Zipformer Onnx fp16

This commit is contained in:
manickavela29 2024-06-26 18:35:28 +00:00
parent b594a3875b
commit 5934b37e3f
2 changed files with 35 additions and 3 deletions

View File

@ -48,7 +48,8 @@ popd
--joiner-dim 512 \
--causal True \
--chunk-size 16 \
--left-context-frames 128
--left-context-frames 128 \
--fp16 True
The --chunk-size in training is "16,32,64,-1", so we select one of them
(excluding -1) during streaming export. The same applies to `--left-context`,
@ -74,6 +75,7 @@ import torch
import torch.nn as nn
from decoder import Decoder
from onnxruntime.quantization import QuantType, quantize_dynamic
from onnxconverter_common import float16
from scaling_converter import convert_scaled_to_non_scaled
from train import add_model_arguments, get_model, get_params
from zipformer import Zipformer2
@ -154,6 +156,13 @@ def get_parser():
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
)
parser.add_argument(
"--fp16",
type=str2bool,
default=False,
help="Whether to export models in fp16",
)
add_model_arguments(parser)
return parser
@ -334,6 +343,7 @@ def export_encoder_model_onnx(
encoder_filename: str,
opset_version: int = 11,
feature_dim: int = 80,
fp16: bool = False,
) -> None:
encoder_model.encoder.__class__.forward = (
encoder_model.encoder.__class__.streaming_forward
@ -479,6 +489,11 @@ def export_encoder_model_onnx(
add_meta_data(filename=encoder_filename, meta_data=meta_data)
if(fp16) :
logging.info("Exporting Encoder model in fp16")
encoder = onnx.load(encoder_filename)
encoder_fp16 = float16.convert_float_to_float16(encoder, keep_io_types=True)
onnx.save(encoder_fp16,encoder_filename)
def export_decoder_model_onnx(
decoder_model: OnnxDecoder,
@ -726,6 +741,7 @@ def main():
encoder_filename,
opset_version=opset_version,
feature_dim=params.feature_dim,
fp16=params.fp16,
)
logging.info(f"Exported encoder to {encoder_filename}")

View File

@ -48,8 +48,8 @@ popd
--joiner-dim 512 \
--causal False \
--chunk-size "16,32,64,-1" \
--left-context-frames "64,128,256,-1"
--left-context-frames "64,128,256,-1" \
--fp16 True
It will generate the following 3 files inside $repo/exp:
- encoder-epoch-99-avg-1.onnx
@ -71,6 +71,7 @@ import torch
import torch.nn as nn
from decoder import Decoder
from onnxruntime.quantization import QuantType, quantize_dynamic
from onnxconverter_common import float16
from scaling_converter import convert_scaled_to_non_scaled
from train import add_model_arguments, get_model, get_params
from zipformer import Zipformer2
@ -151,6 +152,13 @@ def get_parser():
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
)
parser.add_argument(
"--fp16",
type=str2bool,
default=False,
help="Whether to export models in fp16",
)
add_model_arguments(parser)
return parser
@ -274,6 +282,7 @@ def export_encoder_model_onnx(
encoder_model: OnnxEncoder,
encoder_filename: str,
opset_version: int = 11,
fp16:bool = False,
) -> None:
"""Export the given encoder model to ONNX format.
The exported model has two inputs:
@ -325,6 +334,12 @@ def export_encoder_model_onnx(
add_meta_data(filename=encoder_filename, meta_data=meta_data)
if(fp16) :
logging.info("Exporting Encoder model in fp16")
encoder = onnx.load(encoder_filename)
encoder_fp16 = float16.convert_float_to_float16(encoder, keep_io_types=True)
onnx.save(encoder_fp16,encoder_filename)
def export_decoder_model_onnx(
decoder_model: OnnxDecoder,
@ -563,6 +578,7 @@ def main():
encoder,
encoder_filename,
opset_version=opset_version,
fp16=params.fp16,
)
logging.info(f"Exported encoder to {encoder_filename}")