mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
Minor fixes to the RNN-T Conformer model (#152)
* Disable weight decay. * Remove input feature batchnorm.. * Replace BatchNorm in the Conformer model with LayerNorm. * Use tanh in the joint network. * Remove sos ID. * Reduce the number of decoder layers from 4 to 2. * Minor fixes. * Fix typos.
This commit is contained in:
parent
fb6a57e9e0
commit
5b6699a835
@ -14,7 +14,7 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
name: run-pre-trained-tranducer-stateless
|
||||
name: run-pre-trained-trandsucer-stateless
|
||||
|
||||
on:
|
||||
push:
|
||||
|
109
.github/workflows/run-pretrained-transducer.yml
vendored
Normal file
109
.github/workflows/run-pretrained-transducer.yml
vendored
Normal file
@ -0,0 +1,109 @@
|
||||
# Copyright 2021 Fangjun Kuang (csukuangfj@gmail.com)
|
||||
|
||||
# See ../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
name: run-pre-trained-transducer
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
pull_request:
|
||||
types: [labeled]
|
||||
|
||||
jobs:
|
||||
run_pre_trained_transducer:
|
||||
if: github.event.label.name == 'ready' || github.event_name == 'push'
|
||||
runs-on: ${{ matrix.os }}
|
||||
strategy:
|
||||
matrix:
|
||||
os: [ubuntu-18.04]
|
||||
python-version: [3.7, 3.8, 3.9]
|
||||
torch: ["1.10.0"]
|
||||
torchaudio: ["0.10.0"]
|
||||
k2-version: ["1.9.dev20211101"]
|
||||
|
||||
fail-fast: false
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Setup Python ${{ matrix.python-version }}
|
||||
uses: actions/setup-python@v1
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
|
||||
- name: Install Python dependencies
|
||||
run: |
|
||||
python3 -m pip install --upgrade pip pytest
|
||||
# numpy 1.20.x does not support python 3.6
|
||||
pip install numpy==1.19
|
||||
pip install torch==${{ matrix.torch }}+cpu torchaudio==${{ matrix.torchaudio }}+cpu -f https://download.pytorch.org/whl/cpu/torch_stable.html
|
||||
pip install k2==${{ matrix.k2-version }}+cpu.torch${{ matrix.torch }} -f https://k2-fsa.org/nightly/
|
||||
|
||||
python3 -m pip install git+https://github.com/lhotse-speech/lhotse
|
||||
python3 -m pip install kaldifeat
|
||||
# We are in ./icefall and there is a file: requirements.txt in it
|
||||
pip install -r requirements.txt
|
||||
|
||||
- name: Install graphviz
|
||||
shell: bash
|
||||
run: |
|
||||
python3 -m pip install -qq graphviz
|
||||
sudo apt-get -qq install graphviz
|
||||
|
||||
- name: Download pre-trained model
|
||||
shell: bash
|
||||
run: |
|
||||
sudo apt-get -qq install git-lfs tree sox
|
||||
cd egs/librispeech/ASR
|
||||
mkdir tmp
|
||||
cd tmp
|
||||
git lfs install
|
||||
git clone https://huggingface.co/csukuangfj/icefall-asr-librispeech-transducer-bpe-500-2021-12-23
|
||||
|
||||
cd ..
|
||||
tree tmp
|
||||
soxi tmp/icefall-asr-librispeech-transducer-bpe-500-2021-12-23/test_wavs/*.wav
|
||||
ls -lh tmp/icefall-asr-librispeech-transducer-bpe-500-2021-12-23/test_wavs/*.wav
|
||||
|
||||
- name: Run greedy search decoding
|
||||
shell: bash
|
||||
run: |
|
||||
export PYTHONPATH=$PWD:PYTHONPATH
|
||||
cd egs/librispeech/ASR
|
||||
./transducer/pretrained.py \
|
||||
--method greedy_search \
|
||||
--checkpoint ./tmp/icefall-asr-librispeech-transducer-bpe-500-2021-12-23/exp/pretrained.pt \
|
||||
--bpe-model ./tmp/icefall-asr-librispeech-transducer-bpe-500-2021-12-23/data/lang_bpe_500/bpe.model \
|
||||
./tmp/icefall-asr-librispeech-transducer-bpe-500-2021-12-23/test_wavs/1089-134686-0001.wav \
|
||||
./tmp/icefall-asr-librispeech-transducer-bpe-500-2021-12-23/test_wavs/1221-135766-0001.wav \
|
||||
./tmp/icefall-asr-librispeech-transducer-bpe-500-2021-12-23/test_wavs/1221-135766-0002.wav
|
||||
|
||||
- name: Run beam search decoding
|
||||
shell: bash
|
||||
run: |
|
||||
export PYTHONPATH=$PWD:$PYTHONPATH
|
||||
cd egs/librispeech/ASR
|
||||
./transducer/pretrained.py \
|
||||
--method beam_search \
|
||||
--beam-size 4 \
|
||||
--checkpoint ./tmp/icefall-asr-librispeech-transducer-bpe-500-2021-12-23/exp/pretrained.pt \
|
||||
--bpe-model ./tmp/icefall-asr-librispeech-transducer-bpe-500-2021-12-23/data/lang_bpe_500/bpe.model \
|
||||
./tmp/icefall-asr-librispeech-transducer-bpe-500-2021-12-23/test_wavs/1089-134686-0001.wav \
|
||||
./tmp/icefall-asr-librispeech-transducer-bpe-500-2021-12-23/test_wavs/1221-135766-0001.wav \
|
||||
./tmp/icefall-asr-librispeech-transducer-bpe-500-2021-12-23/test_wavs/1221-135766-0002.wav
|
@ -71,7 +71,7 @@ The best WER with greedy search is:
|
||||
|
||||
| | test-clean | test-other |
|
||||
|-----|------------|------------|
|
||||
| WER | 3.16 | 7.71 |
|
||||
| WER | 3.07 | 7.51 |
|
||||
|
||||
We provide a Colab notebook to run a pre-trained RNN-T conformer model: [](https://colab.research.google.com/drive/1_u6yK9jDkPwG_NLrZMN2XK7Aeq4suMO2?usp=sharing)
|
||||
|
||||
|
@ -2,7 +2,10 @@
|
||||
|
||||
### LibriSpeech BPE training results (Transducer)
|
||||
|
||||
#### 2021-12-22
|
||||
#### Conformer encoder + embedding decoder
|
||||
|
||||
Using commit `fb6a57e9e01dd8aae2af2a6b4568daad8bc8ab32`.
|
||||
|
||||
Conformer encoder + non-current decoder. The decoder
|
||||
contains only an embedding layer and a Conv1d (with kernel size 2).
|
||||
|
||||
@ -60,8 +63,8 @@ avg=10
|
||||
```
|
||||
|
||||
|
||||
#### 2021-12-17
|
||||
Using commit `cb04c8a7509425ab45fae888b0ca71bbbd23f0de`.
|
||||
#### Conformer encoder + LSTM decoder
|
||||
Using commit `TODO`.
|
||||
|
||||
Conformer encoder + LSTM decoder.
|
||||
|
||||
@ -69,9 +72,9 @@ The best WER is
|
||||
|
||||
| | test-clean | test-other |
|
||||
|-----|------------|------------|
|
||||
| WER | 3.16 | 7.71 |
|
||||
| WER | 3.07 | 7.51 |
|
||||
|
||||
using `--epoch 26 --avg 12` with **greedy search**.
|
||||
using `--epoch 34 --avg 11` with **greedy search**.
|
||||
|
||||
The training command to reproduce the above WER is:
|
||||
|
||||
@ -80,19 +83,19 @@ export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
||||
|
||||
./transducer/train.py \
|
||||
--world-size 4 \
|
||||
--num-epochs 30 \
|
||||
--num-epochs 35 \
|
||||
--start-epoch 0 \
|
||||
--exp-dir transducer/exp-lr-2.5-full \
|
||||
--full-libri 1 \
|
||||
--max-duration 250 \
|
||||
--max-duration 180 \
|
||||
--lr-factor 2.5
|
||||
```
|
||||
|
||||
The decoding command is:
|
||||
|
||||
```
|
||||
epoch=26
|
||||
avg=12
|
||||
epoch=34
|
||||
avg=11
|
||||
|
||||
./transducer/decode.py \
|
||||
--epoch $epoch \
|
||||
@ -102,7 +105,7 @@ avg=12
|
||||
--max-duration 100
|
||||
```
|
||||
|
||||
You can find the tensorboard log at: <https://tensorboard.dev/experiment/PYIbeD6zRJez1ViXaRqqeg/>
|
||||
You can find the tensorboard log at: <https://tensorboard.dev/experiment/D7NQc3xqTpyVmWi5FnWjrA>
|
||||
|
||||
|
||||
### LibriSpeech BPE training results (Conformer-CTC)
|
||||
|
@ -111,7 +111,6 @@ def beam_search(
|
||||
# support only batch_size == 1 for now
|
||||
assert encoder_out.size(0) == 1, encoder_out.size(0)
|
||||
blank_id = model.decoder.blank_id
|
||||
sos_id = model.decoder.sos_id
|
||||
device = model.device
|
||||
|
||||
sos = torch.tensor([blank_id], device=device).reshape(1, 1)
|
||||
@ -192,7 +191,7 @@ def beam_search(
|
||||
|
||||
# Second, choose other labels
|
||||
for i, v in enumerate(log_prob.tolist()):
|
||||
if i in (blank_id, sos_id):
|
||||
if i == blank_id:
|
||||
continue
|
||||
new_ys = y_star.ys + [i]
|
||||
new_log_prob = y_star.log_prob + v
|
||||
|
@ -56,7 +56,6 @@ class Conformer(Transformer):
|
||||
cnn_module_kernel: int = 31,
|
||||
normalize_before: bool = True,
|
||||
vgg_frontend: bool = False,
|
||||
use_feat_batchnorm: bool = False,
|
||||
) -> None:
|
||||
super(Conformer, self).__init__(
|
||||
num_features=num_features,
|
||||
@ -69,7 +68,6 @@ class Conformer(Transformer):
|
||||
dropout=dropout,
|
||||
normalize_before=normalize_before,
|
||||
vgg_frontend=vgg_frontend,
|
||||
use_feat_batchnorm=use_feat_batchnorm,
|
||||
)
|
||||
|
||||
self.encoder_pos = RelPositionalEncoding(d_model, dropout)
|
||||
@ -107,11 +105,6 @@ class Conformer(Transformer):
|
||||
- logit_lens, a tensor of shape (batch_size,) containing the number
|
||||
of frames in `logits` before padding.
|
||||
"""
|
||||
if self.use_feat_batchnorm:
|
||||
x = x.permute(0, 2, 1) # (N, T, C) -> (N, C, T)
|
||||
x = self.feat_batchnorm(x)
|
||||
x = x.permute(0, 2, 1) # (N, C, T) -> (N, T, C)
|
||||
|
||||
x = self.encoder_embed(x)
|
||||
x, pos_emb = self.encoder_pos(x)
|
||||
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
||||
@ -873,7 +866,7 @@ class ConvolutionModule(nn.Module):
|
||||
groups=channels,
|
||||
bias=bias,
|
||||
)
|
||||
self.norm = nn.BatchNorm1d(channels)
|
||||
self.norm = nn.LayerNorm(channels)
|
||||
self.pointwise_conv2 = nn.Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
@ -903,7 +896,12 @@ class ConvolutionModule(nn.Module):
|
||||
|
||||
# 1D Depthwise Conv
|
||||
x = self.depthwise_conv(x)
|
||||
x = self.activation(self.norm(x))
|
||||
# x is (batch, channels, time)
|
||||
x = x.permute(0, 2, 1)
|
||||
x = self.norm(x)
|
||||
x = x.permute(0, 2, 1)
|
||||
|
||||
x = self.activation(x)
|
||||
|
||||
x = self.pointwise_conv2(x) # (batch, channel, time)
|
||||
|
||||
|
@ -70,14 +70,14 @@ def get_parser():
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=26,
|
||||
default=34,
|
||||
help="It specifies the checkpoint to use for decoding."
|
||||
"Note: Epoch counts from 0.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=12,
|
||||
default=11,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch'. ",
|
||||
@ -129,10 +129,9 @@ def get_params() -> AttributeDict:
|
||||
"dim_feedforward": 2048,
|
||||
"num_encoder_layers": 12,
|
||||
"vgg_frontend": False,
|
||||
"use_feat_batchnorm": True,
|
||||
# decoder params
|
||||
"decoder_embedding_dim": 1024,
|
||||
"num_decoder_layers": 4,
|
||||
"num_decoder_layers": 2,
|
||||
"decoder_hidden_dim": 512,
|
||||
"env_info": get_env_info(),
|
||||
}
|
||||
@ -151,7 +150,6 @@ def get_encoder_model(params: AttributeDict):
|
||||
dim_feedforward=params.dim_feedforward,
|
||||
num_encoder_layers=params.num_encoder_layers,
|
||||
vgg_frontend=params.vgg_frontend,
|
||||
use_feat_batchnorm=params.use_feat_batchnorm,
|
||||
)
|
||||
return encoder
|
||||
|
||||
@ -161,7 +159,6 @@ def get_decoder_model(params: AttributeDict):
|
||||
vocab_size=params.vocab_size,
|
||||
embedding_dim=params.decoder_embedding_dim,
|
||||
blank_id=params.blank_id,
|
||||
sos_id=params.sos_id,
|
||||
num_layers=params.num_decoder_layers,
|
||||
hidden_dim=params.decoder_hidden_dim,
|
||||
output_dim=params.encoder_out_dim,
|
||||
@ -401,7 +398,6 @@ def main():
|
||||
|
||||
# <blk> and <sos/eos> are defined in local/train_bpe_model.py
|
||||
params.blank_id = sp.piece_to_id("<blk>")
|
||||
params.sos_id = sp.piece_to_id("<sos/eos>")
|
||||
params.vocab_size = sp.get_piece_size()
|
||||
|
||||
logging.info(params)
|
||||
|
@ -27,7 +27,6 @@ class Decoder(nn.Module):
|
||||
vocab_size: int,
|
||||
embedding_dim: int,
|
||||
blank_id: int,
|
||||
sos_id: int,
|
||||
num_layers: int,
|
||||
hidden_dim: int,
|
||||
output_dim: int,
|
||||
@ -42,8 +41,6 @@ class Decoder(nn.Module):
|
||||
Dimension of the input embedding.
|
||||
blank_id:
|
||||
The ID of the blank symbol.
|
||||
sos_id:
|
||||
The ID of the SOS symbol.
|
||||
num_layers:
|
||||
Number of LSTM layers.
|
||||
hidden_dim:
|
||||
@ -71,7 +68,6 @@ class Decoder(nn.Module):
|
||||
dropout=rnn_dropout,
|
||||
)
|
||||
self.blank_id = blank_id
|
||||
self.sos_id = sos_id
|
||||
self.output_linear = nn.Linear(hidden_dim, output_dim)
|
||||
|
||||
def forward(
|
||||
|
@ -23,8 +23,8 @@ Usage:
|
||||
./transducer/export.py \
|
||||
--exp-dir ./transducer/exp \
|
||||
--bpe-model data/lang_bpe_500/bpe.model \
|
||||
--epoch 26 \
|
||||
--avg 12
|
||||
--epoch 34 \
|
||||
--avg 11
|
||||
|
||||
It will generate a file exp_dir/pretrained.pt
|
||||
|
||||
@ -66,7 +66,7 @@ def get_parser():
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=26,
|
||||
default=34,
|
||||
help="It specifies the checkpoint to use for decoding."
|
||||
"Note: Epoch counts from 0.",
|
||||
)
|
||||
@ -74,7 +74,7 @@ def get_parser():
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=12,
|
||||
default=11,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch'. ",
|
||||
@ -119,10 +119,9 @@ def get_params() -> AttributeDict:
|
||||
"dim_feedforward": 2048,
|
||||
"num_encoder_layers": 12,
|
||||
"vgg_frontend": False,
|
||||
"use_feat_batchnorm": True,
|
||||
# decoder params
|
||||
"decoder_embedding_dim": 1024,
|
||||
"num_decoder_layers": 4,
|
||||
"num_decoder_layers": 2,
|
||||
"decoder_hidden_dim": 512,
|
||||
"env_info": get_env_info(),
|
||||
}
|
||||
@ -140,7 +139,6 @@ def get_encoder_model(params: AttributeDict):
|
||||
dim_feedforward=params.dim_feedforward,
|
||||
num_encoder_layers=params.num_encoder_layers,
|
||||
vgg_frontend=params.vgg_frontend,
|
||||
use_feat_batchnorm=params.use_feat_batchnorm,
|
||||
)
|
||||
return encoder
|
||||
|
||||
@ -150,7 +148,6 @@ def get_decoder_model(params: AttributeDict):
|
||||
vocab_size=params.vocab_size,
|
||||
embedding_dim=params.decoder_embedding_dim,
|
||||
blank_id=params.blank_id,
|
||||
sos_id=params.sos_id,
|
||||
num_layers=params.num_decoder_layers,
|
||||
hidden_dim=params.decoder_hidden_dim,
|
||||
output_dim=params.encoder_out_dim,
|
||||
@ -199,7 +196,6 @@ def main():
|
||||
|
||||
# <blk> and <sos/eos> are defined in local/train_bpe_model.py
|
||||
params.blank_id = sp.piece_to_id("<blk>")
|
||||
params.sos_id = sp.piece_to_id("<sos/eos>")
|
||||
params.vocab_size = sp.get_piece_size()
|
||||
|
||||
logging.info(params)
|
||||
|
@ -16,7 +16,6 @@
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
class Joiner(nn.Module):
|
||||
@ -48,7 +47,7 @@ class Joiner(nn.Module):
|
||||
# Now decoder_out is (N, 1, U, C)
|
||||
|
||||
logit = encoder_out + decoder_out
|
||||
logit = F.relu(logit)
|
||||
logit = torch.tanh(logit)
|
||||
|
||||
output = self.output_linear(logit)
|
||||
|
||||
|
@ -49,7 +49,7 @@ class Transducer(nn.Module):
|
||||
decoder:
|
||||
It is the prediction network in the paper. Its input shape
|
||||
is (N, U) and its output shape is (N, U, C). It should contain
|
||||
two attributes: `blank_id` and `sos_id`.
|
||||
one attribute: `blank_id`.
|
||||
joiner:
|
||||
It has two inputs with shapes: (N, T, C) and (N, U, C). Its
|
||||
output shape is (N, T, U, C). Note that its output contains
|
||||
@ -58,7 +58,6 @@ class Transducer(nn.Module):
|
||||
super().__init__()
|
||||
assert isinstance(encoder, EncoderInterface)
|
||||
assert hasattr(decoder, "blank_id")
|
||||
assert hasattr(decoder, "sos_id")
|
||||
|
||||
self.encoder = encoder
|
||||
self.decoder = decoder
|
||||
@ -97,8 +96,7 @@ class Transducer(nn.Module):
|
||||
y_lens = row_splits[1:] - row_splits[:-1]
|
||||
|
||||
blank_id = self.decoder.blank_id
|
||||
sos_id = self.decoder.sos_id
|
||||
sos_y = add_sos(y, sos_id=sos_id)
|
||||
sos_y = add_sos(y, sos_id=blank_id)
|
||||
|
||||
sos_y_padded = sos_y.pad(mode="constant", padding_value=blank_id)
|
||||
|
||||
|
@ -116,10 +116,9 @@ def get_params() -> AttributeDict:
|
||||
"dim_feedforward": 2048,
|
||||
"num_encoder_layers": 12,
|
||||
"vgg_frontend": False,
|
||||
"use_feat_batchnorm": True,
|
||||
# decoder params
|
||||
"decoder_embedding_dim": 1024,
|
||||
"num_decoder_layers": 4,
|
||||
"num_decoder_layers": 2,
|
||||
"decoder_hidden_dim": 512,
|
||||
"env_info": get_env_info(),
|
||||
}
|
||||
@ -137,7 +136,6 @@ def get_encoder_model(params: AttributeDict):
|
||||
dim_feedforward=params.dim_feedforward,
|
||||
num_encoder_layers=params.num_encoder_layers,
|
||||
vgg_frontend=params.vgg_frontend,
|
||||
use_feat_batchnorm=params.use_feat_batchnorm,
|
||||
)
|
||||
return encoder
|
||||
|
||||
@ -147,7 +145,6 @@ def get_decoder_model(params: AttributeDict):
|
||||
vocab_size=params.vocab_size,
|
||||
embedding_dim=params.decoder_embedding_dim,
|
||||
blank_id=params.blank_id,
|
||||
sos_id=params.sos_id,
|
||||
num_layers=params.num_decoder_layers,
|
||||
hidden_dim=params.decoder_hidden_dim,
|
||||
output_dim=params.encoder_out_dim,
|
||||
@ -213,7 +210,6 @@ def main():
|
||||
|
||||
# <blk> and <sos/eos> are defined in local/train_bpe_model.py
|
||||
params.blank_id = sp.piece_to_id("<blk>")
|
||||
params.sos_id = sp.piece_to_id("<sos/eos>")
|
||||
params.vocab_size = sp.get_piece_size()
|
||||
|
||||
logging.info(f"{params}")
|
||||
|
@ -36,7 +36,6 @@ def test_conformer():
|
||||
nhead=8,
|
||||
dim_feedforward=2048,
|
||||
num_encoder_layers=12,
|
||||
use_feat_batchnorm=True,
|
||||
)
|
||||
N = 3
|
||||
T = 100
|
||||
|
@ -29,7 +29,6 @@ from decoder import Decoder
|
||||
def test_decoder():
|
||||
vocab_size = 3
|
||||
blank_id = 0
|
||||
sos_id = 2
|
||||
embedding_dim = 128
|
||||
num_layers = 2
|
||||
hidden_dim = 6
|
||||
@ -41,7 +40,6 @@ def test_decoder():
|
||||
vocab_size=vocab_size,
|
||||
embedding_dim=embedding_dim,
|
||||
blank_id=blank_id,
|
||||
sos_id=sos_id,
|
||||
num_layers=num_layers,
|
||||
hidden_dim=hidden_dim,
|
||||
output_dim=output_dim,
|
||||
|
@ -39,7 +39,6 @@ def test_transducer():
|
||||
# decoder params
|
||||
vocab_size = 3
|
||||
blank_id = 0
|
||||
sos_id = 2
|
||||
embedding_dim = 128
|
||||
num_layers = 2
|
||||
|
||||
@ -51,14 +50,12 @@ def test_transducer():
|
||||
nhead=8,
|
||||
dim_feedforward=2048,
|
||||
num_encoder_layers=12,
|
||||
use_feat_batchnorm=True,
|
||||
)
|
||||
|
||||
decoder = Decoder(
|
||||
vocab_size=vocab_size,
|
||||
embedding_dim=embedding_dim,
|
||||
blank_id=blank_id,
|
||||
sos_id=sos_id,
|
||||
num_layers=num_layers,
|
||||
hidden_dim=output_dim,
|
||||
output_dim=output_dim,
|
||||
|
@ -36,7 +36,6 @@ def test_transformer():
|
||||
nhead=8,
|
||||
dim_feedforward=2048,
|
||||
num_encoder_layers=12,
|
||||
use_feat_batchnorm=True,
|
||||
)
|
||||
N = 3
|
||||
T = 100
|
||||
|
@ -23,7 +23,7 @@ export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
||||
|
||||
./transducer/train.py \
|
||||
--world-size 4 \
|
||||
--num-epochs 30 \
|
||||
--num-epochs 35 \
|
||||
--start-epoch 0 \
|
||||
--exp-dir transducer/exp \
|
||||
--full-libri 1 \
|
||||
@ -92,7 +92,7 @@ def get_parser():
|
||||
parser.add_argument(
|
||||
"--num-epochs",
|
||||
type=int,
|
||||
default=30,
|
||||
default=35,
|
||||
help="Number of epochs to train.",
|
||||
)
|
||||
|
||||
@ -171,15 +171,10 @@ def get_params() -> AttributeDict:
|
||||
|
||||
- subsampling_factor: The subsampling factor for the model.
|
||||
|
||||
- use_feat_batchnorm: Whether to do batch normalization for the
|
||||
input features.
|
||||
|
||||
- attention_dim: Hidden dim for multi-head attention model.
|
||||
|
||||
- num_decoder_layers: Number of decoder layer of transformer decoder.
|
||||
|
||||
- weight_decay: The weight_decay for the optimizer.
|
||||
|
||||
- warm_step: The warm_step for Noam optimizer.
|
||||
"""
|
||||
params = AttributeDict(
|
||||
@ -201,13 +196,11 @@ def get_params() -> AttributeDict:
|
||||
"dim_feedforward": 2048,
|
||||
"num_encoder_layers": 12,
|
||||
"vgg_frontend": False,
|
||||
"use_feat_batchnorm": True,
|
||||
# decoder params
|
||||
"decoder_embedding_dim": 1024,
|
||||
"num_decoder_layers": 4,
|
||||
"num_decoder_layers": 2,
|
||||
"decoder_hidden_dim": 512,
|
||||
# parameters for Noam
|
||||
"weight_decay": 1e-6,
|
||||
"warm_step": 80000, # For the 100h subset, use 8k
|
||||
"env_info": get_env_info(),
|
||||
}
|
||||
@ -227,7 +220,6 @@ def get_encoder_model(params: AttributeDict):
|
||||
dim_feedforward=params.dim_feedforward,
|
||||
num_encoder_layers=params.num_encoder_layers,
|
||||
vgg_frontend=params.vgg_frontend,
|
||||
use_feat_batchnorm=params.use_feat_batchnorm,
|
||||
)
|
||||
return encoder
|
||||
|
||||
@ -237,7 +229,6 @@ def get_decoder_model(params: AttributeDict):
|
||||
vocab_size=params.vocab_size,
|
||||
embedding_dim=params.decoder_embedding_dim,
|
||||
blank_id=params.blank_id,
|
||||
sos_id=params.sos_id,
|
||||
num_layers=params.num_decoder_layers,
|
||||
hidden_dim=params.decoder_hidden_dim,
|
||||
output_dim=params.encoder_out_dim,
|
||||
@ -575,7 +566,6 @@ def run(rank, world_size, args):
|
||||
|
||||
# <blk> and <sos/eos> are defined in local/train_bpe_model.py
|
||||
params.blank_id = sp.piece_to_id("<blk>")
|
||||
params.sos_id = sp.piece_to_id("<sos/eos>")
|
||||
params.vocab_size = sp.get_piece_size()
|
||||
|
||||
logging.info(params)
|
||||
@ -599,7 +589,6 @@ def run(rank, world_size, args):
|
||||
model_size=params.attention_dim,
|
||||
factor=params.lr_factor,
|
||||
warm_step=params.warm_step,
|
||||
weight_decay=params.weight_decay,
|
||||
)
|
||||
|
||||
if checkpoints and "optimizer" in checkpoints:
|
||||
|
@ -39,7 +39,6 @@ class Transformer(EncoderInterface):
|
||||
dropout: float = 0.1,
|
||||
normalize_before: bool = True,
|
||||
vgg_frontend: bool = False,
|
||||
use_feat_batchnorm: bool = False,
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
@ -65,13 +64,8 @@ class Transformer(EncoderInterface):
|
||||
If True, use pre-layer norm; False to use post-layer norm.
|
||||
vgg_frontend:
|
||||
True to use vgg style frontend for subsampling.
|
||||
use_feat_batchnorm:
|
||||
True to use batchnorm for the input layer.
|
||||
"""
|
||||
super().__init__()
|
||||
self.use_feat_batchnorm = use_feat_batchnorm
|
||||
if use_feat_batchnorm:
|
||||
self.feat_batchnorm = nn.BatchNorm1d(num_features)
|
||||
|
||||
self.num_features = num_features
|
||||
self.output_dim = output_dim
|
||||
@ -131,11 +125,6 @@ class Transformer(EncoderInterface):
|
||||
- logit_lens, a tensor of shape (batch_size,) containing the number
|
||||
of frames in `logits` before padding.
|
||||
"""
|
||||
if self.use_feat_batchnorm:
|
||||
x = x.permute(0, 2, 1) # (N, T, C) -> (N, C, T)
|
||||
x = self.feat_batchnorm(x)
|
||||
x = x.permute(0, 2, 1) # (N, C, T) -> (N, T, C)
|
||||
|
||||
x = self.encoder_embed(x)
|
||||
x = self.encoder_pos(x)
|
||||
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)
|
||||
|
Loading…
x
Reference in New Issue
Block a user