mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-19 05:54:20 +00:00
Add bengaliai_speech
This commit is contained in:
parent
4ab7d61008
commit
585925d81b
124
egs/bengaliai_speech/ASR/local/preprocess_bengaliai_speech.py
Executable file
124
egs/bengaliai_speech/ASR/local/preprocess_bengaliai_speech.py
Executable file
@ -0,0 +1,124 @@
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2023 Xiaomi Corp. (authors: Yifan Yang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
import re
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
from lhotse import CutSet, SupervisionSegment
|
||||
from lhotse.recipes.utils import read_manifests_if_cached
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
parser.add_argument(
|
||||
"--dataset",
|
||||
type=str,
|
||||
help="""Dataset parts to compute fbank. If None, we will use all""",
|
||||
)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def normalize_text(utt: str) -> str:
|
||||
punc = '~`!#$%^&*()_+-=|\';":/.,?><~·!@#¥%……&*()——+-=“:’;、。,?》《{}'
|
||||
return re.sub(r"[{0}]+".format(punc), "", utt).upper()
|
||||
|
||||
|
||||
def preprocess_bengaliai_speech(
|
||||
dataset: Optional[str] = None,
|
||||
):
|
||||
src_dir = Path(f"data/manifests")
|
||||
output_dir = Path(f"data/fbank")
|
||||
output_dir.mkdir(exist_ok=True)
|
||||
|
||||
if dataset is None:
|
||||
dataset_parts = (
|
||||
"train",
|
||||
"valid",
|
||||
"test",
|
||||
)
|
||||
else:
|
||||
dataset_parts = dataset.split(" ", -1)
|
||||
|
||||
logging.info("Loading manifest")
|
||||
prefix = f"bengaliai_speech"
|
||||
suffix = "jsonl.gz"
|
||||
manifests = read_manifests_if_cached(
|
||||
dataset_parts=dataset_parts,
|
||||
output_dir=src_dir,
|
||||
suffix=suffix,
|
||||
prefix=prefix,
|
||||
)
|
||||
assert manifests is not None
|
||||
|
||||
assert len(manifests) == len(dataset_parts), (
|
||||
len(manifests),
|
||||
len(dataset_parts),
|
||||
list(manifests.keys()),
|
||||
dataset_parts,
|
||||
)
|
||||
|
||||
for partition, m in manifests.items():
|
||||
logging.info(f"Processing {partition}")
|
||||
raw_cuts_path = output_dir / f"{prefix}_cuts_{partition}_raw.{suffix}"
|
||||
if raw_cuts_path.is_file():
|
||||
logging.info(f"{partition} already exists - skipping")
|
||||
continue
|
||||
|
||||
logging.info(f"Normalizing text in {partition}")
|
||||
for sup in m["supervisions"]:
|
||||
if sup.text is None:
|
||||
continue
|
||||
text = str(sup.text)
|
||||
orig_text = text
|
||||
sup.text = normalize_text(sup.text)
|
||||
text = str(sup.text)
|
||||
if len(orig_text) != len(text):
|
||||
logging.info(
|
||||
f"\nOriginal text vs normalized text:\n{orig_text}\n{text}"
|
||||
)
|
||||
|
||||
# Create long-recording cut manifests.
|
||||
cut_set = CutSet.from_manifests(
|
||||
recordings=m["recordings"],
|
||||
supervisions=m["supervisions"],
|
||||
).resample(16000)
|
||||
|
||||
# Run data augmentation that needs to be done in the
|
||||
# time domain.
|
||||
logging.info(f"Saving to {raw_cuts_path}")
|
||||
cut_set.to_file(raw_cuts_path)
|
||||
|
||||
|
||||
def main():
|
||||
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||
|
||||
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||
args = get_args()
|
||||
logging.info(vars(args))
|
||||
preprocess_bengaliai_speech(
|
||||
dataset=args.dataset,
|
||||
)
|
||||
logging.info("Done")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
233
egs/bengaliai_speech/ASR/prepare.sh
Executable file
233
egs/bengaliai_speech/ASR/prepare.sh
Executable file
@ -0,0 +1,233 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -eou pipefail
|
||||
|
||||
nj=32
|
||||
stage=-1
|
||||
stop_stage=100
|
||||
|
||||
# Split data/set to a number of pieces
|
||||
# This is to avoid OOM during feature extraction.
|
||||
num_per_split=4000
|
||||
|
||||
# We assume dl_dir (download dir) contains the following
|
||||
# directories and files. If not, they will be downloaded
|
||||
# by this script automatically.
|
||||
#
|
||||
# - $dl_dir/bengaliai_speech
|
||||
# This directory contains the following files downloaded by
|
||||
# kaggle competitions download -c bengaliai-speech
|
||||
#
|
||||
# - train_mp3s
|
||||
# - test_mp3s
|
||||
# - examples
|
||||
# - train.csv
|
||||
# - sample_submission.csv
|
||||
#
|
||||
# - $dl_dir/musan
|
||||
# This directory contains the following directories downloaded from
|
||||
# http://www.openslr.org/17/
|
||||
#
|
||||
# - music
|
||||
# - noise
|
||||
# - speech
|
||||
|
||||
dl_dir=$PWD/download
|
||||
|
||||
. shared/parse_options.sh || exit 1
|
||||
|
||||
# vocab size for sentence piece models.
|
||||
# It will generate data/lang_bpe_xxx,
|
||||
# data/lang_bpe_yyy if the array contains xxx, yyy
|
||||
vocab_sizes=(
|
||||
# 5000
|
||||
# 2000
|
||||
# 1000
|
||||
500
|
||||
)
|
||||
|
||||
# All files generated by this script are saved in "data".
|
||||
# You can safely remove "data" and rerun this script to regenerate it.
|
||||
mkdir -p data
|
||||
|
||||
log() {
|
||||
# This function is from espnet
|
||||
local fname=${BASH_SOURCE[1]##*/}
|
||||
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
||||
}
|
||||
|
||||
log "dl_dir: $dl_dir"
|
||||
|
||||
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
|
||||
log "Stage 0: Download data"
|
||||
|
||||
# If you have pre-downloaded it to /path/to/bengaliai_speech,
|
||||
# you can create a symlink
|
||||
#
|
||||
# ln -sfv /path/to/bengaliai_speech $dl_dir/bengaliai_speech
|
||||
#
|
||||
if [ ! -d $dl_dir/bengaliai/train_mp3s ]; then
|
||||
kaggle competitions download -c bengaliai-speech
|
||||
fi
|
||||
|
||||
# If you have pre-downloaded it to /path/to/musan,
|
||||
# you can create a symlink
|
||||
#
|
||||
# ln -sfv /path/to/musan $dl_dir/
|
||||
#
|
||||
if [ ! -d $dl_dir/musan ]; then
|
||||
lhotse download musan $dl_dir
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
||||
log "Stage 1: Prepare Bengali.AI Speech manifest"
|
||||
# We assume that you have downloaded the Bengali.AI Speech corpus
|
||||
# to $dl_dir/bengaliai_speech
|
||||
mkdir -p data/manifests
|
||||
if [ ! -e data/manifests/.bengaliai_speech.done ]; then
|
||||
lhotse prepare bengaliai-speech -j $nj $dl_dir/bengaliai_speech data/manifests
|
||||
touch data/manifests/.bengaliai_speech.done
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
||||
log "Stage 2: Prepare musan manifest"
|
||||
# We assume that you have downloaded the musan corpus
|
||||
# to data/musan
|
||||
mkdir -p data/manifests
|
||||
if [ ! -e data/manifests/.musan.done ]; then
|
||||
lhotse prepare musan $dl_dir/musan data/manifests
|
||||
touch data/manifests/.musan.done
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
||||
log "Stage 3: Preprocess Bengali.AI Speech manifest"
|
||||
mkdir -p data/fbank
|
||||
if [ ! -e data/fbank/.preprocess_complete ]; then
|
||||
./local/preprocess_bengaliai_speech.py
|
||||
touch data/fbank/.preprocess_complete
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
||||
log "Stage 4: Compute fbank for valid and test subsets of Bengali.AI Speech"
|
||||
if [ ! -e data/fbank/.bengaliai_speech_valid_test.done ]; then
|
||||
./local/compute_fbank_bengaliai_speech_valid_test.py
|
||||
touch data/fbank/.bengaliai_speech_valid_test.done
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
||||
log "Stage 5: Split train subset into pieces"
|
||||
split_dir=data/fbank/bengaliai_speech_train_split
|
||||
if [ ! -e $split_dir/.bengaliai_speech_train_split.done ]; then
|
||||
lhotse split-lazy ./data/fbank/bengaliai_speech_cuts_train_raw.jsonl.gz $split_dir $num_per_split
|
||||
touch $split_dir/.bengaliai_speech_train_split.done
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
|
||||
log "Stage 6: Compute features for train subset of Bengali.AI Speech"
|
||||
if [ ! -e data/fbank/.bengaliai_speech_train.done ]; then
|
||||
./local/compute_fbank_bengaliai_speech_splits.py \
|
||||
--num-workers $nj \
|
||||
--batch-duration 600 \
|
||||
--start 0 \
|
||||
--num-splits 2000
|
||||
touch data/fbank/.bengaliai_speech_train.done
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
|
||||
log "Stage 7: Compute fbank for musan"
|
||||
mkdir -p data/fbank
|
||||
if [ ! -e data/fbank/.musan.done ]; then
|
||||
./local/compute_fbank_musan.py
|
||||
touch data/fbank/.musan.done
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
|
||||
log "Stage 8: Prepare BPE based lang"
|
||||
|
||||
for vocab_size in ${vocab_sizes[@]}; do
|
||||
lang_dir=data/lang_bpe_${vocab_size}
|
||||
mkdir -p $lang_dir
|
||||
|
||||
if [ ! -f $lang_dir/transcript_words.txt ]; then
|
||||
log "Generate data for BPE training"
|
||||
file=$(
|
||||
find "data/fbank/bengaliai_speech_cuts_dirty_raw.jsonl.gz"
|
||||
find "data/fbank/bengaliai_speech_cuts_dirty_sa_raw.jsonl.gz"
|
||||
find "data/fbank/bengaliai_speech_cuts_clean_raw.jsonl.gz"
|
||||
find "data/fbank/bengaliai_speech_cuts_clean_sa_raw.jsonl.gz"
|
||||
)
|
||||
gunzip -c ${file} | awk -F '"' '{print $30}' > $lang_dir/transcript_words.txt
|
||||
|
||||
# Ensure space only appears once
|
||||
sed -i 's/\t/ /g' $lang_dir/transcript_words.txt
|
||||
sed -i 's/ +/ /g' $lang_dir/transcript_words.txt
|
||||
fi
|
||||
|
||||
if [ ! -f $lang_dir/words.txt ]; then
|
||||
cat $lang_dir/transcript_words.txt | sed 's/ /\n/g' \
|
||||
| sort -u | sed '/^$/d' > $lang_dir/words.txt
|
||||
(echo '!SIL'; echo '<SPOKEN_NOISE>'; echo '<UNK>'; ) |
|
||||
cat - $lang_dir/words.txt | sort | uniq | awk '
|
||||
BEGIN {
|
||||
print "<eps> 0";
|
||||
}
|
||||
{
|
||||
if ($1 == "<s>") {
|
||||
print "<s> is in the vocabulary!" | "cat 1>&2"
|
||||
exit 1;
|
||||
}
|
||||
if ($1 == "</s>") {
|
||||
print "</s> is in the vocabulary!" | "cat 1>&2"
|
||||
exit 1;
|
||||
}
|
||||
printf("%s %d\n", $1, NR);
|
||||
}
|
||||
END {
|
||||
printf("#0 %d\n", NR+1);
|
||||
printf("<s> %d\n", NR+2);
|
||||
printf("</s> %d\n", NR+3);
|
||||
}' > $lang_dir/words || exit 1;
|
||||
mv $lang_dir/words $lang_dir/words.txt
|
||||
fi
|
||||
|
||||
if [ ! -f $lang_dir/bpe.model ]; then
|
||||
./local/train_bpe_model.py \
|
||||
--lang-dir $lang_dir \
|
||||
--vocab-size $vocab_size \
|
||||
--transcript $lang_dir/transcript_words.txt
|
||||
fi
|
||||
|
||||
if [ ! -f $lang_dir/L_disambig.pt ]; then
|
||||
./local/prepare_lang_bpe.py --lang-dir $lang_dir
|
||||
|
||||
log "Validating $lang_dir/lexicon.txt"
|
||||
./local/validate_bpe_lexicon.py \
|
||||
--lexicon $lang_dir/lexicon.txt \
|
||||
--bpe-model $lang_dir/bpe.model
|
||||
fi
|
||||
|
||||
if [ ! -f $lang_dir/L.fst ]; then
|
||||
log "Converting L.pt to L.fst"
|
||||
./shared/convert-k2-to-openfst.py \
|
||||
--olabels aux_labels \
|
||||
$lang_dir/L.pt \
|
||||
$lang_dir/L.fst
|
||||
fi
|
||||
|
||||
if [ ! -f $lang_dir/L_disambig.fst ]; then
|
||||
log "Converting L_disambig.pt to L_disambig.fst"
|
||||
./shared/convert-k2-to-openfst.py \
|
||||
--olabels aux_labels \
|
||||
$lang_dir/L_disambig.pt \
|
||||
$lang_dir/L_disambig.fst
|
||||
fi
|
||||
done
|
||||
fi
|
1
egs/bengaliai_speech/ASR/shared
Symbolic link
1
egs/bengaliai_speech/ASR/shared
Symbolic link
@ -0,0 +1 @@
|
||||
../../../icefall/shared
|
Loading…
x
Reference in New Issue
Block a user