Update train.py

This commit is contained in:
Mingshuang Luo 2021-09-29 12:51:38 +08:00 committed by GitHub
parent 0fa46bf68a
commit 597ff01158
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -47,6 +47,7 @@ from icefall.graph_compiler import CtcTrainingGraphCompiler
from icefall.lexicon import Lexicon
from icefall.utils import (
AttributeDict,
LossRecord,
encode_supervisions,
setup_logger,
str2bool,
@ -264,71 +265,6 @@ def save_checkpoint(
best_valid_filename = params.exp_dir / "best-valid-loss.pt"
copyfile(src=filename, dst=best_valid_filename)
class LossRecord(collections.defaultdict):
def __init__(self):
# Passing the type 'int' to the base-class constructor
# makes undefined items default to int() which is zero.
super(LossRecord, self).__init__(int)
def __add__(self, other: 'LossRecord') -> 'LossRecord':
ans = LossRecord()
for k, v in self.items():
ans[k] = v
for k, v in other.items():
ans[k] = ans[k] + v
return ans
def __mul__(self, alpha: float) -> 'LossRecord':
ans = LossRecord()
for k, v in self.items():
ans[k] = v * alpha
return ans
def __str__(self) -> str:
ans = ''
for k, v in self.norm_items():
norm_value = '%.4g' % v
ans += (str(k) + '=' + str(norm_value) + ', ')
frames = str(self['frames'])
ans += 'over ' + frames + ' frames.'
return ans
def norm_items(self) -> List[Tuple[str, float]]:
"""
Returns a list of pairs, like:
[('ctc_loss', 0.1), ('att_loss', 0.07)]
"""
num_frames = self['frames'] if 'frames' in self else 1
ans = []
for k, v in self.items():
if k != 'frames':
norm_value = float(v) / num_frames
ans.append((k, norm_value))
return ans
def reduce(self, device):
"""
Reduce using torch.distributed, which I believe ensures that
all processes get the total.
"""
keys = sorted(self.keys())
s = torch.tensor([ float(self[k]) for k in keys ],
device=device)
dist.all_reduce(s, op=dist.ReduceOp.SUM)
for k, v in zip(keys, s.cpu().tolist()):
self[k] = v
def write_summary(self, tb_writer: SummaryWriter, prefix: str, batch_idx: int) -> None:
"""
Add logging information to a TensorBoard writer.
tb_writer: a TensorBoard writer
prefix: a prefix for the name of the loss, e.g. "train/valid_",
or "train/current_"
batch_idx: The current batch index, used as the x-axis of the plot.
"""
for k, v in self.norm_items():
tb_writer.add_scalar(prefix + k, v, batch_idx)
def compute_loss(
params: AttributeDict,
@ -394,7 +330,6 @@ def compute_loss(
assert loss.requires_grad == is_training
info = LossRecord()
# TODO: there are many GPU->CPU transfers here, maybe combine them into one.
info['frames'] = supervision_segments[:, 2].sum().item()
info['loss'] = loss.detach().cpu().item()
@ -426,7 +361,7 @@ def compute_validation_loss(
assert loss.requires_grad is False
tot_loss = tot_loss + loss_info
if world_size > 1:
tot_loss.reduce(loss.device)
@ -489,10 +424,7 @@ def train_one_epoch(
is_training=True,
)
# summary stats.
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
# NOTE: We use reduction==sum and loss is computed over utterances
# in the batch and there is no normalization to it so far.
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
optimizer.zero_grad()
loss.backward()
@ -658,4 +590,4 @@ def main():
if __name__ == "__main__":
main()
main()