
model.to(device)
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
logging.info("Constructing Fbank computer")
|
||||||
|
opts = kaldifeat.FbankOptions()
|
||||||
|
opts.device = device
|
||||||
|
opts.frame_opts.dither = 0
|
||||||
|
opts.frame_opts.snip_edges = False
|
||||||
|
opts.frame_opts.samp_freq = params.sample_rate
|
||||||
|
opts.mel_opts.num_bins = params.feature_dim
|
||||||
|
opts.mel_opts.high_freq = -400
|
||||||
|
|
||||||
|
fbank = kaldifeat.Fbank(opts)
|
||||||
|
|
||||||
|
logging.info(f"Reading sound files: {params.sound_files}")
|
||||||
|
waves = read_sound_files(
|
||||||
|
filenames=params.sound_files, expected_sample_rate=params.sample_rate
|
||||||
|
)
|
||||||
|
waves = [w.to(device) for w in waves]
|
||||||
|
|
||||||
|
logging.info("Decoding started")
|
||||||
|
features = fbank(waves)
|
||||||
|
feature_lengths = [f.size(0) for f in features]
|
||||||
|
|
||||||
|
features = pad_sequence(features, batch_first=True, padding_value=math.log(1e-10))
|
||||||
|
feature_lengths = torch.tensor(feature_lengths, device=device)
|
||||||
|
|
||||||
|
B, T, F = features.shape
|
||||||
|
processed = model.mask_encoder(features) # B,T,F*num_channels
|
||||||
|
masks = processed.view(B, T, F, params.num_channels).unbind(dim=-1)
|
||||||
|
x_masked = [features * m for m in masks]
|
||||||
|
|
||||||
|
# Recognition
|
||||||
|
# Concatenate the inputs along the batch axis
|
||||||
|
h = torch.cat(x_masked, dim=0)
|
||||||
|
h_lens = feature_lengths.repeat(params.num_channels)
|
||||||
|
encoder_out, encoder_out_lens = model.encoder(x=h, x_lens=h_lens)
|
||||||
|
|
||||||
|
if model.joint_encoder_layer is not None:
|
||||||
|
encoder_out = model.joint_encoder_layer(encoder_out)
|
||||||
|
|
||||||
|
def _group_channels(hyps: List[str]) -> List[List[str]]:
|
||||||
|
"""
|
||||||
|
Currently we have a batch of size M*B, where M is the number of
|
||||||
|
channels and B is the batch size. We need to group the hypotheses
|
||||||
|
into B groups, each of which contains M hypotheses.
|
||||||
|
|
||||||
|
Example:
|
||||||
|
hyps = ['a1', 'b1', 'c1', 'a2', 'b2', 'c2']
|
||||||
|
_group_channels(hyps) = [['a1', 'a2'], ['b1', 'b2'], ['c1', 'c2']]
|
||||||
|
"""
|
||||||
|
assert len(hyps) == B * params.num_channels
|
||||||
|
out_hyps = []
|
||||||
|
for i in range(B):
|
||||||
|
out_hyps.append(hyps[i::B])
|
||||||
|
return out_hyps
|
||||||
|
|
||||||
|
hyps = []
|
||||||
|
msg = f"Using {params.method}"
|
||||||
|
logging.info(msg)
|
||||||
|
|
||||||
|
def token_ids_to_words(token_ids: List[int]) -> str:
|
||||||
|
text = ""
|
||||||
|
for i in token_ids:
|
||||||
|
text += token_table[i]
|
||||||
|
return text.replace("▁", " ").strip()
|
||||||
|
|
||||||
|
if params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1:
|
||||||
|
hyp_tokens = greedy_search_batch(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
)
|
||||||
|
for hyp in hyp_tokens:
|
||||||
|
hyps.append(token_ids_to_words(hyp))
|
||||||
|
elif params.decoding_method == "modified_beam_search":
|
||||||
|
hyp_tokens = modified_beam_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
beam=params.beam_size,
|
||||||
|
)
|
||||||
|
for hyp in hyp_tokens:
|
||||||
|
hyps.append(token_ids_to_words(hyp))
|
||||||
|
else:
|
||||||
|
batch_size = encoder_out.size(0)
|
||||||
|
|
||||||
|
for i in range(batch_size):
|
||||||
|
# fmt: off
|
||||||
|
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
||||||
|
# fmt: on
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
hyp = greedy_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out_i,
|
||||||
|
max_sym_per_frame=params.max_sym_per_frame,
|
||||||
|
)
|
||||||
|
elif params.decoding_method == "beam_search":
|
||||||
|
hyp = beam_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out_i,
|
||||||
|
beam=params.beam_size,
|
||||||
|
)
|
||||||
|
hyps.append(token_ids_to_words(hyp))
|
||||||
|
else:
|
||||||
|
raise ValueError(
|
||||||
|
f"Unsupported decoding method: {params.decoding_method}"
|
||||||
|
)
|
||||||
|
|
||||||
|
s = "\n"
|
||||||
|
for filename, hyp in zip(params.sound_files, hyps):
|
||||||
|
s += f"{filename}:\n{hyp}\n\n"
|
||||||
|
logging.info(s)
|
||||||
|
|
||||||
|
logging.info("Decoding Done")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
main()
|
@ -62,9 +62,7 @@ from asr_datamodule import LibriCssAsrDataModule
|
|||||||
from decoder import Decoder
|
from decoder import Decoder
|
||||||
from dprnn import DPRNN
|
from dprnn import DPRNN
|
||||||
from einops.layers.torch import Rearrange
|
from einops.layers.torch import Rearrange
|
||||||
from graph_pit.loss.optimized import optimized_graph_pit_mse_loss as gpit_mse
|
|
||||||
from joiner import Joiner
|
from joiner import Joiner
|
||||||
from lhotse.cut import Cut
|
|
||||||
from lhotse.dataset.sampling.base import CutSampler
|
from lhotse.dataset.sampling.base import CutSampler
|
||||||
from lhotse.utils import LOG_EPSILON, fix_random_seed
|
from lhotse.utils import LOG_EPSILON, fix_random_seed
|
||||||
from model import SURT
|
from model import SURT
|
||||||
|
@ -20,6 +20,8 @@ import json
|
|||||||
import sys
|
import sys
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
|
from icefall.utils import str2bool
|
||||||
|
|
||||||
|
|
||||||
def simple_cleanup(text: str) -> str:
|
def simple_cleanup(text: str) -> str:
|
||||||
table = str.maketrans("’‘,。;?!():-《》、“”【】", "'',.;?!(): <>/\"\"[]")
|
table = str.maketrans("’‘,。;?!():-《》、“”【】", "'',.;?!(): <>/\"\"[]")
|
||||||
@ -29,17 +31,21 @@ def simple_cleanup(text: str) -> str:
|
|||||||
|
|
||||||
# Assign text of the supervisions and remove unnecessary entries.
|
# Assign text of the supervisions and remove unnecessary entries.
|
||||||
def main():
|
def main():
|
||||||
assert len(sys.argv) == 3, "Usage: ./local/prepare_manifest.py INPUT OUTPUT_DIR"
|
assert (
|
||||||
|
len(sys.argv) == 4
|
||||||
|
), "Usage: ./local/prepare_manifest.py INPUT OUTPUT_DIR KEEP_CUSTOM_FIELDS"
|
||||||
fname = Path(sys.argv[1]).name
|
fname = Path(sys.argv[1]).name
|
||||||
oname = Path(sys.argv[2]) / fname
|
oname = Path(sys.argv[2]) / fname
|
||||||
|
keep_custom_fields = str2bool(sys.argv[3])
|
||||||
with gzip.open(sys.argv[1], "r") as fin, gzip.open(oname, "w") as fout:
|
with gzip.open(sys.argv[1], "r") as fin, gzip.open(oname, "w") as fout:
|
||||||
for line in fin:
|
for line in fin:
|
||||||
cut = json.loads(line)
|
cut = json.loads(line)
|
||||||
cut["supervisions"][0]["text"] = simple_cleanup(
|
cut["supervisions"][0]["text"] = simple_cleanup(
|
||||||
cut["supervisions"][0]["custom"]["texts"][0]
|
cut["supervisions"][0]["custom"]["texts"][0]
|
||||||
)
|
)
|
||||||
del cut["supervisions"][0]["custom"]
|
if not keep_custom_fields:
|
||||||
del cut["custom"]
|
del cut["supervisions"][0]["custom"]
|
||||||
|
del cut["custom"]
|
||||||
fout.write((json.dumps(cut) + "\n").encode())
|
fout.write((json.dumps(cut) + "\n").encode())
|
||||||
|
|
||||||
|
|
||||||
|
@ -29,6 +29,11 @@ export CUDA_VISIBLE_DEVICES=""
|
|||||||
# - speech
|
# - speech
|
||||||
dl_dir=$PWD/download
|
dl_dir=$PWD/download
|
||||||
|
|
||||||
|
# If you want to do PromptASR experiments, please set it to True
|
||||||
|
# as this will keep the texts and pre_text information required for
|
||||||
|
# the training of PromptASR.
|
||||||
|
keep_custom_fields=False
|
||||||
|
|
||||||
. shared/parse_options.sh || exit 1
|
. shared/parse_options.sh || exit 1
|
||||||
|
|
||||||
# vocab size for sentence piece models.
|
# vocab size for sentence piece models.
|
||||||
@ -134,7 +139,7 @@ if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
|||||||
for subset in small medium large dev test_clean test_other; do
|
for subset in small medium large dev test_clean test_other; do
|
||||||
if [ ! -e $manifests_dir/libriheavy_cuts_${subset}.jsonl.gz ]; then
|
if [ ! -e $manifests_dir/libriheavy_cuts_${subset}.jsonl.gz ]; then
|
||||||
log "Prepare manifest for subset : ${subset}"
|
log "Prepare manifest for subset : ${subset}"
|
||||||
./local/prepare_manifest.py $dl_dir/libriheavy/libriheavy_cuts_${subset}.jsonl.gz $manifests_dir
|
./local/prepare_manifest.py $dl_dir/libriheavy/libriheavy_cuts_${subset}.jsonl.gz $manifests_dir $keep_custom_fields
|
||||||
fi
|
fi
|
||||||
done
|
done
|
||||||
fi
|
fi
|
||||||
|
@ -50,7 +50,7 @@ We place an additional Conv1d layer right after the input embedding layer.
|
|||||||
| `conformer-ctc2` | Reworked Conformer | Use auxiliary attention head |
|
| `conformer-ctc2` | Reworked Conformer | Use auxiliary attention head |
|
||||||
| `conformer-ctc3` | Reworked Conformer | Streaming version + delay penalty |
|
| `conformer-ctc3` | Reworked Conformer | Streaming version + delay penalty |
|
||||||
| `zipformer-ctc` | Zipformer | Use auxiliary attention head |
|
| `zipformer-ctc` | Zipformer | Use auxiliary attention head |
|
||||||
| `zipformer` | Upgraded Zipformer | Use auxiliary transducer head / attention-decoder head | The latest recipe |
|
| `zipformer` | Upgraded Zipformer | Use auxiliary transducer head / attention-decoder head (the latest recipe) |
|
||||||
|
|
||||||
# MMI
|
# MMI
|
||||||
|
|
||||||
@ -58,3 +58,9 @@ We place an additional Conv1d layer right after the input embedding layer.
|
|||||||
|------------------------------|-----------|---------------------------------------------------|
|
|------------------------------|-----------|---------------------------------------------------|
|
||||||
| `conformer-mmi` | Conformer | |
|
| `conformer-mmi` | Conformer | |
|
||||||
| `zipformer-mmi` | Zipformer | CTC warmup + use HP as decoding graph for decoding |
|
| `zipformer-mmi` | Zipformer | CTC warmup + use HP as decoding graph for decoding |
|
||||||
|
|
||||||
|
# CR-CTC
|
||||||
|
|
||||||
|
| | Encoder | Comment |
|
||||||
|
|------------------------------|--------------------|------------------------------|
|
||||||
|
| `zipformer` | Upgraded Zipformer | Could also be an auxiliary loss to improve transducer or CTC/AED (the latest recipe) |
|
||||||
|
@ -1,5 +1,318 @@
|
|||||||
## Results
|
## Results
|
||||||
|
|
||||||
|
### zipformer (zipformer + pruned-transducer w/ CR-CTC)
|
||||||
|
|
||||||
|
See <https://github.com/k2-fsa/icefall/pull/1766> for more details.
|
||||||
|
|
||||||
|
[zipformer](./zipformer)
|
||||||
|
|
||||||
|
#### Non-streaming
|
||||||
|
|
||||||
|
##### large-scale model, number of model parameters: 148824074, i.e., 148.8 M
|
||||||
|
|
||||||
|
You can find a pretrained model, training logs, decoding logs, and decoding results at:
|
||||||
|
<https://huggingface.co/Zengwei/icefall-asr-librispeech-zipformer-large-transducer-with-CR-CTC-20241019>
|
||||||
|
|
||||||
|
You can use <https://github.com/k2-fsa/sherpa> to deploy it.
|
||||||
|
|
||||||
|
| decoding method | test-clean | test-other | comment |
|
||||||
|
|--------------------------------------|------------|------------|---------------------|
|
||||||
|
| greedy_search | 1.9 | 3.96 | --epoch 50 --avg 26 |
|
||||||
|
| modified_beam_search | 1.88 | 3.95 | --epoch 50 --avg 26 |
|
||||||
|
|
||||||
|
The training command using 2 80G-A100 GPUs is:
|
||||||
|
```bash
|
||||||
|
export CUDA_VISIBLE_DEVICES="0,1"
|
||||||
|
# for non-streaming model training:
|
||||||
|
./zipformer/train.py \
|
||||||
|
--world-size 2 \
|
||||||
|
--num-epochs 50 \
|
||||||
|
--start-epoch 1 \
|
||||||
|
--use-fp16 1 \
|
||||||
|
--exp-dir zipformer/exp-large-cr-ctc-rnnt \
|
||||||
|
--use-cr-ctc 1 \
|
||||||
|
--use-ctc 1 \
|
||||||
|
--use-transducer 1 \
|
||||||
|
--use-attention-decoder 0 \
|
||||||
|
--num-encoder-layers 2,2,4,5,4,2 \
|
||||||
|
--feedforward-dim 512,768,1536,2048,1536,768 \
|
||||||
|
--encoder-dim 192,256,512,768,512,256 \
|
||||||
|
--encoder-unmasked-dim 192,192,256,320,256,192 \
|
||||||
|
--ctc-loss-scale 0.1 \
|
||||||
|
--enable-spec-aug 0 \
|
||||||
|
--cr-loss-scale 0.02 \
|
||||||
|
--time-mask-ratio 2.5 \
|
||||||
|
--full-libri 1 \
|
||||||
|
--max-duration 1400 \
|
||||||
|
--master-port 12345
|
||||||
|
```
|
||||||
|
|
||||||
|
The decoding command is:
|
||||||
|
```bash
|
||||||
|
export CUDA_VISIBLE_DEVICES="0"
|
||||||
|
for m in greedy_search modified_beam_search; do
|
||||||
|
./zipformer/decode.py \
|
||||||
|
--epoch 50 \
|
||||||
|
--avg 26 \
|
||||||
|
--exp-dir zipformer/exp-large-cr-ctc-rnnt \
|
||||||
|
--use-cr-ctc 1 \
|
||||||
|
--use-ctc 1 \
|
||||||
|
--use-transducer 1 \
|
||||||
|
--use-attention-decoder 0 \
|
||||||
|
--num-encoder-layers 2,2,4,5,4,2 \
|
||||||
|
--feedforward-dim 512,768,1536,2048,1536,768 \
|
||||||
|
--encoder-dim 192,256,512,768,512,256 \
|
||||||
|
--encoder-unmasked-dim 192,192,256,320,256,192 \
|
||||||
|
--max-duration 300 \
|
||||||
|
--decoding-method $m
|
||||||
|
done
|
||||||
|
```
|
||||||
|
|
||||||
|
### zipformer (zipformer + CR-CTC-AED)
|
||||||
|
|
||||||
|
See <https://github.com/k2-fsa/icefall/pull/1766> for more details.
|
||||||
|
|
||||||
|
[zipformer](./zipformer)
|
||||||
|
|
||||||
|
#### Non-streaming
|
||||||
|
|
||||||
|
##### large-scale model, number of model parameters: 174319650, i.e., 174.3 M
|
||||||
|
|
||||||
|
You can find a pretrained model, training logs, decoding logs, and decoding results at:
|
||||||
|
<https://huggingface.co/Zengwei/icefall-asr-librispeech-zipformer-large-cr-ctc-aed-20241020>
|
||||||
|
|
||||||
|
You can use <https://github.com/k2-fsa/sherpa> to deploy it.
|
||||||
|
|
||||||
|
| decoding method | test-clean | test-other | comment |
|
||||||
|
|--------------------------------------|------------|------------|---------------------|
|
||||||
|
| attention-decoder-rescoring-no-ngram | 1.96 | 4.08 | --epoch 50 --avg 20 |
|
||||||
|
|
||||||
|
The training command using 2 80G-A100 GPUs is:
|
||||||
|
```bash
|
||||||
|
export CUDA_VISIBLE_DEVICES="0,1"
|
||||||
|
# for non-streaming model training:
|
||||||
|
./zipformer/train.py \
|
||||||
|
--world-size 2 \
|
||||||
|
--num-epochs 50 \
|
||||||
|
--start-epoch 1 \
|
||||||
|
--use-fp16 1 \
|
||||||
|
--exp-dir zipformer/exp-large-cr-ctc-aed \
|
||||||
|
--use-cr-ctc 1 \
|
||||||
|
--use-ctc 1 \
|
||||||
|
--use-transducer 0 \
|
||||||
|
--use-attention-decoder 1 \
|
||||||
|
--num-encoder-layers 2,2,4,5,4,2 \
|
||||||
|
--feedforward-dim 512,768,1536,2048,1536,768 \
|
||||||
|
--encoder-dim 192,256,512,768,512,256 \
|
||||||
|
--encoder-unmasked-dim 192,192,256,320,256,192 \
|
||||||
|
--ctc-loss-scale 0.1 \
|
||||||
|
--attention-decoder-loss-scale 0.9 \
|
||||||
|
--enable-spec-aug 0 \
|
||||||
|
--cr-loss-scale 0.02 \
|
||||||
|
--time-mask-ratio 2.5 \
|
||||||
|
--full-libri 1 \
|
||||||
|
--max-duration 1200 \
|
||||||
|
--master-port 12345
|
||||||
|
```
|
||||||
|
|
||||||
|
The decoding command is:
|
||||||
|
```bash
|
||||||
|
export CUDA_VISIBLE_DEVICES="0"
|
||||||
|
./zipformer/ctc_decode.py \
|
||||||
|
--epoch 50 \
|
||||||
|
--avg 20 \
|
||||||
|
--exp-dir zipformer/exp-large-cr-ctc-aed/ \
|
||||||
|
--use-cr-ctc 1 \
|
||||||
|
--use-ctc 1 \
|
||||||
|
--use-transducer 0 \
|
||||||
|
--use-attention-decoder 1 \
|
||||||
|
--num-encoder-layers 2,2,4,5,4,2 \
|
||||||
|
--feedforward-dim 512,768,1536,2048,1536,768 \
|
||||||
|
--encoder-dim 192,256,512,768,512,256 \
|
||||||
|
--encoder-unmasked-dim 192,192,256,320,256,192 \
|
||||||
|
--max-duration 200 \
|
||||||
|
--decoding-method attention-decoder-rescoring-no-ngram
|
||||||
|
done
|
||||||
|
```
|
||||||
|
|
||||||
|
### zipformer (zipformer + CR-CTC)
|
||||||
|
|
||||||
|
See <https://github.com/k2-fsa/icefall/pull/1766> for more details.
|
||||||
|
|
||||||
|
[zipformer](./zipformer)
|
||||||
|
|
||||||
|
#### Non-streaming
|
||||||
|
|
||||||
|
##### small-scale model, number of model parameters: 22118279, i.e., 22.1 M
|
||||||
|
|
||||||
|
You can find a pretrained model, training logs, decoding logs, and decoding results at:
|
||||||
|
<https://huggingface.co/Zengwei/icefall-asr-librispeech-zipformer-small-cr-ctc-20241018>
|
||||||
|
|
||||||
|
You can use <https://github.com/k2-fsa/sherpa> to deploy it.
|
||||||
|
|
||||||
|
| decoding method | test-clean | test-other | comment |
|
||||||
|
|--------------------------------------|------------|------------|---------------------|
|
||||||
|
| ctc-greedy-decoding | 2.57 | 5.95 | --epoch 50 --avg 25 |
|
||||||
|
| ctc-prefix-beam-search | 2.52 | 5.85 | --epoch 50 --avg 25 |
|
||||||
|
|
||||||
|
The training command using 2 32G-V100 GPUs is:
|
||||||
|
```bash
|
||||||
|
export CUDA_VISIBLE_DEVICES="0,1"
|
||||||
|
# for non-streaming model training:
|
||||||
|
./zipformer/train.py \
|
||||||
|
--world-size 2 \
|
||||||
|
--num-epochs 50 \
|
||||||
|
--start-epoch 1 \
|
||||||
|
--use-fp16 1 \
|
||||||
|
--exp-dir zipformer/exp-small/ \
|
||||||
|
--use-cr-ctc 1 \
|
||||||
|
--use-ctc 1 \
|
||||||
|
--use-transducer 0 \
|
||||||
|
--use-attention-decoder 0 \
|
||||||
|
--num-encoder-layers 2,2,2,2,2,2 \
|
||||||
|
--feedforward-dim 512,768,768,768,768,768 \
|
||||||
|
--encoder-dim 192,256,256,256,256,256 \
|
||||||
|
--encoder-unmasked-dim 192,192,192,192,192,192 \
|
||||||
|
--base-lr 0.04 \
|
||||||
|
--enable-spec-aug 0 \
|
||||||
|
--cr-loss-scale 0.2 \
|
||||||
|
--time-mask-ratio 2.5 \
|
||||||
|
--full-libri 1 \
|
||||||
|
--max-duration 850 \
|
||||||
|
--master-port 12345
|
||||||
|
```
|
||||||
|
|
||||||
|
The decoding command is:
|
||||||
|
```bash
|
||||||
|
export CUDA_VISIBLE_DEVICES="0"
|
||||||
|
for m in ctc-greedy-search ctc-prefix-beam-search; do
|
||||||
|
./zipformer/ctc_decode.py \
|
||||||
|
--epoch 50 \
|
||||||
|
--avg 25 \
|
||||||
|
--exp-dir zipformer/exp-small \
|
||||||
|
--use-cr-ctc 1 \
|
||||||
|
--use-ctc 1 \
|
||||||
|
--use-transducer 0 \
|
||||||
|
--use-attention-decoder 0 \
|
||||||
|
--num-encoder-layers 2,2,2,2,2,2 \
|
||||||
|
--feedforward-dim 512,768,768,768,768,768 \
|
||||||
|
--encoder-dim 192,256,256,256,256,256 \
|
||||||
|
--encoder-unmasked-dim 192,192,192,192,192,192 \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method $m
|
||||||
|
done
|
||||||
|
```
|
||||||
|
|
||||||
|
##### medium-scale model, number of model parameters: 64250603, i.e., 64.3 M
|
||||||
|
|
||||||
|
You can find a pretrained model, training logs, decoding logs, and decoding results at:
|
||||||
|
<https://huggingface.co/Zengwei/icefall-asr-librispeech-zipformer-medium-cr-ctc-20241018>
|
||||||
|
|
||||||
|
You can use <https://github.com/k2-fsa/sherpa> to deploy it.
|
||||||
|
|
||||||
|
| decoding method | test-clean | test-other | comment |
|
||||||
|
|--------------------------------------|------------|------------|---------------------|
|
||||||
|
| ctc-greedy-decoding | 2.12 | 4.62 | --epoch 50 --avg 24 |
|
||||||
|
| ctc-prefix-beam-search | 2.1 | 4.61 | --epoch 50 --avg 24 |
|
||||||
|
|
||||||
|
The training command using 4 32G-V100 GPUs is:
|
||||||
|
```bash
|
||||||
|
export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
||||||
|
# For non-streaming model training:
|
||||||
|
./zipformer/train.py \
|
||||||
|
--world-size 4 \
|
||||||
|
--num-epochs 50 \
|
||||||
|
--start-epoch 1 \
|
||||||
|
--use-fp16 1 \
|
||||||
|
--exp-dir zipformer/exp \
|
||||||
|
--use-cr-ctc 1 \
|
||||||
|
--use-ctc 1 \
|
||||||
|
--use-transducer 0 \
|
||||||
|
--use-attention-decoder 0 \
|
||||||
|
--enable-spec-aug 0 \
|
||||||
|
--cr-loss-scale 0.2 \
|
||||||
|
--time-mask-ratio 2.5 \
|
||||||
|
--full-libri 1 \
|
||||||
|
--max-duration 700 \
|
||||||
|
--master-port 12345
|
||||||
|
```
|
||||||
|
|
||||||
|
The decoding command is:
|
||||||
|
```bash
|
||||||
|
export CUDA_VISIBLE_DEVICES="0"
|
||||||
|
for m in ctc-greedy-search ctc-prefix-beam-search; do
|
||||||
|
./zipformer/ctc_decode.py \
|
||||||
|
--epoch 50 \
|
||||||
|
--avg 24 \
|
||||||
|
--exp-dir zipformer/exp \
|
||||||
|
--use-cr-ctc 1 \
|
||||||
|
--use-ctc 1 \
|
||||||
|
--use-transducer 0 \
|
||||||
|
--use-attention-decoder 0 \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method $m
|
||||||
|
done
|
||||||
|
```
|
||||||
|
|
||||||
|
##### large-scale model, number of model parameters: 147010094, i.e., 147.0 M
|
||||||
|
|
||||||
|
You can find a pretrained model, training logs, decoding logs, and decoding results at:
|
||||||
|
<https://huggingface.co/Zengwei/icefall-asr-librispeech-zipformer-large-cr-ctc-20241018>
|
||||||
|
|
||||||
|
You can use <https://github.com/k2-fsa/sherpa> to deploy it.
|
||||||
|
|
||||||
|
| decoding method | test-clean | test-other | comment |
|
||||||
|
|--------------------------------------|------------|------------|---------------------|
|
||||||
|
| ctc-greedy-decoding | 2.03 | 4.37 | --epoch 50 --avg 26 |
|
||||||
|
| ctc-prefix-beam-search | 2.02 | 4.35 | --epoch 50 --avg 26 |
|
||||||
|
|
||||||
|
The training command using 2 80G-A100 GPUs is:
|
||||||
|
```bash
|
||||||
|
export CUDA_VISIBLE_DEVICES="0,1"
|
||||||
|
# For non-streaming model training:
|
||||||
|
./zipformer/train.py \
|
||||||
|
--world-size 2 \
|
||||||
|
--num-epochs 50 \
|
||||||
|
--start-epoch 1 \
|
||||||
|
--use-fp16 1 \
|
||||||
|
--exp-dir zipformer/exp-large \
|
||||||
|
--use-cr-ctc 1 \
|
||||||
|
--use-ctc 1 \
|
||||||
|
--use-transducer 0 \
|
||||||
|
--use-attention-decoder 0 \
|
||||||
|
--num-encoder-layers 2,2,4,5,4,2 \
|
||||||
|
--feedforward-dim 512,768,1536,2048,1536,768 \
|
||||||
|
--encoder-dim 192,256,512,768,512,256 \
|
||||||
|
--encoder-unmasked-dim 192,192,256,320,256,192 \
|
||||||
|
--enable-spec-aug 0 \
|
||||||
|
--cr-loss-scale 0.2 \
|
||||||
|
--time-mask-ratio 2.5 \
|
||||||
|
--full-libri 1 \
|
||||||
|
--max-duration 1400 \
|
||||||
|
--master-port 12345
|
||||||
|
```
|
||||||
|
|
||||||
|
The decoding command is:
|
||||||
|
```bash
|
||||||
|
export CUDA_VISIBLE_DEVICES="0"
|
||||||
|
for m in ctc-greedy-search ctc-prefix-beam-search; do
|
||||||
|
./zipformer/ctc_decode.py \
|
||||||
|
--epoch 50 \
|
||||||
|
--avg 26 \
|
||||||
|
--exp-dir zipformer/exp-large \
|
||||||
|
--use-cr-ctc 1 \
|
||||||
|
--use-ctc 1 \
|
||||||
|
--use-transducer 0 \
|
||||||
|
--use-attention-decoder 0 \
|
||||||
|
--num-encoder-layers 2,2,4,5,4,2 \
|
||||||
|
--feedforward-dim 512,768,1536,2048,1536,768 \
|
||||||
|
--encoder-dim 192,256,512,768,512,256 \
|
||||||
|
--encoder-unmasked-dim 192,192,256,320,256,192 \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method $m
|
||||||
|
done
|
||||||
|
```
|
||||||
|
|
||||||
### zipformer (zipformer + CTC/AED)
|
### zipformer (zipformer + CTC/AED)
|
||||||
|
|
||||||
See <https://github.com/k2-fsa/icefall/pull/1389> for more details.
|
See <https://github.com/k2-fsa/icefall/pull/1389> for more details.
|
||||||
@ -307,6 +620,23 @@ done
|
|||||||
|
|
||||||
To decode with external language models, please refer to the documentation [here](https://k2-fsa.github.io/icefall/decoding-with-langugage-models/index.html).
|
To decode with external language models, please refer to the documentation [here](https://k2-fsa.github.io/icefall/decoding-with-langugage-models/index.html).
|
||||||
|
|
||||||
|
We also support training Zipformer with AMP+bf16 format (requires bf16 support). See [here](https://github.com/k2-fsa/icefall/pull/1700) for more details and pre-trained models. **The same command can be used for decoding and exporting the model.**
|
||||||
|
|
||||||
|
The amp+bf16 training command is:
|
||||||
|
```bash
|
||||||
|
export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
||||||
|
./zipformer/train.py \
|
||||||
|
--world-size 4 \
|
||||||
|
--num-epochs 50 \
|
||||||
|
--start-epoch 1 \
|
||||||
|
--use-fp16 0 \
|
||||||
|
--use-bf16 1 \
|
||||||
|
--exp-dir zipformer/exp_amp_bf16 \
|
||||||
|
--causal 0 \
|
||||||
|
--full-libri 1 \
|
||||||
|
--max-duration 1000
|
||||||
|
```
|
||||||
|
|
||||||
##### small-scaled model, number of model parameters: 23285615, i.e., 23.3 M
|
##### small-scaled model, number of model parameters: 23285615, i.e., 23.3 M
|
||||||
|
|
||||||
The tensorboard log can be found at
|
The tensorboard log can be found at
|
||||||
|
@ -32,7 +32,7 @@ class Conformer(Transformer):
|
|||||||
subsampling_factor (int): subsampling factor of encoder (the convolution layers before transformers)
|
subsampling_factor (int): subsampling factor of encoder (the convolution layers before transformers)
|
||||||
d_model (int): attention dimension
|
d_model (int): attention dimension
|
||||||
nhead (int): number of head
|
nhead (int): number of head
|
||||||
dim_feedforward (int): feedforward dimention
|
dim_feedforward (int): feedforward dimension
|
||||||
num_encoder_layers (int): number of encoder layers
|
num_encoder_layers (int): number of encoder layers
|
||||||
num_decoder_layers (int): number of decoder layers
|
num_decoder_layers (int): number of decoder layers
|
||||||
dropout (float): dropout rate
|
dropout (float): dropout rate
|
||||||
@ -902,7 +902,7 @@ class Swish(torch.nn.Module):
|
|||||||
"""Construct an Swish object."""
|
"""Construct an Swish object."""
|
||||||
|
|
||||||
def forward(self, x: Tensor) -> Tensor:
|
def forward(self, x: Tensor) -> Tensor:
|
||||||
"""Return Swich activation function."""
|
"""Return Swish activation function."""
|
||||||
return x * torch.sigmoid(x)
|
return x * torch.sigmoid(x)
|
||||||
|
|
||||||
|
|
||||||
|
@ -42,7 +42,7 @@ class Conformer(Transformer):
|
|||||||
subsampling_factor (int): subsampling factor of encoder (the convolution layers before transformers)
|
subsampling_factor (int): subsampling factor of encoder (the convolution layers before transformers)
|
||||||
d_model (int): attention dimension, also the output dimension
|
d_model (int): attention dimension, also the output dimension
|
||||||
nhead (int): number of head
|
nhead (int): number of head
|
||||||
dim_feedforward (int): feedforward dimention
|
dim_feedforward (int): feedforward dimension
|
||||||
num_encoder_layers (int): number of encoder layers
|
num_encoder_layers (int): number of encoder layers
|
||||||
num_decoder_layers (int): number of decoder layers
|
num_decoder_layers (int): number of decoder layers
|
||||||
dropout (float): dropout rate
|
dropout (float): dropout rate
|
||||||
|
@ -33,7 +33,7 @@ class Conformer(Transformer):
|
|||||||
subsampling_factor (int): subsampling factor of encoder (the convolution layers before transformers)
|
subsampling_factor (int): subsampling factor of encoder (the convolution layers before transformers)
|
||||||
d_model (int): attention dimension
|
d_model (int): attention dimension
|
||||||
nhead (int): number of head
|
nhead (int): number of head
|
||||||
dim_feedforward (int): feedforward dimention
|
dim_feedforward (int): feedforward dimension
|
||||||
num_encoder_layers (int): number of encoder layers
|
num_encoder_layers (int): number of encoder layers
|
||||||
num_decoder_layers (int): number of decoder layers
|
num_decoder_layers (int): number of decoder layers
|
||||||
dropout (float): dropout rate
|
dropout (float): dropout rate
|
||||||
|
@ -42,7 +42,7 @@ class Conformer(EncoderInterface):
|
|||||||
subsampling_factor (int): subsampling factor of encoder (the convolution layers before transformers)
|
subsampling_factor (int): subsampling factor of encoder (the convolution layers before transformers)
|
||||||
d_model (int): attention dimension, also the output dimension
|
d_model (int): attention dimension, also the output dimension
|
||||||
nhead (int): number of head
|
nhead (int): number of head
|
||||||
dim_feedforward (int): feedforward dimention
|
dim_feedforward (int): feedforward dimension
|
||||||
num_encoder_layers (int): number of encoder layers
|
num_encoder_layers (int): number of encoder layers
|
||||||
dropout (float): dropout rate
|
dropout (float): dropout rate
|
||||||
layer_dropout (float): layer-dropout rate.
|
layer_dropout (float): layer-dropout rate.
|
||||||
|
@ -42,7 +42,7 @@ class Conformer(EncoderInterface):
|
|||||||
subsampling_factor (int): subsampling factor of encoder (the convolution layers before transformers)
|
subsampling_factor (int): subsampling factor of encoder (the convolution layers before transformers)
|
||||||
d_model (int): attention dimension, also the output dimension
|
d_model (int): attention dimension, also the output dimension
|
||||||
nhead (int): number of head
|
nhead (int): number of head
|
||||||
dim_feedforward (int): feedforward dimention
|
dim_feedforward (int): feedforward dimension
|
||||||
num_encoder_layers (int): number of encoder layers
|
num_encoder_layers (int): number of encoder layers
|
||||||
dropout (float): dropout rate
|
dropout (float): dropout rate
|
||||||
layer_dropout (float): layer-dropout rate.
|
layer_dropout (float): layer-dropout rate.
|
||||||
|
@ -42,7 +42,7 @@ class Conformer(EncoderInterface):
|
|||||||
subsampling_factor (int): subsampling factor of encoder (the convolution layers before transformers)
|
subsampling_factor (int): subsampling factor of encoder (the convolution layers before transformers)
|
||||||
d_model (int): attention dimension, also the output dimension
|
d_model (int): attention dimension, also the output dimension
|
||||||
nhead (int): number of head
|
nhead (int): number of head
|
||||||
dim_feedforward (int): feedforward dimention
|
dim_feedforward (int): feedforward dimension
|
||||||
num_encoder_layers (int): number of encoder layers
|
num_encoder_layers (int): number of encoder layers
|
||||||
dropout (float): dropout rate
|
dropout (float): dropout rate
|
||||||
layer_dropout (float): layer-dropout rate.
|
layer_dropout (float): layer-dropout rate.
|
||||||
|
@ -42,7 +42,7 @@ class Conformer(EncoderInterface):
|
|||||||
subsampling_factor (int): subsampling factor of encoder (the convolution layers before transformers)
|
subsampling_factor (int): subsampling factor of encoder (the convolution layers before transformers)
|
||||||
d_model (int): attention dimension, also the output dimension
|
d_model (int): attention dimension, also the output dimension
|
||||||
nhead (int): number of head
|
nhead (int): number of head
|
||||||
dim_feedforward (int): feedforward dimention
|
dim_feedforward (int): feedforward dimension
|
||||||
num_encoder_layers (int): number of encoder layers
|
num_encoder_layers (int): number of encoder layers
|
||||||
dropout (float): dropout rate
|
dropout (float): dropout rate
|
||||||
layer_dropout (float): layer-dropout rate.
|
layer_dropout (float): layer-dropout rate.
|
||||||
|
@ -69,7 +69,7 @@ class Conformer(Transformer):
|
|||||||
subsampling_factor (int): subsampling factor of encoder (the convolution layers before transformers)
|
subsampling_factor (int): subsampling factor of encoder (the convolution layers before transformers)
|
||||||
d_model (int): attention dimension
|
d_model (int): attention dimension
|
||||||
nhead (int): number of head
|
nhead (int): number of head
|
||||||
dim_feedforward (int): feedforward dimention
|
dim_feedforward (int): feedforward dimension
|
||||||
num_encoder_layers (int): number of encoder layers
|
num_encoder_layers (int): number of encoder layers
|
||||||
num_decoder_layers (int): number of decoder layers
|
num_decoder_layers (int): number of decoder layers
|
||||||
dropout (float): dropout rate
|
dropout (float): dropout rate
|
||||||
|
@ -35,7 +35,7 @@ class Conformer(Transformer):
|
|||||||
subsampling_factor (int): subsampling factor of encoder (the convolution layers before transformers)
|
subsampling_factor (int): subsampling factor of encoder (the convolution layers before transformers)
|
||||||
d_model (int): attention dimension
|
d_model (int): attention dimension
|
||||||
nhead (int): number of head
|
nhead (int): number of head
|
||||||
dim_feedforward (int): feedforward dimention
|
dim_feedforward (int): feedforward dimension
|
||||||
num_encoder_layers (int): number of encoder layers
|
num_encoder_layers (int): number of encoder layers
|
||||||
dropout (float): dropout rate
|
dropout (float): dropout rate
|
||||||
cnn_module_kernel (int): Kernel size of convolution module
|
cnn_module_kernel (int): Kernel size of convolution module
|
||||||
|
@ -236,7 +236,7 @@ class TransformerDecoder(nn.Module):
|
|||||||
causal_mask = subsequent_mask(x.shape[0], device=x.device) # (seq_len, seq_len)
|
causal_mask = subsequent_mask(x.shape[0], device=x.device) # (seq_len, seq_len)
|
||||||
attn_mask = torch.logical_or(
|
attn_mask = torch.logical_or(
|
||||||
padding_mask.unsqueeze(1), # (batch, 1, seq_len)
|
padding_mask.unsqueeze(1), # (batch, 1, seq_len)
|
||||||
torch.logical_not(causal_mask).unsqueeze(0) # (1, seq_len, seq_len)
|
torch.logical_not(causal_mask).unsqueeze(0), # (1, seq_len, seq_len)
|
||||||
) # (batch, seq_len, seq_len)
|
) # (batch, seq_len, seq_len)
|
||||||
|
|
||||||
if memory is not None:
|
if memory is not None:
|
||||||
@ -367,7 +367,9 @@ class MultiHeadAttention(nn.Module):
|
|||||||
self.num_heads = num_heads
|
self.num_heads = num_heads
|
||||||
self.head_dim = attention_dim // num_heads
|
self.head_dim = attention_dim // num_heads
|
||||||
assert self.head_dim * num_heads == attention_dim, (
|
assert self.head_dim * num_heads == attention_dim, (
|
||||||
self.head_dim, num_heads, attention_dim
|
self.head_dim,
|
||||||
|
num_heads,
|
||||||
|
attention_dim,
|
||||||
)
|
)
|
||||||
self.dropout = dropout
|
self.dropout = dropout
|
||||||
self.name = None # will be overwritten in training code; for diagnostics.
|
self.name = None # will be overwritten in training code; for diagnostics.
|
||||||
@ -437,15 +439,19 @@ class MultiHeadAttention(nn.Module):
|
|||||||
if key_padding_mask is not None:
|
if key_padding_mask is not None:
|
||||||
assert key_padding_mask.shape == (batch, src_len), key_padding_mask.shape
|
assert key_padding_mask.shape == (batch, src_len), key_padding_mask.shape
|
||||||
attn_weights = attn_weights.masked_fill(
|
attn_weights = attn_weights.masked_fill(
|
||||||
key_padding_mask.unsqueeze(1).unsqueeze(2), float("-inf"),
|
key_padding_mask.unsqueeze(1).unsqueeze(2),
|
||||||
|
float("-inf"),
|
||||||
)
|
)
|
||||||
|
|
||||||
if attn_mask is not None:
|
if attn_mask is not None:
|
||||||
assert (
|
assert attn_mask.shape == (batch, 1, src_len) or attn_mask.shape == (
|
||||||
attn_mask.shape == (batch, 1, src_len)
|
batch,
|
||||||
or attn_mask.shape == (batch, tgt_len, src_len)
|
tgt_len,
|
||||||
|
src_len,
|
||||||
), attn_mask.shape
|
), attn_mask.shape
|
||||||
attn_weights = attn_weights.masked_fill(attn_mask.unsqueeze(1), float("-inf"))
|
attn_weights = attn_weights.masked_fill(
|
||||||
|
attn_mask.unsqueeze(1), float("-inf")
|
||||||
|
)
|
||||||
|
|
||||||
attn_weights = attn_weights.view(batch * num_heads, tgt_len, src_len)
|
attn_weights = attn_weights.view(batch * num_heads, tgt_len, src_len)
|
||||||
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
||||||
@ -456,7 +462,11 @@ class MultiHeadAttention(nn.Module):
|
|||||||
|
|
||||||
# (batch * head, tgt_len, head_dim)
|
# (batch * head, tgt_len, head_dim)
|
||||||
attn_output = torch.bmm(attn_weights, v)
|
attn_output = torch.bmm(attn_weights, v)
|
||||||
assert attn_output.shape == (batch * num_heads, tgt_len, head_dim), attn_output.shape
|
assert attn_output.shape == (
|
||||||
|
batch * num_heads,
|
||||||
|
tgt_len,
|
||||||
|
head_dim,
|
||||||
|
), attn_output.shape
|
||||||
|
|
||||||
attn_output = attn_output.transpose(0, 1).contiguous()
|
attn_output = attn_output.transpose(0, 1).contiguous()
|
||||||
attn_output = attn_output.view(tgt_len, batch, num_heads * head_dim)
|
attn_output = attn_output.view(tgt_len, batch, num_heads * head_dim)
|
||||||
|
@ -111,6 +111,7 @@ Usage:
|
|||||||
import argparse
|
import argparse
|
||||||
import logging
|
import logging
|
||||||
import math
|
import math
|
||||||
|
import os
|
||||||
from collections import defaultdict
|
from collections import defaultdict
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Dict, List, Optional, Tuple
|
from typing import Dict, List, Optional, Tuple
|
||||||
@ -120,6 +121,7 @@ import sentencepiece as spm
|
|||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
from asr_datamodule import LibriSpeechAsrDataModule
|
from asr_datamodule import LibriSpeechAsrDataModule
|
||||||
|
from lhotse import set_caching_enabled
|
||||||
from train import add_model_arguments, get_model, get_params
|
from train import add_model_arguments, get_model, get_params
|
||||||
|
|
||||||
from icefall.checkpoint import (
|
from icefall.checkpoint import (
|
||||||
@ -128,8 +130,12 @@ from icefall.checkpoint import (
|
|||||||
find_checkpoints,
|
find_checkpoints,
|
||||||
load_checkpoint,
|
load_checkpoint,
|
||||||
)
|
)
|
||||||
|
from icefall.context_graph import ContextGraph, ContextState
|
||||||
from icefall.decode import (
|
from icefall.decode import (
|
||||||
ctc_greedy_search,
|
ctc_greedy_search,
|
||||||
|
ctc_prefix_beam_search,
|
||||||
|
ctc_prefix_beam_search_attention_decoder_rescoring,
|
||||||
|
ctc_prefix_beam_search_shallow_fussion,
|
||||||
get_lattice,
|
get_lattice,
|
||||||
nbest_decoding,
|
nbest_decoding,
|
||||||
nbest_oracle,
|
nbest_oracle,
|
||||||
@ -140,6 +146,8 @@ from icefall.decode import (
|
|||||||
rescore_with_whole_lattice,
|
rescore_with_whole_lattice,
|
||||||
)
|
)
|
||||||
from icefall.lexicon import Lexicon
|
from icefall.lexicon import Lexicon
|
||||||
|
from icefall.lm_wrapper import LmScorer
|
||||||
|
from icefall.ngram_lm import NgramLm, NgramLmStateCost
|
||||||
from icefall.utils import (
|
from icefall.utils import (
|
||||||
AttributeDict,
|
AttributeDict,
|
||||||
get_texts,
|
get_texts,
|
||||||
@ -254,6 +262,12 @@ def get_parser():
|
|||||||
lattice, rescore them with the attention decoder.
|
lattice, rescore them with the attention decoder.
|
||||||
- (9) attention-decoder-rescoring-with-ngram. Extract n paths from the LM
|
- (9) attention-decoder-rescoring-with-ngram. Extract n paths from the LM
|
||||||
rescored lattice, rescore them with the attention decoder.
|
rescored lattice, rescore them with the attention decoder.
|
||||||
|
- (10) ctc-prefix-beam-search. Extract n paths with the given beam, the best
|
||||||
|
path of the n paths is the decoding result.
|
||||||
|
- (11) ctc-prefix-beam-search-attention-decoder-rescoring. Extract n paths with
|
||||||
|
the given beam, rescore them with the attention decoder.
|
||||||
|
- (12) ctc-prefix-beam-search-shallow-fussion. Use NNLM shallow fussion during
|
||||||
|
beam search, LODR and hotwords are also supported in this decoding method.
|
||||||
""",
|
""",
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -279,6 +293,23 @@ def get_parser():
|
|||||||
""",
|
""",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--nnlm-type",
|
||||||
|
type=str,
|
||||||
|
default="rnn",
|
||||||
|
help="Type of NN lm",
|
||||||
|
choices=["rnn", "transformer"],
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--nnlm-scale",
|
||||||
|
type=float,
|
||||||
|
default=0,
|
||||||
|
help="""The scale of the neural network LM, 0 means don't use nnlm shallow fussion.
|
||||||
|
Used only when `--use-shallow-fusion` is set to True.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--hlg-scale",
|
"--hlg-scale",
|
||||||
type=float,
|
type=float,
|
||||||
@ -296,6 +327,54 @@ def get_parser():
|
|||||||
""",
|
""",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--backoff-id",
|
||||||
|
type=int,
|
||||||
|
default=500,
|
||||||
|
help="ID of the backoff symbol in the ngram LM",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--lodr-ngram",
|
||||||
|
type=str,
|
||||||
|
help="The path to the lodr ngram",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--lodr-lm-scale",
|
||||||
|
type=float,
|
||||||
|
default=0,
|
||||||
|
help="The scale of lodr ngram, should be less than 0. 0 means don't use lodr.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--context-score",
|
||||||
|
type=float,
|
||||||
|
default=0,
|
||||||
|
help="""
|
||||||
|
The bonus score of each token for the context biasing words/phrases.
|
||||||
|
0 means don't use contextual biasing.
|
||||||
|
Used only when --decoding-method is ctc-prefix-beam-search-shallow-fussion.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--context-file",
|
||||||
|
type=str,
|
||||||
|
default="",
|
||||||
|
help="""
|
||||||
|
The path of the context biasing lists, one word/phrase each line
|
||||||
|
Used only when --decoding-method is ctc-prefix-beam-search-shallow-fussion.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--skip-scoring",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="""Skip scoring, but still save the ASR output (for eval sets).""",
|
||||||
|
)
|
||||||
|
|
||||||
add_model_arguments(parser)
|
add_model_arguments(parser)
|
||||||
|
|
||||||
return parser
|
return parser
|
||||||
@ -306,11 +385,12 @@ def get_decoding_params() -> AttributeDict:
|
|||||||
params = AttributeDict(
|
params = AttributeDict(
|
||||||
{
|
{
|
||||||
"frame_shift_ms": 10,
|
"frame_shift_ms": 10,
|
||||||
"search_beam": 20,
|
"search_beam": 20, # for k2 fsa composition
|
||||||
"output_beam": 8,
|
"output_beam": 8, # for k2 fsa composition
|
||||||
"min_active_states": 30,
|
"min_active_states": 30,
|
||||||
"max_active_states": 10000,
|
"max_active_states": 10000,
|
||||||
"use_double_scores": True,
|
"use_double_scores": True,
|
||||||
|
"beam": 4, # for prefix-beam-search
|
||||||
}
|
}
|
||||||
)
|
)
|
||||||
return params
|
return params
|
||||||
@ -325,6 +405,9 @@ def decode_one_batch(
|
|||||||
batch: dict,
|
batch: dict,
|
||||||
word_table: k2.SymbolTable,
|
word_table: k2.SymbolTable,
|
||||||
G: Optional[k2.Fsa] = None,
|
G: Optional[k2.Fsa] = None,
|
||||||
|
NNLM: Optional[LmScorer] = None,
|
||||||
|
LODR_lm: Optional[NgramLm] = None,
|
||||||
|
context_graph: Optional[ContextGraph] = None,
|
||||||
) -> Dict[str, List[List[str]]]:
|
) -> Dict[str, List[List[str]]]:
|
||||||
"""Decode one batch and return the result in a dict. The dict has the
|
"""Decode one batch and return the result in a dict. The dict has the
|
||||||
following format:
|
following format:
|
||||||
@ -369,10 +452,7 @@ def decode_one_batch(
|
|||||||
Return the decoding result. See above description for the format of
|
Return the decoding result. See above description for the format of
|
||||||
the returned dict. Note: If it decodes to nothing, then return None.
|
the returned dict. Note: If it decodes to nothing, then return None.
|
||||||
"""
|
"""
|
||||||
if HLG is not None:
|
device = params.device
|
||||||
device = HLG.device
|
|
||||||
else:
|
|
||||||
device = H.device
|
|
||||||
feature = batch["inputs"]
|
feature = batch["inputs"]
|
||||||
assert feature.ndim == 3
|
assert feature.ndim == 3
|
||||||
feature = feature.to(device)
|
feature = feature.to(device)
|
||||||
@ -403,6 +483,51 @@ def decode_one_batch(
|
|||||||
key = "ctc-greedy-search"
|
key = "ctc-greedy-search"
|
||||||
return {key: hyps}
|
return {key: hyps}
|
||||||
|
|
||||||
|
if params.decoding_method == "ctc-prefix-beam-search":
|
||||||
|
token_ids = ctc_prefix_beam_search(
|
||||||
|
ctc_output=ctc_output, encoder_out_lens=encoder_out_lens
|
||||||
|
)
|
||||||
|
# hyps is a list of str, e.g., ['xxx yyy zzz', ...]
|
||||||
|
hyps = bpe_model.decode(token_ids)
|
||||||
|
|
||||||
|
# hyps is a list of list of str, e.g., [['xxx', 'yyy', 'zzz'], ... ]
|
||||||
|
hyps = [s.split() for s in hyps]
|
||||||
|
key = "prefix-beam-search"
|
||||||
|
return {key: hyps}
|
||||||
|
|
||||||
|
if params.decoding_method == "ctc-prefix-beam-search-attention-decoder-rescoring":
|
||||||
|
best_path_dict = ctc_prefix_beam_search_attention_decoder_rescoring(
|
||||||
|
ctc_output=ctc_output,
|
||||||
|
attention_decoder=model.attention_decoder,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
)
|
||||||
|
ans = dict()
|
||||||
|
for a_scale_str, token_ids in best_path_dict.items():
|
||||||
|
# hyps is a list of str, e.g., ['xxx yyy zzz', ...]
|
||||||
|
hyps = bpe_model.decode(token_ids)
|
||||||
|
# hyps is a list of list of str, e.g., [['xxx', 'yyy', 'zzz'], ... ]
|
||||||
|
hyps = [s.split() for s in hyps]
|
||||||
|
ans[a_scale_str] = hyps
|
||||||
|
return ans
|
||||||
|
|
||||||
|
if params.decoding_method == "ctc-prefix-beam-search-shallow-fussion":
|
||||||
|
token_ids = ctc_prefix_beam_search_shallow_fussion(
|
||||||
|
ctc_output=ctc_output,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
NNLM=NNLM,
|
||||||
|
LODR_lm=LODR_lm,
|
||||||
|
LODR_lm_scale=params.lodr_lm_scale,
|
||||||
|
context_graph=context_graph,
|
||||||
|
)
|
||||||
|
# hyps is a list of str, e.g., ['xxx yyy zzz', ...]
|
||||||
|
hyps = bpe_model.decode(token_ids)
|
||||||
|
|
||||||
|
# hyps is a list of list of str, e.g., [['xxx', 'yyy', 'zzz'], ... ]
|
||||||
|
hyps = [s.split() for s in hyps]
|
||||||
|
key = "prefix-beam-search-shallow-fussion"
|
||||||
|
return {key: hyps}
|
||||||
|
|
||||||
supervision_segments = torch.stack(
|
supervision_segments = torch.stack(
|
||||||
(
|
(
|
||||||
supervisions["sequence_idx"],
|
supervisions["sequence_idx"],
|
||||||
@ -455,7 +580,7 @@ def decode_one_batch(
|
|||||||
# hyps is a list of list of str, e.g., [['xxx', 'yyy', 'zzz'], ... ]
|
# hyps is a list of list of str, e.g., [['xxx', 'yyy', 'zzz'], ... ]
|
||||||
hyps = [s.split() for s in hyps]
|
hyps = [s.split() for s in hyps]
|
||||||
key = "ctc-decoding"
|
key = "ctc-decoding"
|
||||||
return {key: hyps}
|
return {key: hyps} # note: returns words
|
||||||
|
|
||||||
if params.decoding_method == "attention-decoder-rescoring-no-ngram":
|
if params.decoding_method == "attention-decoder-rescoring-no-ngram":
|
||||||
best_path_dict = rescore_with_attention_decoder_no_ngram(
|
best_path_dict = rescore_with_attention_decoder_no_ngram(
|
||||||
@ -492,7 +617,7 @@ def decode_one_batch(
|
|||||||
)
|
)
|
||||||
hyps = get_texts(best_path)
|
hyps = get_texts(best_path)
|
||||||
hyps = [[word_table[i] for i in ids] for ids in hyps]
|
hyps = [[word_table[i] for i in ids] for ids in hyps]
|
||||||
key = f"oracle_{params.num_paths}_nbest_scale_{params.nbest_scale}" # noqa
|
key = f"oracle_{params.num_paths}_nbest-scale-{params.nbest_scale}" # noqa
|
||||||
return {key: hyps}
|
return {key: hyps}
|
||||||
|
|
||||||
if params.decoding_method in ["1best", "nbest"]:
|
if params.decoding_method in ["1best", "nbest"]:
|
||||||
@ -500,7 +625,7 @@ def decode_one_batch(
|
|||||||
best_path = one_best_decoding(
|
best_path = one_best_decoding(
|
||||||
lattice=lattice, use_double_scores=params.use_double_scores
|
lattice=lattice, use_double_scores=params.use_double_scores
|
||||||
)
|
)
|
||||||
key = "no_rescore"
|
key = "no-rescore"
|
||||||
else:
|
else:
|
||||||
best_path = nbest_decoding(
|
best_path = nbest_decoding(
|
||||||
lattice=lattice,
|
lattice=lattice,
|
||||||
@ -508,11 +633,11 @@ def decode_one_batch(
|
|||||||
use_double_scores=params.use_double_scores,
|
use_double_scores=params.use_double_scores,
|
||||||
nbest_scale=params.nbest_scale,
|
nbest_scale=params.nbest_scale,
|
||||||
)
|
)
|
||||||
key = f"no_rescore-nbest-scale-{params.nbest_scale}-{params.num_paths}" # noqa
|
key = f"no-rescore_nbest-scale-{params.nbest_scale}-{params.num_paths}" # noqa
|
||||||
|
|
||||||
hyps = get_texts(best_path)
|
hyps = get_texts(best_path)
|
||||||
hyps = [[word_table[i] for i in ids] for ids in hyps]
|
hyps = [[word_table[i] for i in ids] for ids in hyps]
|
||||||
return {key: hyps}
|
return {key: hyps} # note: returns BPE tokens
|
||||||
|
|
||||||
assert params.decoding_method in [
|
assert params.decoding_method in [
|
||||||
"nbest-rescoring",
|
"nbest-rescoring",
|
||||||
@ -576,6 +701,9 @@ def decode_dataset(
|
|||||||
bpe_model: Optional[spm.SentencePieceProcessor],
|
bpe_model: Optional[spm.SentencePieceProcessor],
|
||||||
word_table: k2.SymbolTable,
|
word_table: k2.SymbolTable,
|
||||||
G: Optional[k2.Fsa] = None,
|
G: Optional[k2.Fsa] = None,
|
||||||
|
NNLM: Optional[LmScorer] = None,
|
||||||
|
LODR_lm: Optional[NgramLm] = None,
|
||||||
|
context_graph: Optional[ContextGraph] = None,
|
||||||
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
|
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
|
||||||
"""Decode dataset.
|
"""Decode dataset.
|
||||||
|
|
||||||
@ -626,6 +754,9 @@ def decode_dataset(
|
|||||||
batch=batch,
|
batch=batch,
|
||||||
word_table=word_table,
|
word_table=word_table,
|
||||||
G=G,
|
G=G,
|
||||||
|
NNLM=NNLM,
|
||||||
|
LODR_lm=LODR_lm,
|
||||||
|
context_graph=context_graph,
|
||||||
)
|
)
|
||||||
|
|
||||||
for name, hyps in hyps_dict.items():
|
for name, hyps in hyps_dict.items():
|
||||||
@ -646,13 +777,32 @@ def decode_dataset(
|
|||||||
return results
|
return results
|
||||||
|
|
||||||
|
|
||||||
def save_results(
|
def save_asr_output(
|
||||||
|
params: AttributeDict,
|
||||||
|
test_set_name: str,
|
||||||
|
results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]],
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Save text produced by ASR.
|
||||||
|
"""
|
||||||
|
for key, results in results_dict.items():
|
||||||
|
|
||||||
|
recogs_filename = params.res_dir / f"recogs-{test_set_name}-{params.suffix}.txt"
|
||||||
|
|
||||||
|
results = sorted(results)
|
||||||
|
store_transcripts(filename=recogs_filename, texts=results)
|
||||||
|
|
||||||
|
logging.info(f"The transcripts are stored in {recogs_filename}")
|
||||||
|
|
||||||
|
|
||||||
|
def save_wer_results(
|
||||||
params: AttributeDict,
|
params: AttributeDict,
|
||||||
test_set_name: str,
|
test_set_name: str,
|
||||||
results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]],
|
results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]],
|
||||||
):
|
):
|
||||||
if params.decoding_method in (
|
if params.decoding_method in (
|
||||||
"attention-decoder-rescoring-with-ngram", "whole-lattice-rescoring"
|
"attention-decoder-rescoring-with-ngram",
|
||||||
|
"whole-lattice-rescoring",
|
||||||
):
|
):
|
||||||
# Set it to False since there are too many logs.
|
# Set it to False since there are too many logs.
|
||||||
enable_log = False
|
enable_log = False
|
||||||
@ -661,32 +811,30 @@ def save_results(
|
|||||||
|
|
||||||
test_set_wers = dict()
|
test_set_wers = dict()
|
||||||
for key, results in results_dict.items():
|
for key, results in results_dict.items():
|
||||||
recog_path = params.res_dir / f"recogs-{test_set_name}-{params.suffix}.txt"
|
|
||||||
results = sorted(results)
|
|
||||||
store_transcripts(filename=recog_path, texts=results)
|
|
||||||
if enable_log:
|
|
||||||
logging.info(f"The transcripts are stored in {recog_path}")
|
|
||||||
|
|
||||||
# The following prints out WERs, per-word error statistics and aligned
|
# The following prints out WERs, per-word error statistics and aligned
|
||||||
# ref/hyp pairs.
|
# ref/hyp pairs.
|
||||||
errs_filename = params.res_dir / f"errs-{test_set_name}-{params.suffix}.txt"
|
errs_filename = params.res_dir / f"errs-{test_set_name}-{params.suffix}.txt"
|
||||||
with open(errs_filename, "w") as f:
|
with open(errs_filename, "w", encoding="utf8") as fd:
|
||||||
wer = write_error_stats(f, f"{test_set_name}-{key}", results)
|
wer = write_error_stats(
|
||||||
|
fd, f"{test_set_name}_{key}", results, enable_log=enable_log
|
||||||
|
)
|
||||||
test_set_wers[key] = wer
|
test_set_wers[key] = wer
|
||||||
if enable_log:
|
|
||||||
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
logging.info(f"Wrote detailed error stats to {errs_filename}")
|
||||||
|
|
||||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||||
errs_info = params.res_dir / f"wer-summary-{test_set_name}-{params.suffix}.txt"
|
|
||||||
with open(errs_info, "w") as f:
|
|
||||||
print("settings\tWER", file=f)
|
|
||||||
for key, val in test_set_wers:
|
|
||||||
print("{}\t{}".format(key, val), file=f)
|
|
||||||
|
|
||||||
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
wer_filename = params.res_dir / f"wer-summary-{test_set_name}-{params.suffix}.txt"
|
||||||
note = "\tbest for {}".format(test_set_name)
|
|
||||||
|
with open(wer_filename, "w", encoding="utf8") as fd:
|
||||||
|
print("settings\tWER", file=fd)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
print(f"{key}\t{val}", file=fd)
|
||||||
|
|
||||||
|
s = f"\nFor {test_set_name}, WER of different settings are:\n"
|
||||||
|
note = f"\tbest for {test_set_name}"
|
||||||
for key, val in test_set_wers:
|
for key, val in test_set_wers:
|
||||||
s += "{}\t{}{}\n".format(key, val, note)
|
s += f"{key}\t{val}{note}\n"
|
||||||
note = ""
|
note = ""
|
||||||
logging.info(s)
|
logging.info(s)
|
||||||
|
|
||||||
@ -695,6 +843,7 @@ def save_results(
|
|||||||
def main():
|
def main():
|
||||||
parser = get_parser()
|
parser = get_parser()
|
||||||
LibriSpeechAsrDataModule.add_arguments(parser)
|
LibriSpeechAsrDataModule.add_arguments(parser)
|
||||||
|
LmScorer.add_arguments(parser)
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
args.exp_dir = Path(args.exp_dir)
|
args.exp_dir = Path(args.exp_dir)
|
||||||
args.lang_dir = Path(args.lang_dir)
|
args.lang_dir = Path(args.lang_dir)
|
||||||
@ -705,9 +854,15 @@ def main():
|
|||||||
params.update(get_decoding_params())
|
params.update(get_decoding_params())
|
||||||
params.update(vars(args))
|
params.update(vars(args))
|
||||||
|
|
||||||
|
# enable AudioCache
|
||||||
|
set_caching_enabled(True) # lhotse
|
||||||
|
|
||||||
assert params.decoding_method in (
|
assert params.decoding_method in (
|
||||||
"ctc-greedy-search",
|
|
||||||
"ctc-decoding",
|
"ctc-decoding",
|
||||||
|
"ctc-greedy-search",
|
||||||
|
"ctc-prefix-beam-search",
|
||||||
|
"ctc-prefix-beam-search-attention-decoder-rescoring",
|
||||||
|
"ctc-prefix-beam-search-shallow-fussion",
|
||||||
"1best",
|
"1best",
|
||||||
"nbest",
|
"nbest",
|
||||||
"nbest-rescoring",
|
"nbest-rescoring",
|
||||||
@ -719,9 +874,9 @@ def main():
|
|||||||
params.res_dir = params.exp_dir / params.decoding_method
|
params.res_dir = params.exp_dir / params.decoding_method
|
||||||
|
|
||||||
if params.iter > 0:
|
if params.iter > 0:
|
||||||
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
params.suffix = f"iter-{params.iter}_avg-{params.avg}"
|
||||||
else:
|
else:
|
||||||
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
params.suffix = f"epoch-{params.epoch}_avg-{params.avg}"
|
||||||
|
|
||||||
if params.causal:
|
if params.causal:
|
||||||
assert (
|
assert (
|
||||||
@ -730,11 +885,21 @@ def main():
|
|||||||
assert (
|
assert (
|
||||||
"," not in params.left_context_frames
|
"," not in params.left_context_frames
|
||||||
), "left_context_frames should be one value in decoding."
|
), "left_context_frames should be one value in decoding."
|
||||||
params.suffix += f"-chunk-{params.chunk_size}"
|
params.suffix += f"_chunk-{params.chunk_size}"
|
||||||
params.suffix += f"-left-context-{params.left_context_frames}"
|
params.suffix += f"_left-context-{params.left_context_frames}"
|
||||||
|
|
||||||
|
if "prefix-beam-search" in params.decoding_method:
|
||||||
|
params.suffix += f"_beam-{params.beam}"
|
||||||
|
if params.decoding_method == "ctc-prefix-beam-search-shallow-fussion":
|
||||||
|
if params.nnlm_scale != 0:
|
||||||
|
params.suffix += f"_nnlm-scale-{params.nnlm_scale}"
|
||||||
|
if params.lodr_lm_scale != 0:
|
||||||
|
params.suffix += f"_lodr-scale-{params.lodr_lm_scale}"
|
||||||
|
if params.context_score != 0:
|
||||||
|
params.suffix += f"_context_score-{params.context_score}"
|
||||||
|
|
||||||
if params.use_averaged_model:
|
if params.use_averaged_model:
|
||||||
params.suffix += "-use-averaged-model"
|
params.suffix += "_use-averaged-model"
|
||||||
|
|
||||||
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
||||||
logging.info("Decoding started")
|
logging.info("Decoding started")
|
||||||
@ -742,6 +907,7 @@ def main():
|
|||||||
device = torch.device("cpu")
|
device = torch.device("cpu")
|
||||||
if torch.cuda.is_available():
|
if torch.cuda.is_available():
|
||||||
device = torch.device("cuda", 0)
|
device = torch.device("cuda", 0)
|
||||||
|
params.device = device
|
||||||
|
|
||||||
logging.info(f"Device: {device}")
|
logging.info(f"Device: {device}")
|
||||||
logging.info(params)
|
logging.info(params)
|
||||||
@ -757,14 +923,24 @@ def main():
|
|||||||
params.sos_id = 1
|
params.sos_id = 1
|
||||||
|
|
||||||
if params.decoding_method in [
|
if params.decoding_method in [
|
||||||
"ctc-greedy-search", "ctc-decoding", "attention-decoder-rescoring-no-ngram"
|
"ctc-decoding",
|
||||||
|
"ctc-greedy-search",
|
||||||
|
"ctc-prefix-beam-search",
|
||||||
|
"ctc-prefix-beam-search-attention-decoder-rescoring",
|
||||||
|
"ctc-prefix-beam-search-shallow-fussion",
|
||||||
|
"attention-decoder-rescoring-no-ngram",
|
||||||
]:
|
]:
|
||||||
HLG = None
|
HLG = None
|
||||||
H = k2.ctc_topo(
|
H = None
|
||||||
max_token=max_token_id,
|
if params.decoding_method in [
|
||||||
modified=False,
|
"ctc-decoding",
|
||||||
device=device,
|
"attention-decoder-rescoring-no-ngram",
|
||||||
)
|
]:
|
||||||
|
H = k2.ctc_topo(
|
||||||
|
max_token=max_token_id,
|
||||||
|
modified=False,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
bpe_model = spm.SentencePieceProcessor()
|
bpe_model = spm.SentencePieceProcessor()
|
||||||
bpe_model.load(str(params.lang_dir / "bpe.model"))
|
bpe_model.load(str(params.lang_dir / "bpe.model"))
|
||||||
else:
|
else:
|
||||||
@ -815,7 +991,8 @@ def main():
|
|||||||
G = k2.Fsa.from_dict(d)
|
G = k2.Fsa.from_dict(d)
|
||||||
|
|
||||||
if params.decoding_method in [
|
if params.decoding_method in [
|
||||||
"whole-lattice-rescoring", "attention-decoder-rescoring-with-ngram"
|
"whole-lattice-rescoring",
|
||||||
|
"attention-decoder-rescoring-with-ngram",
|
||||||
]:
|
]:
|
||||||
# Add epsilon self-loops to G as we will compose
|
# Add epsilon self-loops to G as we will compose
|
||||||
# it with the whole lattice later
|
# it with the whole lattice later
|
||||||
@ -829,6 +1006,51 @@ def main():
|
|||||||
else:
|
else:
|
||||||
G = None
|
G = None
|
||||||
|
|
||||||
|
# only load the neural network LM if required
|
||||||
|
NNLM = None
|
||||||
|
if (
|
||||||
|
params.decoding_method == "ctc-prefix-beam-search-shallow-fussion"
|
||||||
|
and params.nnlm_scale != 0
|
||||||
|
):
|
||||||
|
NNLM = LmScorer(
|
||||||
|
lm_type=params.nnlm_type,
|
||||||
|
params=params,
|
||||||
|
device=device,
|
||||||
|
lm_scale=params.nnlm_scale,
|
||||||
|
)
|
||||||
|
NNLM.to(device)
|
||||||
|
NNLM.eval()
|
||||||
|
|
||||||
|
LODR_lm = None
|
||||||
|
if (
|
||||||
|
params.decoding_method == "ctc-prefix-beam-search-shallow-fussion"
|
||||||
|
and params.lodr_lm_scale != 0
|
||||||
|
):
|
||||||
|
assert os.path.exists(
|
||||||
|
params.lodr_ngram
|
||||||
|
), f"LODR ngram does not exists, given path : {params.lodr_ngram}"
|
||||||
|
logging.info(f"Loading LODR (token level lm): {params.lodr_ngram}")
|
||||||
|
LODR_lm = NgramLm(
|
||||||
|
params.lodr_ngram,
|
||||||
|
backoff_id=params.backoff_id,
|
||||||
|
is_binary=False,
|
||||||
|
)
|
||||||
|
logging.info(f"num states: {LODR_lm.lm.num_states}")
|
||||||
|
|
||||||
|
context_graph = None
|
||||||
|
if (
|
||||||
|
params.decoding_method == "ctc-prefix-beam-search-shallow-fussion"
|
||||||
|
and params.context_score != 0
|
||||||
|
):
|
||||||
|
assert os.path.exists(
|
||||||
|
params.context_file
|
||||||
|
), f"context_file does not exists, given path : {params.context_file}"
|
||||||
|
contexts = []
|
||||||
|
for line in open(params.context_file).readlines():
|
||||||
|
contexts.append(bpe_model.encode(line.strip()))
|
||||||
|
context_graph = ContextGraph(params.context_score)
|
||||||
|
context_graph.build(contexts)
|
||||||
|
|
||||||
logging.info("About to create model")
|
logging.info("About to create model")
|
||||||
model = get_model(params)
|
model = get_model(params)
|
||||||
|
|
||||||
@ -938,14 +1160,24 @@ def main():
|
|||||||
bpe_model=bpe_model,
|
bpe_model=bpe_model,
|
||||||
word_table=lexicon.word_table,
|
word_table=lexicon.word_table,
|
||||||
G=G,
|
G=G,
|
||||||
|
NNLM=NNLM,
|
||||||
|
LODR_lm=LODR_lm,
|
||||||
|
context_graph=context_graph,
|
||||||
)
|
)
|
||||||
|
|
||||||
save_results(
|
save_asr_output(
|
||||||
params=params,
|
params=params,
|
||||||
test_set_name=test_set,
|
test_set_name=test_set,
|
||||||
results_dict=results_dict,
|
results_dict=results_dict,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
if not params.skip_scoring:
|
||||||
|
save_wer_results(
|
||||||
|
params=params,
|
||||||
|
test_set_name=test_set,
|
||||||
|
results_dict=results_dict,
|
||||||
|
)
|
||||||
|
|
||||||
logging.info("Done!")
|
logging.info("Done!")
|
||||||
|
|
||||||
|
|
||||||
|
@ -121,6 +121,7 @@ from beam_search import (
|
|||||||
modified_beam_search_lm_shallow_fusion,
|
modified_beam_search_lm_shallow_fusion,
|
||||||
modified_beam_search_LODR,
|
modified_beam_search_LODR,
|
||||||
)
|
)
|
||||||
|
from lhotse import set_caching_enabled
|
||||||
from train import add_model_arguments, get_model, get_params
|
from train import add_model_arguments, get_model, get_params
|
||||||
|
|
||||||
from icefall import ContextGraph, LmScorer, NgramLm
|
from icefall import ContextGraph, LmScorer, NgramLm
|
||||||
@ -369,6 +370,14 @@ def get_parser():
|
|||||||
modified_beam_search_LODR.
|
modified_beam_search_LODR.
|
||||||
""",
|
""",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--skip-scoring",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="""Skip scoring, but still save the ASR output (for eval sets).""",
|
||||||
|
)
|
||||||
|
|
||||||
add_model_arguments(parser)
|
add_model_arguments(parser)
|
||||||
|
|
||||||
return parser
|
return parser
|
||||||
@ -590,21 +599,23 @@ def decode_one_batch(
|
|||||||
)
|
)
|
||||||
hyps.append(sp.decode(hyp).split())
|
hyps.append(sp.decode(hyp).split())
|
||||||
|
|
||||||
|
# prefix = ( "greedy_search" | "fast_beam_search_nbest" | "modified_beam_search" )
|
||||||
|
prefix = f"{params.decoding_method}"
|
||||||
if params.decoding_method == "greedy_search":
|
if params.decoding_method == "greedy_search":
|
||||||
return {"greedy_search": hyps}
|
return {"greedy_search": hyps}
|
||||||
elif "fast_beam_search" in params.decoding_method:
|
elif "fast_beam_search" in params.decoding_method:
|
||||||
key = f"beam_{params.beam}_"
|
prefix += f"_beam-{params.beam}"
|
||||||
key += f"max_contexts_{params.max_contexts}_"
|
prefix += f"_max-contexts-{params.max_contexts}"
|
||||||
key += f"max_states_{params.max_states}"
|
prefix += f"_max-states-{params.max_states}"
|
||||||
if "nbest" in params.decoding_method:
|
if "nbest" in params.decoding_method:
|
||||||
key += f"_num_paths_{params.num_paths}_"
|
prefix += f"_num-paths-{params.num_paths}"
|
||||||
key += f"nbest_scale_{params.nbest_scale}"
|
prefix += f"_nbest-scale-{params.nbest_scale}"
|
||||||
if "LG" in params.decoding_method:
|
if "LG" in params.decoding_method:
|
||||||
key += f"_ngram_lm_scale_{params.ngram_lm_scale}"
|
prefix += f"_ngram-lm-scale-{params.ngram_lm_scale}"
|
||||||
|
|
||||||
return {key: hyps}
|
return {prefix: hyps}
|
||||||
elif "modified_beam_search" in params.decoding_method:
|
elif "modified_beam_search" in params.decoding_method:
|
||||||
prefix = f"beam_size_{params.beam_size}"
|
prefix += f"_beam-size-{params.beam_size}"
|
||||||
if params.decoding_method in (
|
if params.decoding_method in (
|
||||||
"modified_beam_search_lm_rescore",
|
"modified_beam_search_lm_rescore",
|
||||||
"modified_beam_search_lm_rescore_LODR",
|
"modified_beam_search_lm_rescore_LODR",
|
||||||
@ -617,10 +628,11 @@ def decode_one_batch(
|
|||||||
return ans
|
return ans
|
||||||
else:
|
else:
|
||||||
if params.has_contexts:
|
if params.has_contexts:
|
||||||
prefix += f"-context-score-{params.context_score}"
|
prefix += f"_context-score-{params.context_score}"
|
||||||
return {prefix: hyps}
|
return {prefix: hyps}
|
||||||
else:
|
else:
|
||||||
return {f"beam_size_{params.beam_size}": hyps}
|
prefix += f"_beam-size-{params.beam_size}"
|
||||||
|
return {prefix: hyps}
|
||||||
|
|
||||||
|
|
||||||
def decode_dataset(
|
def decode_dataset(
|
||||||
@ -707,46 +719,58 @@ def decode_dataset(
|
|||||||
return results
|
return results
|
||||||
|
|
||||||
|
|
||||||
def save_results(
|
def save_asr_output(
|
||||||
params: AttributeDict,
|
params: AttributeDict,
|
||||||
test_set_name: str,
|
test_set_name: str,
|
||||||
results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]],
|
results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]],
|
||||||
):
|
):
|
||||||
|
"""
|
||||||
|
Save text produced by ASR.
|
||||||
|
"""
|
||||||
|
for key, results in results_dict.items():
|
||||||
|
|
||||||
|
recogs_filename = params.res_dir / f"recogs-{test_set_name}-{params.suffix}.txt"
|
||||||
|
|
||||||
|
results = sorted(results)
|
||||||
|
store_transcripts(filename=recogs_filename, texts=results)
|
||||||
|
|
||||||
|
logging.info(f"The transcripts are stored in {recogs_filename}")
|
||||||
|
|
||||||
|
|
||||||
|
def save_wer_results(
|
||||||
|
params: AttributeDict,
|
||||||
|
test_set_name: str,
|
||||||
|
results_dict: Dict[str, List[Tuple[str, List[str], List[str], Tuple]]],
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Save WER and per-utterance word alignments.
|
||||||
|
"""
|
||||||
test_set_wers = dict()
|
test_set_wers = dict()
|
||||||
for key, results in results_dict.items():
|
for key, results in results_dict.items():
|
||||||
recog_path = (
|
|
||||||
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
|
||||||
)
|
|
||||||
results = sorted(results)
|
|
||||||
store_transcripts(filename=recog_path, texts=results)
|
|
||||||
logging.info(f"The transcripts are stored in {recog_path}")
|
|
||||||
|
|
||||||
# The following prints out WERs, per-word error statistics and aligned
|
# The following prints out WERs, per-word error statistics and aligned
|
||||||
# ref/hyp pairs.
|
# ref/hyp pairs.
|
||||||
errs_filename = (
|
errs_filename = params.res_dir / f"errs-{test_set_name}-{params.suffix}.txt"
|
||||||
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
with open(errs_filename, "w", encoding="utf8") as fd:
|
||||||
)
|
|
||||||
with open(errs_filename, "w") as f:
|
|
||||||
wer = write_error_stats(
|
wer = write_error_stats(
|
||||||
f, f"{test_set_name}-{key}", results, enable_log=True
|
fd, f"{test_set_name}-{key}", results, enable_log=True
|
||||||
)
|
)
|
||||||
test_set_wers[key] = wer
|
test_set_wers[key] = wer
|
||||||
|
|
||||||
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
logging.info(f"Wrote detailed error stats to {errs_filename}")
|
||||||
|
|
||||||
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||||
errs_info = (
|
|
||||||
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
|
||||||
)
|
|
||||||
with open(errs_info, "w") as f:
|
|
||||||
print("settings\tWER", file=f)
|
|
||||||
for key, val in test_set_wers:
|
|
||||||
print("{}\t{}".format(key, val), file=f)
|
|
||||||
|
|
||||||
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
wer_filename = params.res_dir / f"wer-summary-{test_set_name}-{params.suffix}.txt"
|
||||||
note = "\tbest for {}".format(test_set_name)
|
|
||||||
|
with open(wer_filename, "w", encoding="utf8") as fd:
|
||||||
|
print("settings\tWER", file=fd)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
print(f"{key}\t{val}", file=fd)
|
||||||
|
|
||||||
|
s = f"\nFor {test_set_name}, WER of different settings are:\n"
|
||||||
|
note = f"\tbest for {test_set_name}"
|
||||||
for key, val in test_set_wers:
|
for key, val in test_set_wers:
|
||||||
s += "{}\t{}{}\n".format(key, val, note)
|
s += f"{key}\t{val}{note}\n"
|
||||||
note = ""
|
note = ""
|
||||||
logging.info(s)
|
logging.info(s)
|
||||||
|
|
||||||
@ -762,6 +786,9 @@ def main():
|
|||||||
params = get_params()
|
params = get_params()
|
||||||
params.update(vars(args))
|
params.update(vars(args))
|
||||||
|
|
||||||
|
# enable AudioCache
|
||||||
|
set_caching_enabled(True) # lhotse
|
||||||
|
|
||||||
assert params.decoding_method in (
|
assert params.decoding_method in (
|
||||||
"greedy_search",
|
"greedy_search",
|
||||||
"beam_search",
|
"beam_search",
|
||||||
@ -783,9 +810,9 @@ def main():
|
|||||||
params.has_contexts = False
|
params.has_contexts = False
|
||||||
|
|
||||||
if params.iter > 0:
|
if params.iter > 0:
|
||||||
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
params.suffix = f"iter-{params.iter}_avg-{params.avg}"
|
||||||
else:
|
else:
|
||||||
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
params.suffix = f"epoch-{params.epoch}_avg-{params.avg}"
|
||||||
|
|
||||||
if params.causal:
|
if params.causal:
|
||||||
assert (
|
assert (
|
||||||
@ -794,20 +821,20 @@ def main():
|
|||||||
assert (
|
assert (
|
||||||
"," not in params.left_context_frames
|
"," not in params.left_context_frames
|
||||||
), "left_context_frames should be one value in decoding."
|
), "left_context_frames should be one value in decoding."
|
||||||
params.suffix += f"-chunk-{params.chunk_size}"
|
params.suffix += f"_chunk-{params.chunk_size}"
|
||||||
params.suffix += f"-left-context-{params.left_context_frames}"
|
params.suffix += f"_left-context-{params.left_context_frames}"
|
||||||
|
|
||||||
if "fast_beam_search" in params.decoding_method:
|
if "fast_beam_search" in params.decoding_method:
|
||||||
params.suffix += f"-beam-{params.beam}"
|
params.suffix += f"_beam-{params.beam}"
|
||||||
params.suffix += f"-max-contexts-{params.max_contexts}"
|
params.suffix += f"_max-contexts-{params.max_contexts}"
|
||||||
params.suffix += f"-max-states-{params.max_states}"
|
params.suffix += f"_max-states-{params.max_states}"
|
||||||
if "nbest" in params.decoding_method:
|
if "nbest" in params.decoding_method:
|
||||||
params.suffix += f"-nbest-scale-{params.nbest_scale}"
|
params.suffix += f"_nbest-scale-{params.nbest_scale}"
|
||||||
params.suffix += f"-num-paths-{params.num_paths}"
|
params.suffix += f"_num-paths-{params.num_paths}"
|
||||||
if "LG" in params.decoding_method:
|
if "LG" in params.decoding_method:
|
||||||
params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}"
|
params.suffix += f"_ngram-lm-scale-{params.ngram_lm_scale}"
|
||||||
elif "beam_search" in params.decoding_method:
|
elif "beam_search" in params.decoding_method:
|
||||||
params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}"
|
params.suffix += f"__{params.decoding_method}__beam-size-{params.beam_size}"
|
||||||
if params.decoding_method in (
|
if params.decoding_method in (
|
||||||
"modified_beam_search",
|
"modified_beam_search",
|
||||||
"modified_beam_search_LODR",
|
"modified_beam_search_LODR",
|
||||||
@ -815,19 +842,19 @@ def main():
|
|||||||
if params.has_contexts:
|
if params.has_contexts:
|
||||||
params.suffix += f"-context-score-{params.context_score}"
|
params.suffix += f"-context-score-{params.context_score}"
|
||||||
else:
|
else:
|
||||||
params.suffix += f"-context-{params.context_size}"
|
params.suffix += f"_context-{params.context_size}"
|
||||||
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
params.suffix += f"_max-sym-per-frame-{params.max_sym_per_frame}"
|
||||||
|
|
||||||
if params.use_shallow_fusion:
|
if params.use_shallow_fusion:
|
||||||
params.suffix += f"-{params.lm_type}-lm-scale-{params.lm_scale}"
|
params.suffix += f"_{params.lm_type}-lm-scale-{params.lm_scale}"
|
||||||
|
|
||||||
if "LODR" in params.decoding_method:
|
if "LODR" in params.decoding_method:
|
||||||
params.suffix += (
|
params.suffix += (
|
||||||
f"-LODR-{params.tokens_ngram}gram-scale-{params.ngram_lm_scale}"
|
f"_LODR-{params.tokens_ngram}gram-scale-{params.ngram_lm_scale}"
|
||||||
)
|
)
|
||||||
|
|
||||||
if params.use_averaged_model:
|
if params.use_averaged_model:
|
||||||
params.suffix += "-use-averaged-model"
|
params.suffix += "_use-averaged-model"
|
||||||
|
|
||||||
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
||||||
logging.info("Decoding started")
|
logging.info("Decoding started")
|
||||||
@ -1038,12 +1065,19 @@ def main():
|
|||||||
ngram_lm_scale=ngram_lm_scale,
|
ngram_lm_scale=ngram_lm_scale,
|
||||||
)
|
)
|
||||||
|
|
||||||
save_results(
|
save_asr_output(
|
||||||
params=params,
|
params=params,
|
||||||
test_set_name=test_set,
|
test_set_name=test_set,
|
||||||
results_dict=results_dict,
|
results_dict=results_dict,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
if not params.skip_scoring:
|
||||||
|
save_wer_results(
|
||||||
|
params=params,
|
||||||
|
test_set_name=test_set,
|
||||||
|
results_dict=results_dict,
|
||||||
|
)
|
||||||
|
|
||||||
logging.info("Done!")
|
logging.info("Done!")
|
||||||
|
|
||||||
|
|
||||||
|
@ -74,7 +74,6 @@ import onnx
|
|||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
from decoder import Decoder
|
from decoder import Decoder
|
||||||
from onnxconverter_common import float16
|
|
||||||
from onnxruntime.quantization import QuantType, quantize_dynamic
|
from onnxruntime.quantization import QuantType, quantize_dynamic
|
||||||
from scaling_converter import convert_scaled_to_non_scaled
|
from scaling_converter import convert_scaled_to_non_scaled
|
||||||
from train import add_model_arguments, get_model, get_params
|
from train import add_model_arguments, get_model, get_params
|
||||||
@ -488,6 +487,7 @@ def export_encoder_model_onnx(
|
|||||||
|
|
||||||
add_meta_data(filename=encoder_filename, meta_data=meta_data)
|
add_meta_data(filename=encoder_filename, meta_data=meta_data)
|
||||||
|
|
||||||
|
|
||||||
def export_decoder_model_onnx(
|
def export_decoder_model_onnx(
|
||||||
decoder_model: OnnxDecoder,
|
decoder_model: OnnxDecoder,
|
||||||
decoder_filename: str,
|
decoder_filename: str,
|
||||||
@ -755,29 +755,31 @@ def main():
|
|||||||
)
|
)
|
||||||
logging.info(f"Exported joiner to {joiner_filename}")
|
logging.info(f"Exported joiner to {joiner_filename}")
|
||||||
|
|
||||||
if(params.fp16) :
|
if params.fp16:
|
||||||
|
from onnxconverter_common import float16
|
||||||
|
|
||||||
logging.info("Generate fp16 models")
|
logging.info("Generate fp16 models")
|
||||||
|
|
||||||
encoder = onnx.load(encoder_filename)
|
encoder = onnx.load(encoder_filename)
|
||||||
encoder_fp16 = float16.convert_float_to_float16(encoder, keep_io_types=True)
|
encoder_fp16 = float16.convert_float_to_float16(encoder, keep_io_types=True)
|
||||||
encoder_filename_fp16 = params.exp_dir / f"encoder-{suffix}.fp16.onnx"
|
encoder_filename_fp16 = params.exp_dir / f"encoder-{suffix}.fp16.onnx"
|
||||||
onnx.save(encoder_fp16,encoder_filename_fp16)
|
onnx.save(encoder_fp16, encoder_filename_fp16)
|
||||||
|
|
||||||
decoder = onnx.load(decoder_filename)
|
decoder = onnx.load(decoder_filename)
|
||||||
decoder_fp16 = float16.convert_float_to_float16(decoder, keep_io_types=True)
|
decoder_fp16 = float16.convert_float_to_float16(decoder, keep_io_types=True)
|
||||||
decoder_filename_fp16 = params.exp_dir / f"decoder-{suffix}.fp16.onnx"
|
decoder_filename_fp16 = params.exp_dir / f"decoder-{suffix}.fp16.onnx"
|
||||||
onnx.save(decoder_fp16,decoder_filename_fp16)
|
onnx.save(decoder_fp16, decoder_filename_fp16)
|
||||||
|
|
||||||
joiner = onnx.load(joiner_filename)
|
joiner = onnx.load(joiner_filename)
|
||||||
joiner_fp16 = float16.convert_float_to_float16(joiner, keep_io_types=True)
|
joiner_fp16 = float16.convert_float_to_float16(joiner, keep_io_types=True)
|
||||||
joiner_filename_fp16 = params.exp_dir / f"joiner-{suffix}.fp16.onnx"
|
joiner_filename_fp16 = params.exp_dir / f"joiner-{suffix}.fp16.onnx"
|
||||||
onnx.save(joiner_fp16,joiner_filename_fp16)
|
onnx.save(joiner_fp16, joiner_filename_fp16)
|
||||||
|
|
||||||
# Generate int8 quantization models
|
# Generate int8 quantization models
|
||||||
# See https://onnxruntime.ai/docs/performance/model-optimizations/quantization.html#data-type-selection
|
# See https://onnxruntime.ai/docs/performance/model-optimizations/quantization.html#data-type-selection
|
||||||
|
|
||||||
logging.info("Generate int8 quantization models")
|
logging.info("Generate int8 quantization models")
|
||||||
|
|
||||||
encoder_filename_int8 = params.exp_dir / f"encoder-{suffix}.int8.onnx"
|
encoder_filename_int8 = params.exp_dir / f"encoder-{suffix}.int8.onnx"
|
||||||
quantize_dynamic(
|
quantize_dynamic(
|
||||||
model_input=encoder_filename,
|
model_input=encoder_filename,
|
||||||
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
x
Reference in New Issue
Block a user