Add bengaliai_speech

This commit is contained in:
Yifan Yang 2023-07-24 15:12:02 +08:00
parent 4ab7d61008
commit 585925d81b
3 changed files with 358 additions and 0 deletions

View File

@ -0,0 +1,124 @@
#!/usr/bin/env python3
# Copyright 2023 Xiaomi Corp. (authors: Yifan Yang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import logging
import re
from pathlib import Path
from typing import Optional
from lhotse import CutSet, SupervisionSegment
from lhotse.recipes.utils import read_manifests_if_cached
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--dataset",
type=str,
help="""Dataset parts to compute fbank. If None, we will use all""",
)
return parser.parse_args()
def normalize_text(utt: str) -> str:
punc = '~`!#$%^&*()_+-=|\';":/.,?><~·!@#¥%……&*()——+-=“:’;、。,?》《{}'
return re.sub(r"[{0}]+".format(punc), "", utt).upper()
def preprocess_bengaliai_speech(
dataset: Optional[str] = None,
):
src_dir = Path(f"data/manifests")
output_dir = Path(f"data/fbank")
output_dir.mkdir(exist_ok=True)
if dataset is None:
dataset_parts = (
"train",
"valid",
"test",
)
else:
dataset_parts = dataset.split(" ", -1)
logging.info("Loading manifest")
prefix = f"bengaliai_speech"
suffix = "jsonl.gz"
manifests = read_manifests_if_cached(
dataset_parts=dataset_parts,
output_dir=src_dir,
suffix=suffix,
prefix=prefix,
)
assert manifests is not None
assert len(manifests) == len(dataset_parts), (
len(manifests),
len(dataset_parts),
list(manifests.keys()),
dataset_parts,
)
for partition, m in manifests.items():
logging.info(f"Processing {partition}")
raw_cuts_path = output_dir / f"{prefix}_cuts_{partition}_raw.{suffix}"
if raw_cuts_path.is_file():
logging.info(f"{partition} already exists - skipping")
continue
logging.info(f"Normalizing text in {partition}")
for sup in m["supervisions"]:
if sup.text is None:
continue
text = str(sup.text)
orig_text = text
sup.text = normalize_text(sup.text)
text = str(sup.text)
if len(orig_text) != len(text):
logging.info(
f"\nOriginal text vs normalized text:\n{orig_text}\n{text}"
)
# Create long-recording cut manifests.
cut_set = CutSet.from_manifests(
recordings=m["recordings"],
supervisions=m["supervisions"],
).resample(16000)
# Run data augmentation that needs to be done in the
# time domain.
logging.info(f"Saving to {raw_cuts_path}")
cut_set.to_file(raw_cuts_path)
def main():
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
args = get_args()
logging.info(vars(args))
preprocess_bengaliai_speech(
dataset=args.dataset,
)
logging.info("Done")
if __name__ == "__main__":
main()

View File

@ -0,0 +1,233 @@
#!/usr/bin/env bash
set -eou pipefail
nj=32
stage=-1
stop_stage=100
# Split data/set to a number of pieces
# This is to avoid OOM during feature extraction.
num_per_split=4000
# We assume dl_dir (download dir) contains the following
# directories and files. If not, they will be downloaded
# by this script automatically.
#
# - $dl_dir/bengaliai_speech
# This directory contains the following files downloaded by
# kaggle competitions download -c bengaliai-speech
#
# - train_mp3s
# - test_mp3s
# - examples
# - train.csv
# - sample_submission.csv
#
# - $dl_dir/musan
# This directory contains the following directories downloaded from
# http://www.openslr.org/17/
#
# - music
# - noise
# - speech
dl_dir=$PWD/download
. shared/parse_options.sh || exit 1
# vocab size for sentence piece models.
# It will generate data/lang_bpe_xxx,
# data/lang_bpe_yyy if the array contains xxx, yyy
vocab_sizes=(
# 5000
# 2000
# 1000
500
)
# All files generated by this script are saved in "data".
# You can safely remove "data" and rerun this script to regenerate it.
mkdir -p data
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
log "dl_dir: $dl_dir"
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
log "Stage 0: Download data"
# If you have pre-downloaded it to /path/to/bengaliai_speech,
# you can create a symlink
#
# ln -sfv /path/to/bengaliai_speech $dl_dir/bengaliai_speech
#
if [ ! -d $dl_dir/bengaliai/train_mp3s ]; then
kaggle competitions download -c bengaliai-speech
fi
# If you have pre-downloaded it to /path/to/musan,
# you can create a symlink
#
# ln -sfv /path/to/musan $dl_dir/
#
if [ ! -d $dl_dir/musan ]; then
lhotse download musan $dl_dir
fi
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
log "Stage 1: Prepare Bengali.AI Speech manifest"
# We assume that you have downloaded the Bengali.AI Speech corpus
# to $dl_dir/bengaliai_speech
mkdir -p data/manifests
if [ ! -e data/manifests/.bengaliai_speech.done ]; then
lhotse prepare bengaliai-speech -j $nj $dl_dir/bengaliai_speech data/manifests
touch data/manifests/.bengaliai_speech.done
fi
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Prepare musan manifest"
# We assume that you have downloaded the musan corpus
# to data/musan
mkdir -p data/manifests
if [ ! -e data/manifests/.musan.done ]; then
lhotse prepare musan $dl_dir/musan data/manifests
touch data/manifests/.musan.done
fi
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Preprocess Bengali.AI Speech manifest"
mkdir -p data/fbank
if [ ! -e data/fbank/.preprocess_complete ]; then
./local/preprocess_bengaliai_speech.py
touch data/fbank/.preprocess_complete
fi
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Compute fbank for valid and test subsets of Bengali.AI Speech"
if [ ! -e data/fbank/.bengaliai_speech_valid_test.done ]; then
./local/compute_fbank_bengaliai_speech_valid_test.py
touch data/fbank/.bengaliai_speech_valid_test.done
fi
fi
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "Stage 5: Split train subset into pieces"
split_dir=data/fbank/bengaliai_speech_train_split
if [ ! -e $split_dir/.bengaliai_speech_train_split.done ]; then
lhotse split-lazy ./data/fbank/bengaliai_speech_cuts_train_raw.jsonl.gz $split_dir $num_per_split
touch $split_dir/.bengaliai_speech_train_split.done
fi
fi
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
log "Stage 6: Compute features for train subset of Bengali.AI Speech"
if [ ! -e data/fbank/.bengaliai_speech_train.done ]; then
./local/compute_fbank_bengaliai_speech_splits.py \
--num-workers $nj \
--batch-duration 600 \
--start 0 \
--num-splits 2000
touch data/fbank/.bengaliai_speech_train.done
fi
fi
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
log "Stage 7: Compute fbank for musan"
mkdir -p data/fbank
if [ ! -e data/fbank/.musan.done ]; then
./local/compute_fbank_musan.py
touch data/fbank/.musan.done
fi
fi
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
log "Stage 8: Prepare BPE based lang"
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/lang_bpe_${vocab_size}
mkdir -p $lang_dir
if [ ! -f $lang_dir/transcript_words.txt ]; then
log "Generate data for BPE training"
file=$(
find "data/fbank/bengaliai_speech_cuts_dirty_raw.jsonl.gz"
find "data/fbank/bengaliai_speech_cuts_dirty_sa_raw.jsonl.gz"
find "data/fbank/bengaliai_speech_cuts_clean_raw.jsonl.gz"
find "data/fbank/bengaliai_speech_cuts_clean_sa_raw.jsonl.gz"
)
gunzip -c ${file} | awk -F '"' '{print $30}' > $lang_dir/transcript_words.txt
# Ensure space only appears once
sed -i 's/\t/ /g' $lang_dir/transcript_words.txt
sed -i 's/ +/ /g' $lang_dir/transcript_words.txt
fi
if [ ! -f $lang_dir/words.txt ]; then
cat $lang_dir/transcript_words.txt | sed 's/ /\n/g' \
| sort -u | sed '/^$/d' > $lang_dir/words.txt
(echo '!SIL'; echo '<SPOKEN_NOISE>'; echo '<UNK>'; ) |
cat - $lang_dir/words.txt | sort | uniq | awk '
BEGIN {
print "<eps> 0";
}
{
if ($1 == "<s>") {
print "<s> is in the vocabulary!" | "cat 1>&2"
exit 1;
}
if ($1 == "</s>") {
print "</s> is in the vocabulary!" | "cat 1>&2"
exit 1;
}
printf("%s %d\n", $1, NR);
}
END {
printf("#0 %d\n", NR+1);
printf("<s> %d\n", NR+2);
printf("</s> %d\n", NR+3);
}' > $lang_dir/words || exit 1;
mv $lang_dir/words $lang_dir/words.txt
fi
if [ ! -f $lang_dir/bpe.model ]; then
./local/train_bpe_model.py \
--lang-dir $lang_dir \
--vocab-size $vocab_size \
--transcript $lang_dir/transcript_words.txt
fi
if [ ! -f $lang_dir/L_disambig.pt ]; then
./local/prepare_lang_bpe.py --lang-dir $lang_dir
log "Validating $lang_dir/lexicon.txt"
./local/validate_bpe_lexicon.py \
--lexicon $lang_dir/lexicon.txt \
--bpe-model $lang_dir/bpe.model
fi
if [ ! -f $lang_dir/L.fst ]; then
log "Converting L.pt to L.fst"
./shared/convert-k2-to-openfst.py \
--olabels aux_labels \
$lang_dir/L.pt \
$lang_dir/L.fst
fi
if [ ! -f $lang_dir/L_disambig.fst ]; then
log "Converting L_disambig.pt to L_disambig.fst"
./shared/convert-k2-to-openfst.py \
--olabels aux_labels \
$lang_dir/L_disambig.pt \
$lang_dir/L_disambig.fst
fi
done
fi

View File

@ -0,0 +1 @@
../../../icefall/shared