mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 10:02:22 +00:00
add tts task decode
This commit is contained in:
parent
1281d7a515
commit
5a7c72cb47
233
egs/speech_llm/SPEECH2SPEECH/exp.sh
Normal file
233
egs/speech_llm/SPEECH2SPEECH/exp.sh
Normal file
@ -0,0 +1,233 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
|
||||
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
|
||||
|
||||
|
||||
set -eou pipefail
|
||||
|
||||
stage=$1
|
||||
stop_stage=$2
|
||||
|
||||
|
||||
log() {
|
||||
# This function is from espnet
|
||||
local fname=${BASH_SOURCE[1]##*/}
|
||||
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
||||
}
|
||||
|
||||
if [ $stage -le 17 ] && [ $stop_stage -ge 17 ]; then
|
||||
echo "cd /workspace && ln -s /lustre/fsw/general_sa/yuekaiz/s2s slam && cd -"
|
||||
if [ ! -L "/workspace/slam" ]; then
|
||||
cd /workspace && ln -s /lustre/fsw/general_sa/yuekaiz/s2s slam && cd -
|
||||
fi
|
||||
log "stage 17: Training Speech2Speech Model, full parameters"
|
||||
exp_dir=./qwen_omni/exp_speech2text_first_multi_en_continuation_second_three_s2s
|
||||
pretrained_dir=./qwen_omni/exp_speech2text
|
||||
ngpu=4
|
||||
|
||||
latest_checkpoint_step=-1
|
||||
# Check if exp_dir exists and is a directory
|
||||
if [ -d "$exp_dir" ]; then
|
||||
# List directories matching checkpoint-* and find the one with the largest step number
|
||||
for checkpoint_dir in $(ls -d $exp_dir/checkpoint-*/ 2>/dev/null | sort -V); do
|
||||
checkpoint_name=$(basename "$checkpoint_dir") # e.g., checkpoint-1000
|
||||
# Extract step number using parameter expansion
|
||||
current_step=${checkpoint_name#checkpoint-}
|
||||
# Ensure current_step is a number
|
||||
if [[ "$current_step" =~ ^[0-9]+$ ]] && [ "$current_step" -gt "$latest_checkpoint_step" ]; then
|
||||
latest_checkpoint_step=$current_step
|
||||
fi
|
||||
done
|
||||
fi
|
||||
|
||||
train_cmd_args="--max-duration 200 \
|
||||
--enable-musan False \
|
||||
--exp-dir $exp_dir \
|
||||
--last-stage-model-path $pretrained_dir/checkpoint-58548/pytorch_model.bin \
|
||||
--speech-encoder-path-or-name models/large-v2.pt \
|
||||
--llm-path-or-name models/Qwen2.5-0.5B-Instruct \
|
||||
--on-the-fly-feats True --on-the-fly-speed-perturb False\
|
||||
--deepspeed \
|
||||
--huggingface-dataset-path-or-name /lustre/fsw/general_sa/yuekaiz/s2s \
|
||||
--deepspeed_config ./qwen_omni/ds_config_zero1.json \
|
||||
--use-flash-attn True --on-the-fly-feats True \
|
||||
--dataset vocalnet_ultrachat_voiceassistant_instruct_s2s --num-epochs 10 \
|
||||
--use-lora True --unfreeze-llm True --unfreeze-speech-projector True --enable-speech-output False"
|
||||
|
||||
if [ "$latest_checkpoint_step" -ge 0 ]; then
|
||||
log "Continuing training from checkpoint-$latest_checkpoint_step"
|
||||
step=$latest_checkpoint_step
|
||||
train_cmd_args="$train_cmd_args --pretrained-model-path $exp_dir/checkpoint-${step}/pytorch_model.bin --sampler-state-dict-path $exp_dir/checkpoint-${step}/sampler.pt"
|
||||
else
|
||||
log "Starting training from scratch as no checkpoint was found in $exp_dir"
|
||||
# No pretrained model or sampler state dict needed for the first run
|
||||
fi
|
||||
|
||||
torchrun --nproc_per_node $ngpu --nnodes $SLURM_JOB_NUM_NODES --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d --rdzv_id $SLURM_JOBID ./qwen_omni/train.py \
|
||||
$train_cmd_args
|
||||
fi
|
||||
|
||||
if [ $stage -le 18 ] && [ $stop_stage -ge 18 ]; then
|
||||
echo "cd /workspace && ln -s /lustre/fsw/general_sa/yuekaiz/s2s slam && cd -"
|
||||
# check if the link exists, if not exist, create it
|
||||
if [ ! -L "/workspace/slam" ]; then
|
||||
cd /workspace && ln -s /lustre/fsw/general_sa/yuekaiz/s2s slam && cd -
|
||||
fi
|
||||
log "stage 17: Training Speech2Speech Model, full parameters"
|
||||
exp_dir=./qwen_omni/exp_speech2text_first_multi_en_continuation_second_three_s2s_librispeech
|
||||
pretrained_dir=./qwen_omni/exp_speech2text
|
||||
ngpu=4
|
||||
|
||||
latest_checkpoint_step=-1
|
||||
# Check if exp_dir exists and is a directory
|
||||
if [ -d "$exp_dir" ]; then
|
||||
# List directories matching checkpoint-* and find the one with the largest step number
|
||||
for checkpoint_dir in $(ls -d $exp_dir/checkpoint-*/ 2>/dev/null | sort -V); do
|
||||
checkpoint_name=$(basename "$checkpoint_dir") # e.g., checkpoint-1000
|
||||
# Extract step number using parameter expansion
|
||||
current_step=${checkpoint_name#checkpoint-}
|
||||
# Ensure current_step is a number
|
||||
if [[ "$current_step" =~ ^[0-9]+$ ]] && [ "$current_step" -gt "$latest_checkpoint_step" ]; then
|
||||
latest_checkpoint_step=$current_step
|
||||
fi
|
||||
done
|
||||
fi
|
||||
|
||||
train_cmd_args="--max-duration 200 \
|
||||
--enable-musan False \
|
||||
--exp-dir $exp_dir \
|
||||
--last-stage-model-path $pretrained_dir/checkpoint-58548/pytorch_model.bin \
|
||||
--speech-encoder-path-or-name models/large-v2.pt \
|
||||
--llm-path-or-name models/Qwen2.5-0.5B-Instruct \
|
||||
--on-the-fly-feats True --on-the-fly-speed-perturb False\
|
||||
--deepspeed \
|
||||
--huggingface-dataset-path-or-name /lustre/fsw/general_sa/yuekaiz/s2s \
|
||||
--deepspeed_config ./qwen_omni/ds_config_zero1.json \
|
||||
--use-flash-attn True --on-the-fly-feats True \
|
||||
--dataset vocalnet_ultrachat_voiceassistant_instruct_s2s_librispeech --num-epochs 10 \
|
||||
--use-lora True --unfreeze-llm True --unfreeze-speech-projector True --enable-speech-output False"
|
||||
|
||||
if [ "$latest_checkpoint_step" -ge 0 ]; then
|
||||
log "Continuing training from checkpoint-$latest_checkpoint_step"
|
||||
step=$latest_checkpoint_step
|
||||
train_cmd_args="$train_cmd_args --pretrained-model-path $exp_dir/checkpoint-${step}/pytorch_model.bin --sampler-state-dict-path $exp_dir/checkpoint-${step}/sampler.pt"
|
||||
else
|
||||
log "Starting training from scratch as no checkpoint was found in $exp_dir"
|
||||
# No pretrained model or sampler state dict needed for the first run
|
||||
fi
|
||||
|
||||
torchrun --nproc_per_node $ngpu --nnodes $SLURM_JOB_NUM_NODES --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d --rdzv_id $SLURM_JOBID ./qwen_omni/train.py \
|
||||
$train_cmd_args
|
||||
fi
|
||||
|
||||
export HF_HOME="/lustre/fsw/general_sa/yuekaiz/.cache/huggingface"
|
||||
if [ $stage -le 19 ] && [ $stop_stage -ge 19 ]; then
|
||||
log "stage 19: Training TTS Model"
|
||||
exp_dir=./qwen_omni/exp_tts
|
||||
pretrained_dir=./qwen_omni/exp_speech2text
|
||||
ngpu=4
|
||||
|
||||
latest_checkpoint_step=-1
|
||||
# Check if exp_dir exists and is a directory
|
||||
if [ -d "$exp_dir" ]; then
|
||||
# List directories matching checkpoint-* and find the one with the largest step number
|
||||
for checkpoint_dir in $(ls -d $exp_dir/checkpoint-*/ 2>/dev/null | sort -V); do
|
||||
checkpoint_name=$(basename "$checkpoint_dir") # e.g., checkpoint-1000
|
||||
# Extract step number using parameter expansion
|
||||
current_step=${checkpoint_name#checkpoint-}
|
||||
# Ensure current_step is a number
|
||||
if [[ "$current_step" =~ ^[0-9]+$ ]] && [ "$current_step" -gt "$latest_checkpoint_step" ]; then
|
||||
latest_checkpoint_step=$current_step
|
||||
fi
|
||||
done
|
||||
fi
|
||||
|
||||
train_cmd_args="--batch-size 64 \
|
||||
--exp-dir $exp_dir \
|
||||
--last-stage-model-path $pretrained_dir/checkpoint-58548/pytorch_model.bin \
|
||||
--llm-path-or-name models/Qwen2.5-0.5B-Instruct \
|
||||
--enable-speech-input False \
|
||||
--deepspeed \
|
||||
--dataset /lustre/fsw/general_sa/yuekaiz/s2s/emilia_en \
|
||||
--deepspeed_config ./qwen_omni/ds_config_zero1.json \
|
||||
--use-flash-attn True \
|
||||
--num-epochs 2 \
|
||||
--use-lora False --unfreeze-llm False --enable-speech-output True"
|
||||
|
||||
if [ "$latest_checkpoint_step" -ge 0 ]; then
|
||||
log "Continuing training from checkpoint-$latest_checkpoint_step"
|
||||
step=$latest_checkpoint_step
|
||||
train_cmd_args="$train_cmd_args --pretrained-model-path $exp_dir/checkpoint-${step}/pytorch_model.bin --sampler-state-dict-path $exp_dir/checkpoint-${step}/sampler.pt"
|
||||
else
|
||||
log "Starting training from scratch as no checkpoint was found in $exp_dir"
|
||||
# No pretrained model or sampler state dict needed for the first run
|
||||
fi
|
||||
|
||||
torchrun --nproc_per_node $ngpu --nnodes $SLURM_JOB_NUM_NODES --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d --rdzv_id $SLURM_JOBID ./qwen_omni/train_tts.py \
|
||||
$train_cmd_args
|
||||
fi
|
||||
|
||||
|
||||
if [ $stage -le 20 ] && [ $stop_stage -ge 20 ]; then
|
||||
log "stage 20: Training TTS Model"
|
||||
echo "cd /workspace && ln -s /lustre/fsw/general_sa/yuekaiz/s2s slam && cd -"
|
||||
if [ ! -L "/workspace/slam" ]; then
|
||||
cd /workspace && ln -s /lustre/fsw/general_sa/yuekaiz/s2s slam && cd -
|
||||
fi
|
||||
exp_dir=./qwen_omni/exp_test
|
||||
ngpu=4
|
||||
|
||||
latest_checkpoint_step=-1
|
||||
# Check if exp_dir exists and is a directory
|
||||
if [ -d "$exp_dir" ]; then
|
||||
# List directories matching checkpoint-* and find the one with the largest step number
|
||||
for checkpoint_dir in $(ls -d $exp_dir/checkpoint-*/ 2>/dev/null | sort -V); do
|
||||
checkpoint_name=$(basename "$checkpoint_dir") # e.g., checkpoint-1000
|
||||
# Extract step number using parameter expansion
|
||||
current_step=${checkpoint_name#checkpoint-}
|
||||
# Ensure current_step is a number
|
||||
if [[ "$current_step" =~ ^[0-9]+$ ]] && [ "$current_step" -gt "$latest_checkpoint_step" ]; then
|
||||
latest_checkpoint_step=$current_step
|
||||
fi
|
||||
done
|
||||
fi
|
||||
|
||||
train_cmd_args="--max-duration 150 \
|
||||
--enable-musan False \
|
||||
--exp-dir $exp_dir \
|
||||
--speech-encoder-path-or-name models/large-v2.pt \
|
||||
--llm-path-or-name Qwen/Qwen2.5-0.5B-Instruct \
|
||||
--dataset vocalnet_ultrachat_voiceassistant \
|
||||
--manifest-dir data/fbank \
|
||||
--deepspeed \
|
||||
--deepspeed_config ./qwen_omni/ds_config_zero1.json \
|
||||
--use-flash-attn True --on-the-fly-feats True \
|
||||
--use-lora True --unfreeze-llm True --unfreeze-speech-projector True --enable-speech-output True"
|
||||
|
||||
if [ "$latest_checkpoint_step" -ge 0 ]; then
|
||||
log "Continuing training from checkpoint-$latest_checkpoint_step"
|
||||
step=$latest_checkpoint_step
|
||||
train_cmd_args="$train_cmd_args --pretrained-model-path $exp_dir/checkpoint-${step}/pytorch_model.bin --sampler-state-dict-path $exp_dir/checkpoint-${step}/sampler.pt"
|
||||
else
|
||||
log "Starting training from scratch as no checkpoint was found in $exp_dir"
|
||||
# No pretrained model or sampler state dict needed for the first run
|
||||
fi
|
||||
|
||||
torchrun --nproc_per_node $ngpu --nnodes $SLURM_JOB_NUM_NODES --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d --rdzv_id $SLURM_JOBID ./qwen_omni/train.py \
|
||||
$train_cmd_args
|
||||
fi
|
||||
|
||||
if [ $stage -le 21 ] && [ $stop_stage -ge 21 ]; then
|
||||
log "stage 21: TTS Decoding Test Set"
|
||||
exp_dir=./qwen_omni/exp_tts
|
||||
torchrun --nproc_per_node=4 python3 ./qwen_omni/decode_tts.py \
|
||||
--exp-dir $exp_dir \
|
||||
--speech-encoder-path-or-name models/large-v2.pt \
|
||||
--llm-path-or-name models/Qwen2.5-0.5B-Instruct \
|
||||
--pretrained-model-path $exp_dir/checkpoint-32001/pytorch_model.bin \
|
||||
--use-flash-attn True \
|
||||
--enable-speech-output True \
|
||||
--token2wav-path /lustre/fsw/general_sa/yuekaiz/s2s/CosyVoice2-0.5B \
|
||||
--use-lora True
|
||||
fi
|
@ -242,9 +242,13 @@ if [ $stage -le 14 ] && [ $stop_stage -ge 14 ]; then
|
||||
exp_dir=./qwen_omni/exp_speech2text_first_libri_continuation_second_ce
|
||||
exp_dir=./qwen_omni/exp_speech2text_first_asr_second_ce
|
||||
exp_dir=./qwen_omni/exp_speech2text_first_multi_en_continuation_second_qa
|
||||
exp_dir=./qwen_omni/exp_speech2text_first_multi_en_continuation_second_three_s2s_librispeech
|
||||
# exp_dir=./qwen_omni/exp_speech2text_first_multi_en_continuation_second_three_s2s
|
||||
# The final assignment of datasets in the original script is used here:
|
||||
# (alpacaeval_full wildvoice mmsu advbench bbh ifeval commoneval openbookqa sd-qa)
|
||||
declare -a target_datasets=("alpacaeval_full" "wildvoice" "ifeval" "commoneval" "openbookqa" "sd-qa" "advbench" "bbh" "mmsu")
|
||||
declare -a target_datasets=("alpacaeval_full" "wildvoice" "ifeval" "commoneval" "openbookqa" "sd-qa" "advbench" "bbh")
|
||||
declare -a target_datasets=("mmsu")
|
||||
|
||||
NUM_CLIENT_JOBS=4 # Number of parallel client jobs
|
||||
BASE_PORT=8000 # Base port for servers
|
||||
@ -367,6 +371,8 @@ if [ $stage -le 17 ] && [ $stop_stage -ge 17 ]; then
|
||||
exp_dir=./qwen_omni/exp_speech2text_first_libri_continuation_second_ce
|
||||
exp_dir=./qwen_omni/exp_speech2text_first_asr_second_ce
|
||||
exp_dir=./qwen_omni/exp_speech2text_first_multi_en_continuation_second_qa
|
||||
exp_dir=./qwen_omni/exp_speech2text_first_multi_en_continuation_second_three_s2s_librispeech
|
||||
exp_dir=./qwen_omni/exp_speech2text_first_multi_en_continuation_second_three_s2s
|
||||
|
||||
N_GPUS=4 # Define the number of GPUs/processes you want to launch
|
||||
|
||||
@ -376,10 +382,10 @@ if [ $stage -le 17 ] && [ $stop_stage -ge 17 ]; then
|
||||
CUDA_VISIBLE_DEVICES=$id python3 ./qwen_omni/server.py \
|
||||
--speech-encoder-path-or-name models/large-v2.pt \
|
||||
--llm-path-or-name models/Qwen2.5-0.5B-Instruct \
|
||||
--checkpoint-path $exp_dir/epoch-10/pytorch_model.bin \
|
||||
--checkpoint-path $exp_dir/checkpoint-55276/pytorch_model.bin \
|
||||
--use-flash-attn True \
|
||||
--enable-speech-output False \
|
||||
--port $(expr 8000 + $id) \
|
||||
--port $(expr 18000 + $id) \
|
||||
--use-lora True &
|
||||
done
|
||||
|
||||
|
@ -77,7 +77,7 @@ sys.path.append("/workspace/CosyVoice/third_party/Matcha-TTS")
|
||||
|
||||
|
||||
def audio_decode_cosyvoice2(
|
||||
audio_tokens, prompt_text, prompt_speech_path, codec_decoder
|
||||
audio_tokens, prompt_text, prompt_speech_16k, codec_decoder
|
||||
):
|
||||
"""
|
||||
Generate audio from tokens with optional tone and prompt embedding.
|
||||
@ -95,7 +95,6 @@ def audio_decode_cosyvoice2(
|
||||
Returns:
|
||||
torch.Tensor: Generated audio waveform.
|
||||
"""
|
||||
prompt_speech_16k = load_wav(prompt_speech_path, 16000)
|
||||
model_inputs_dict = codec_decoder.frontend.frontend_zero_shot(
|
||||
"empty", prompt_text, prompt_speech_16k, 24000
|
||||
)
|
||||
@ -555,10 +554,11 @@ def decode_one_batch(
|
||||
# audio_tokens = [token for token in audio_tokens if token < 4096]
|
||||
audio_tokens = torch.tensor(audio_tokens, dtype=torch.int32).unsqueeze(0)
|
||||
if "CosyVoice2" in params.token2wav_path:
|
||||
prompt_speech_16k = load_wav(params.prompt_speech_path, 16000)
|
||||
audio_hat = audio_decode_cosyvoice2(
|
||||
audio_tokens,
|
||||
params.prompt_text,
|
||||
params.prompt_speech_path,
|
||||
prompt_speech_16k,
|
||||
token2wav_model,
|
||||
)
|
||||
sf.write(speech_file_name, audio_hat.squeeze(0).cpu().numpy(), 24000)
|
||||
|
294
egs/speech_llm/SPEECH2SPEECH/qwen_omni/decode_tts.py
Executable file
294
egs/speech_llm/SPEECH2SPEECH/qwen_omni/decode_tts.py
Executable file
@ -0,0 +1,294 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2023 Xiaomi Corp. (authors: Xiaoyu Yang)
|
||||
# 2024 Yuekai Zhang
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Usage:
|
||||
# For Chinese dataset, you can use the following command to download the Chinese fine-tuned whisper model.
|
||||
huggingface-cli download --local-dir models/whisper yuekai/icefall_asr_multi-hans-zh_whisper
|
||||
# Qwen Pretrained model
|
||||
huggingface-cli download --local-dir models/Qwen2.5-0.5B-Instruct Qwen/Qwen2.5-0.5B-Instruct
|
||||
|
||||
torchrun --nproc_per_node $ngpu ./qwen_omni/train.py \
|
||||
--max-duration 50 \
|
||||
--enable-musan False \
|
||||
--exp-dir $exp_dir \
|
||||
--speech-encoder-path-or-name models/whisper/v1.1/whisper-large-v2-multi-hans-zh-epoch-3-avg-10.pt \
|
||||
--llm-path-or-name Qwen/Qwen2.5-0.5B-Instruct \
|
||||
--manifest-dir data/fbank \
|
||||
--deepspeed \
|
||||
--deepspeed_config ./qwen_omni/ds_config_zero1.json \
|
||||
--use-flash-attn True \
|
||||
--use-lora True --unfreeze-llm True --unfreeze-speech-projector True --enable-speech-output True
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import copy
|
||||
import logging
|
||||
import os
|
||||
import random
|
||||
import warnings
|
||||
from pathlib import Path
|
||||
from shutil import copyfile
|
||||
from typing import Any, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
import torch.nn as nn
|
||||
import transformers
|
||||
from datasets import load_dataset
|
||||
|
||||
from deepspeed.utils.zero_to_fp32 import convert_zero_checkpoint_to_fp32_state_dict
|
||||
from label_smoothing import LabelSmoothingLoss
|
||||
|
||||
from lhotse.utils import fix_random_seed
|
||||
from model import IGNORE_TOKEN_ID, SPEECH_LLM
|
||||
from peft import LoraConfig, get_peft_model
|
||||
from torch import Tensor
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
from transformers import (
|
||||
AutoModelForCausalLM,
|
||||
AutoTokenizer,
|
||||
Qwen2Config,
|
||||
Qwen2ForCausalLM,
|
||||
)
|
||||
from torchdata.stateful_dataloader import StatefulDataLoader
|
||||
from torch.utils.data import DistributedSampler, DataLoader
|
||||
|
||||
from train import add_model_arguments, add_training_arguments, get_params, get_model
|
||||
from decode import audio_decode_cosyvoice2
|
||||
from utils import ( # filter_uneven_sized_batch,
|
||||
AttributeDict,
|
||||
MetricsTracker,
|
||||
get_local_rank,
|
||||
get_rank,
|
||||
get_world_size,
|
||||
setup_logger,
|
||||
str2bool,
|
||||
)
|
||||
from cosyvoice.cli.cosyvoice import CosyVoice2
|
||||
sys.path.append("/lustre/fsw/general_sa/yuekaiz/s2s/CosyVoice/third_party/Matcha-TTS")
|
||||
|
||||
DEFAULT_SPEECH_TOKEN = "<speech>"
|
||||
try:
|
||||
torch.multiprocessing.set_start_method("spawn")
|
||||
except RuntimeError:
|
||||
pass
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--batch-size",
|
||||
type=int,
|
||||
default=1,
|
||||
help="The batch size to use.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--split-name",
|
||||
type=str,
|
||||
default="test_en",
|
||||
choices=["wenetspeech4tts", "test_zh", "test_en", "test_hard"],
|
||||
help="huggingface dataset split name",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--token2wav-path",
|
||||
type=str,
|
||||
default="/workspace/CosyVoice-300M-SFT",
|
||||
help="The path to the token2wav model",
|
||||
)
|
||||
|
||||
add_model_arguments(parser)
|
||||
|
||||
return parser
|
||||
|
||||
def preprocess(
|
||||
messages,
|
||||
tokenizer: transformers.PreTrainedTokenizer,
|
||||
) -> Dict:
|
||||
"""Preprocesses the data for supervised fine-tuning."""
|
||||
texts = []
|
||||
TEMPLATE = "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content']}}{% if loop.last %}{{ '<|im_end|>'}}{% else %}{{ '<|im_end|>\n' }}{% endif %}{% endfor %}"
|
||||
for i, msg in enumerate(messages):
|
||||
texts.append(
|
||||
tokenizer.apply_chat_template(
|
||||
msg,
|
||||
tokenize=True,
|
||||
chat_template=TEMPLATE,
|
||||
add_generation_prompt=False,
|
||||
padding="longest", # FIX me change padding to longest
|
||||
truncation=False,
|
||||
)
|
||||
)
|
||||
if len(texts) != len(messages):
|
||||
logging.warning(f"Remove too long text, {messages} ")
|
||||
max_len_texts = max([len(text) for text in texts])
|
||||
if tokenizer.padding_side == "right":
|
||||
texts = [
|
||||
text + [tokenizer.pad_token_id] * (max_len_texts - len(text))
|
||||
for text in texts
|
||||
]
|
||||
else:
|
||||
texts = [
|
||||
[tokenizer.pad_token_id] * (max_len_texts - len(text)) + text
|
||||
for text in texts
|
||||
]
|
||||
input_ids = torch.tensor(texts, dtype=torch.int)
|
||||
|
||||
target_ids = input_ids.clone()
|
||||
target_ids[target_ids == tokenizer.pad_token_id] = IGNORE_TOKEN_ID
|
||||
# mask all tokens before token_id <speech> with IGNORE_TOKEN_ID
|
||||
# first get the indices of the tokens
|
||||
mask_prompt = True
|
||||
if mask_prompt:
|
||||
default_speech_token_id = tokenizer.convert_tokens_to_ids(DEFAULT_SPEECH_TOKEN)
|
||||
mask_indices = torch.where(input_ids == default_speech_token_id)
|
||||
for i in range(mask_indices[0].size(0)):
|
||||
row = mask_indices[0][i]
|
||||
col = mask_indices[1][i]
|
||||
# + 2 to skip: 'assistant', '\n'
|
||||
# WAR: TODO FIXME check qwen3
|
||||
# THIS IS THE ONLY DIFFERENCE FROM preprocess
|
||||
target_ids[row, : col + 6] = IGNORE_TOKEN_ID
|
||||
target_ids[row, col] = default_speech_token_id
|
||||
# remove default_speech_token_id from target_ids and input_ids
|
||||
batch_size = target_ids.size(0)
|
||||
|
||||
target_ids = target_ids[target_ids != default_speech_token_id].view(batch_size, -1)
|
||||
input_ids = input_ids[input_ids != default_speech_token_id].view(batch_size, -1)
|
||||
|
||||
attention_mask = input_ids.ne(tokenizer.pad_token_id)
|
||||
return input_ids, attention_mask, target_ids
|
||||
|
||||
def data_collator(batch):
|
||||
prompt_texts, prompt_speech_16k, messages, ids = [], [], [], []
|
||||
for i, item in enumerate(batch):
|
||||
# speech_tokens.append(item["prompt_audio_cosy2_tokens"])
|
||||
message_list_item = []
|
||||
message_list_item += [
|
||||
{"role": "user", "content": f"Generate a speech from the following text:\n\n{item['target_text']}{DEFAULT_SPEECH_TOKEN}"},
|
||||
{"role": "assistant", "content": ""},
|
||||
]
|
||||
messages.append(message_list_item)
|
||||
|
||||
ids.append(item["id"])
|
||||
prompt_texts.append(item["prompt_text"])
|
||||
prompt_speech_16k.append(item["prompt_audio"])
|
||||
print(item["prompt_audio"], 233333333333333333)
|
||||
|
||||
|
||||
return {
|
||||
"prompt_texts": prompt_texts,
|
||||
"prompt_speech_16k": prompt_speech_16k,
|
||||
"messages": messages,
|
||||
"ids": ids,
|
||||
}
|
||||
|
||||
def run(rank, world_size, args):
|
||||
"""
|
||||
Args:
|
||||
rank:
|
||||
It is a value between 0 and `world_size-1`, which is
|
||||
passed automatically by `mp.spawn()` in :func:`main`.
|
||||
The node with rank 0 is responsible for saving checkpoint.
|
||||
world_size:
|
||||
Number of GPUs for DDP training.
|
||||
args:
|
||||
The return value of get_parser().parse_args()
|
||||
"""
|
||||
params = get_params()
|
||||
params.update(vars(args))
|
||||
params.log_dir = Path(params.exp_dir) / f"log-results-wav"
|
||||
params.log_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
fix_random_seed(params.seed)
|
||||
|
||||
if rank == 0:
|
||||
setup_logger(f"{params.exp_dir}/log/log-decode-tts")
|
||||
logging.info(params)
|
||||
logging.info("About to create model")
|
||||
model, tokenizer = get_model(params)
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda", get_local_rank())
|
||||
else:
|
||||
device = torch.device("cpu")
|
||||
logging.info(f"Device: {device}")
|
||||
model.to(device)
|
||||
|
||||
assert params.deepspeed and world_size > 1
|
||||
logging.info("Using DeepSpeed")
|
||||
|
||||
dataset = load_dataset("yuekai/seed_tts_cosy2", split=params.split_name)
|
||||
|
||||
sampler = DistributedSampler(dataset, num_replicas=world_size, rank=rank)
|
||||
data_loader = DataLoader(
|
||||
dataset,
|
||||
batch_size=params.batch_size,
|
||||
sampler=sampler,
|
||||
shuffle=False,
|
||||
num_workers=1,
|
||||
prefetch_factor=1,
|
||||
collate_fn=data_collator
|
||||
)
|
||||
token2wav_model = CosyVoice2(
|
||||
params.token2wav_path, load_jit=False, load_trt=False, fp16=False
|
||||
)
|
||||
for batch in data_loader:
|
||||
messages = batch["messages"]
|
||||
prompt_texts = batch["prompt_texts"]
|
||||
prompt_speech_16k = batch["prompt_speech_16k"]
|
||||
ids = batch["ids"]
|
||||
input_ids, attention_mask, _ = preprocess(messages, tokenizer)
|
||||
generated_ids, generated_speech_output = model.decode_with_speech_output(
|
||||
None, input_ids.to(device, dtype=torch.long), attention_mask.to(device)
|
||||
)
|
||||
generated_speech_output = [
|
||||
generated_speech_output
|
||||
] # WAR: only support batch = 1 for now
|
||||
for cut_id, audio_tokens, prompt_text, prompt_speech in zip(ids, generated_speech_output, prompt_texts, prompt_speech_16k):
|
||||
speech_file_name = params.log_dir / f"{cut_id}.wav"
|
||||
audio_tokens = torch.tensor(audio_tokens, dtype=torch.int32).unsqueeze(0)
|
||||
if "CosyVoice2" in params.token2wav_path:
|
||||
audio_hat = audio_decode_cosyvoice2(
|
||||
audio_tokens,
|
||||
prompt_text,
|
||||
prompt_speech,
|
||||
token2wav_model,
|
||||
)
|
||||
sf.write(speech_file_name, audio_hat.squeeze(0).cpu().numpy(), 24000)
|
||||
|
||||
logging.info("Done!")
|
||||
|
||||
def main():
|
||||
parser = get_parser()
|
||||
args = parser.parse_args()
|
||||
args.exp_dir = Path(args.exp_dir)
|
||||
|
||||
world_size = get_world_size()
|
||||
rank = get_rank()
|
||||
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
warnings.filterwarnings("ignore", category=FutureWarning)
|
||||
run(rank=rank, world_size=world_size, args=args)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -479,12 +479,12 @@ class SPEECH_LLM(nn.Module):
|
||||
start_idx == start_idx_re_compute
|
||||
), f"start_idx: {start_idx}, start_idx_re_compute: {start_idx_re_compute}"
|
||||
if text_input_embeds.shape[0] > audio_embeddings.shape[1] - start_idx:
|
||||
text_input_embeds = text_input_embeds[
|
||||
: audio_embeddings.shape[1] - start_idx
|
||||
]
|
||||
logging.warning(
|
||||
f"Truncate text_input_embeds: {text_input_embeds.shape} to {audio_embeddings.shape[1] - start_idx}"
|
||||
)
|
||||
text_input_embeds = text_input_embeds[
|
||||
: audio_embeddings.shape[1] - start_idx
|
||||
]
|
||||
audio_embeddings[
|
||||
i, start_idx : start_idx + text_input_embeds.shape[0]
|
||||
] += text_input_embeds
|
||||
@ -592,27 +592,18 @@ class SPEECH_LLM(nn.Module):
|
||||
- generated_speech_tokens: List of lists, where each inner list contains
|
||||
the generated speech codec tokens for a batch item.
|
||||
"""
|
||||
assert fbank.shape[0] == 1, "Batch size must be 1 for speech generation."
|
||||
if (
|
||||
not self.codec_lm
|
||||
or not self.speech_token_projector
|
||||
or not self.codec_lm_head
|
||||
):
|
||||
raise ValueError(
|
||||
"codec_lm and associated layers must be initialized to generate speech output."
|
||||
)
|
||||
batch_size = input_ids.shape[0]
|
||||
assert batch_size == 1, "Batch size must be 1 for speech generation."
|
||||
|
||||
device = next(self.parameters()).device # Use model's device
|
||||
batch_size = fbank.shape[0]
|
||||
|
||||
# --- 1. Prepare Prompt Embeddings ---
|
||||
encoder_outs = self.encoder(fbank)
|
||||
speech_features = self.encoder_projector(encoder_outs)
|
||||
speech_features = speech_features.to(self.llm.dtype) # Ensure matching dtype
|
||||
|
||||
prompt_embeds = self.llm.get_input_embeddings()(input_ids)
|
||||
|
||||
# Merge speech features with prompt embeddings
|
||||
if fbank is not None:
|
||||
encoder_outs = self.encoder(fbank)
|
||||
speech_features = self.encoder_projector(encoder_outs)
|
||||
speech_features = speech_features.to(self.llm.dtype) # Ensure matching dtype
|
||||
(
|
||||
merged_prompt_inputs_embeds,
|
||||
merged_prompt_attention_mask,
|
||||
@ -621,6 +612,9 @@ class SPEECH_LLM(nn.Module):
|
||||
) = self._merge_input_ids_with_speech_features(
|
||||
speech_features, prompt_embeds, input_ids, attention_mask
|
||||
)
|
||||
else:
|
||||
merged_prompt_inputs_embeds = prompt_embeds
|
||||
merged_prompt_attention_mask = attention_mask
|
||||
|
||||
# --- 2. Generate Text using LLM ---
|
||||
# Use merged embeds/mask as input to generate
|
||||
|
Loading…
x
Reference in New Issue
Block a user