mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 10:02:22 +00:00
Adding diagnostics code...
This commit is contained in:
parent
2af1b3af98
commit
581786a6d3
284
egs/librispeech/ASR/transducer_stateless/diagnostics.py
Normal file
284
egs/librispeech/ASR/transducer_stateless/diagnostics.py
Normal file
@ -0,0 +1,284 @@
|
|||||||
|
import torch
|
||||||
|
from torch import Tensor
|
||||||
|
from torch import nn
|
||||||
|
import math
|
||||||
|
import random
|
||||||
|
from typing import Tuple, List
|
||||||
|
|
||||||
|
|
||||||
|
class TensorDiagnosticOptions(object):
|
||||||
|
"""
|
||||||
|
Options object for tensor diagnostics:
|
||||||
|
|
||||||
|
Args:
|
||||||
|
memory_limit: the maximum number of bytes per tensor (limits how many copies
|
||||||
|
of the tensor we cache).
|
||||||
|
|
||||||
|
"""
|
||||||
|
def __init__(self, memory_limit: int,
|
||||||
|
print_pos_ratio: bool = True):
|
||||||
|
self.memory_limit = memory_limit
|
||||||
|
self.print_pos_ratio = print_pos_ratio
|
||||||
|
|
||||||
|
def dim_is_summarized(self, size: int):
|
||||||
|
return size > 10 and size != 31
|
||||||
|
|
||||||
|
def stats_types(self):
|
||||||
|
if self.print_pos_ratio:
|
||||||
|
return ["mean-abs", "pos-ratio"]
|
||||||
|
else:
|
||||||
|
return ["mean-abs"]
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def get_sum_abs_stats(x: Tensor, dim: int,
|
||||||
|
stats_type: str) -> Tuple[Tensor, int]:
|
||||||
|
"""
|
||||||
|
Returns the sum-of-absolute-value of this Tensor, for each
|
||||||
|
index into the specified axis/dim of the tensor.
|
||||||
|
Args:
|
||||||
|
x: Tensor, tensor to be analyzed
|
||||||
|
dim: dimension with 0 <= dim < x.ndim
|
||||||
|
stats_type: either "mean-abs" in which case the stats represent the
|
||||||
|
mean absolute value, or "pos-ratio" in which case the
|
||||||
|
stats represent the proportion of positive values (actually:
|
||||||
|
the tensor is count of positive values, count is the count of
|
||||||
|
all values).
|
||||||
|
Returns (sum_abs, count)
|
||||||
|
where sum_abs is a Tensor of shape (x.shape[dim],), and the count
|
||||||
|
is an integer saying how many items were counted in each element
|
||||||
|
of sum_abs.
|
||||||
|
"""
|
||||||
|
if stats_type == "mean-abs":
|
||||||
|
x = x.abs()
|
||||||
|
else:
|
||||||
|
assert stats_type == "pos-ratio"
|
||||||
|
x = (x > 0).to(dtype=torch.float)
|
||||||
|
orig_numel = x.numel()
|
||||||
|
sum_dims = [ d for d in range(x.ndim) if d != dim ]
|
||||||
|
x = torch.sum(x, dim=sum_dims)
|
||||||
|
count = orig_numel // x.numel()
|
||||||
|
x = x.flatten()
|
||||||
|
return x, count
|
||||||
|
|
||||||
|
def get_diagnostics_for_dim(dim: int, tensors: List[Tensor],
|
||||||
|
options: TensorDiagnosticOptions,
|
||||||
|
sizes_same: bool,
|
||||||
|
stats_type: str):
|
||||||
|
"""
|
||||||
|
This function gets diagnostics for a dimension of a module.
|
||||||
|
Args:
|
||||||
|
dim: the dimension to analyze, with 0 <= dim < tensors[0].ndim
|
||||||
|
options: options object
|
||||||
|
sizes_same: true if all the tensor sizes are the same on this dimension
|
||||||
|
stats_type: either "mean-abs" or "pos-ratio", dictates the type of stats
|
||||||
|
we accumulate, mean-abs is mean absolute value, "pos-ratio"
|
||||||
|
is proportion of positive to nonnegative values.
|
||||||
|
Returns:
|
||||||
|
Diagnostic as a string, either percentiles or the actual values,
|
||||||
|
see the code.
|
||||||
|
"""
|
||||||
|
# stats_and_counts is a list of pair (Tensor, int)
|
||||||
|
stats_and_counts = [ get_sum_abs_stats(x, dim, stats_type) for x in tensors ]
|
||||||
|
stats = [ x[0] for x in stats_and_counts ]
|
||||||
|
counts = [ x[1] for x in stats_and_counts ]
|
||||||
|
if sizes_same:
|
||||||
|
stats = torch.stack(stats).sum(dim=0)
|
||||||
|
count = sum(counts)
|
||||||
|
stats = stats / count
|
||||||
|
else:
|
||||||
|
stats = [ x[0] / x[1] for x in stats_and_counts ]
|
||||||
|
stats = torch.cat(stats, dim=0)
|
||||||
|
# if `summarize` we print percentiles of the stats; else,
|
||||||
|
# we print out individual elements.
|
||||||
|
summarize = (not sizes_same) or options.dim_is_summarized(stats.numel())
|
||||||
|
if summarize:
|
||||||
|
# print out percentiles.
|
||||||
|
stats = stats.sort()[0]
|
||||||
|
num_percentiles = 10
|
||||||
|
size = stats.numel()
|
||||||
|
percentiles = []
|
||||||
|
for i in range(num_percentiles + 1):
|
||||||
|
index = (i * (size - 1)) // num_percentiles
|
||||||
|
percentiles.append(stats[index].item())
|
||||||
|
percentiles = [ '%.2g' % x for x in percentiles ]
|
||||||
|
percentiles = ' '.join(percentiles)
|
||||||
|
return f'percentiles: [{percentiles}]'
|
||||||
|
else:
|
||||||
|
stats = stats.tolist()
|
||||||
|
stats = [ '%.2g' % x for x in stats ]
|
||||||
|
stats = '[' + ' '.join(stats) + ']'
|
||||||
|
return stats
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def print_diagnostics_for_dim(name: str, dim: int, tensors: List[Tensor],
|
||||||
|
options: TensorDiagnosticOptions):
|
||||||
|
|
||||||
|
for stats_type in options.stats_types():
|
||||||
|
# stats_type will be "mean-abs" or "pos-ratio".
|
||||||
|
sizes = [ x.shape[dim] for x in tensors ]
|
||||||
|
sizes_same = all([ x == sizes[0] for x in sizes ])
|
||||||
|
s = get_diagnostics_for_dim(dim, tensors,
|
||||||
|
options, sizes_same,
|
||||||
|
stats_type)
|
||||||
|
|
||||||
|
min_size = min(sizes)
|
||||||
|
max_size = max(sizes)
|
||||||
|
size_str = f"{min_size}" if sizes_same else f"{min_size}..{max_size}"
|
||||||
|
# stats_type will be "mean-abs" or "pos-ratio".
|
||||||
|
print(f"module={name}, dim={dim}, size={size_str}, {stats_type} {s}")
|
||||||
|
|
||||||
|
|
||||||
|
class TensorDiagnostic(object):
|
||||||
|
"""
|
||||||
|
This class is not directly used by the user, it is responsible for collecting
|
||||||
|
diagnostics for a single parameter tensor of a torch.Module.
|
||||||
|
"""
|
||||||
|
def __init__(self,
|
||||||
|
opts: TensorDiagnosticOptions,
|
||||||
|
name: str):
|
||||||
|
self.name = name
|
||||||
|
self.opts = opts
|
||||||
|
self.saved_tensors = []
|
||||||
|
|
||||||
|
def accumulate(self, x):
|
||||||
|
if isinstance(x, Tuple):
|
||||||
|
x = x[0]
|
||||||
|
if not isinstance(x, Tensor):
|
||||||
|
return
|
||||||
|
if x.device == torch.device('cpu'):
|
||||||
|
x = x.detach().clone()
|
||||||
|
else:
|
||||||
|
x = x.detach().to('cpu', non_blocking=True)
|
||||||
|
self.saved_tensors.append(x)
|
||||||
|
l = len(self.saved_tensors)
|
||||||
|
if l & (l - 1) == 0: # power of 2..
|
||||||
|
self._limit_memory()
|
||||||
|
|
||||||
|
def _limit_memory(self):
|
||||||
|
if len(self.saved_tensors) > 1024:
|
||||||
|
self.saved_tensors = self.saved_tensors[-1024:]
|
||||||
|
return
|
||||||
|
|
||||||
|
tot_mem = 0.0
|
||||||
|
for i in reversed(range(len(self.saved_tensors))):
|
||||||
|
tot_mem += self.saved_tensors[i].numel() * self.saved_tensors[i].element_size()
|
||||||
|
if tot_mem > self.opts.memory_limit:
|
||||||
|
self.saved_tensors = self.saved_tensors[i:]
|
||||||
|
return
|
||||||
|
|
||||||
|
def print_diagnostics(self):
|
||||||
|
if len(self.saved_tensors) == 0:
|
||||||
|
print("{name}: no stats".format(name=self.name))
|
||||||
|
return
|
||||||
|
if self.saved_tensors[0].ndim == 0:
|
||||||
|
# ensure there is at least one dim.
|
||||||
|
self.saved_tensors = [ x.unsqueeze(0) for x in self.saved_tensors ]
|
||||||
|
|
||||||
|
ndim = self.saved_tensors[0].ndim
|
||||||
|
for dim in range(ndim):
|
||||||
|
print_diagnostics_for_dim(self.name, dim,
|
||||||
|
self.saved_tensors,
|
||||||
|
self.opts)
|
||||||
|
|
||||||
|
|
||||||
|
class ModelDiagnostic(object):
|
||||||
|
def __init__(self, opts: TensorDiagnosticOptions):
|
||||||
|
self.diagnostics = dict()
|
||||||
|
self.opts = opts
|
||||||
|
|
||||||
|
def __getitem__(self, name: str):
|
||||||
|
if name not in self.diagnostics:
|
||||||
|
self.diagnostics[name] = TensorDiagnostic(self.opts, name)
|
||||||
|
return self.diagnostics[name]
|
||||||
|
|
||||||
|
def print_diagnostics(self):
|
||||||
|
for k in sorted(self.diagnostics.keys()):
|
||||||
|
self.diagnostics[k].print_diagnostics()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def attach_diagnostics(model: nn.Module,
|
||||||
|
opts: TensorDiagnosticOptions) -> ModelDiagnostic:
|
||||||
|
ans = ModelDiagnostic(opts)
|
||||||
|
for name, module in model.named_modules():
|
||||||
|
if name == '':
|
||||||
|
name = "<top-level>"
|
||||||
|
forward_diagnostic = TensorDiagnostic(opts, name + ".output")
|
||||||
|
backward_diagnostic = TensorDiagnostic(opts, name + ".grad")
|
||||||
|
|
||||||
|
|
||||||
|
# setting model_diagnostic=ans and n=name below, instead of trying to capture the variables,
|
||||||
|
# ensures that we use the current values. (matters for name, since
|
||||||
|
# the variable gets overwritten). these closures don't really capture
|
||||||
|
# by value, only by "the final value the variable got in the function" :-(
|
||||||
|
def forward_hook(_module, _input, _output,
|
||||||
|
_model_diagnostic=ans, _name=name):
|
||||||
|
if isinstance(_output, Tensor):
|
||||||
|
_model_diagnostic[f"{_name}.output"].accumulate(_output)
|
||||||
|
elif isinstance(_output, tuple):
|
||||||
|
for i, o in enumerate(_output):
|
||||||
|
_model_diagnostic[f"{_name}.output[{i}]"].accumulate(o)
|
||||||
|
|
||||||
|
def backward_hook(_module, _input, _output,
|
||||||
|
_model_diagnostic=ans, _name=name):
|
||||||
|
if isinstance(_output, Tensor):
|
||||||
|
_model_diagnostic[f"{_name}.grad"].accumulate(_output)
|
||||||
|
elif isinstance(_output, tuple):
|
||||||
|
for i, o in enumerate(_output):
|
||||||
|
_model_diagnostic[f"{_name}.grad[{i}]"].accumulate(o)
|
||||||
|
|
||||||
|
module.register_forward_hook(forward_hook)
|
||||||
|
module.register_backward_hook(backward_hook)
|
||||||
|
|
||||||
|
for name, parameter in model.named_parameters():
|
||||||
|
|
||||||
|
def param_backward_hook(grad,
|
||||||
|
_parameter=parameter,
|
||||||
|
_model_diagnostic=ans,
|
||||||
|
_name=name):
|
||||||
|
_model_diagnostic[f"{_name}.param_value"].accumulate(_parameter)
|
||||||
|
_model_diagnostic[f"{_name}.param_grad"].accumulate(grad)
|
||||||
|
|
||||||
|
parameter.register_hook(param_backward_hook)
|
||||||
|
return ans
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def _test_tensor_diagnostic():
|
||||||
|
opts = TensorDiagnosticOptions(2**20, True)
|
||||||
|
|
||||||
|
diagnostic = TensorDiagnostic(opts, "foo")
|
||||||
|
|
||||||
|
for _ in range(10):
|
||||||
|
diagnostic.accumulate(torch.randn(50, 100) * 10.0)
|
||||||
|
|
||||||
|
diagnostic.print_diagnostics()
|
||||||
|
|
||||||
|
model = nn.Sequential(nn.Linear(100, 50), nn.Linear(50, 80))
|
||||||
|
|
||||||
|
diagnostic = attach_diagnostics(model, opts)
|
||||||
|
for _ in range(10):
|
||||||
|
T = random.randint(200, 300)
|
||||||
|
x = torch.randn(T, 100)
|
||||||
|
y = model(x)
|
||||||
|
y.sum().backward()
|
||||||
|
|
||||||
|
diagnostic.print_diagnostics()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
_test_tensor_diagnostic()
|
||||||
|
|
||||||
|
|
||||||
|
def _test_func():
|
||||||
|
ans = []
|
||||||
|
for i in range(10):
|
||||||
|
x = list()
|
||||||
|
x.append(i)
|
||||||
|
def func():
|
||||||
|
return x
|
||||||
|
ans.append(func)
|
||||||
|
return ans
|
@ -34,6 +34,7 @@ export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
|||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
import logging
|
import logging
|
||||||
|
import diagnostics # ./diagnostics.py
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from shutil import copyfile
|
from shutil import copyfile
|
||||||
from typing import Optional, Tuple
|
from typing import Optional, Tuple
|
||||||
@ -109,7 +110,7 @@ def get_parser():
|
|||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--exp-dir",
|
"--exp-dir",
|
||||||
type=str,
|
type=str,
|
||||||
default="transducer_stateless/exp-100h-specaugmod_p0.9_0.15_fix",
|
default="transducer_stateless/specaugmod_baseline",
|
||||||
help="""The experiment dir.
|
help="""The experiment dir.
|
||||||
It specifies the directory where all training related
|
It specifies the directory where all training related
|
||||||
files, e.g., checkpoints, log, etc, are saved
|
files, e.g., checkpoints, log, etc, are saved
|
||||||
@ -138,6 +139,13 @@ def get_parser():
|
|||||||
"2 means tri-gram",
|
"2 means tri-gram",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--print-diagnostics",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="Accumulate stats on activations, print them and exit.",
|
||||||
|
)
|
||||||
|
|
||||||
return parser
|
return parser
|
||||||
|
|
||||||
|
|
||||||
@ -487,6 +495,9 @@ def train_one_epoch(
|
|||||||
loss.backward()
|
loss.backward()
|
||||||
clip_grad_norm_(model.parameters(), 5.0, 2.0)
|
clip_grad_norm_(model.parameters(), 5.0, 2.0)
|
||||||
optimizer.step()
|
optimizer.step()
|
||||||
|
if params.print_diagnostics and batch_idx == 5:
|
||||||
|
return
|
||||||
|
|
||||||
|
|
||||||
if batch_idx % params.log_interval == 0:
|
if batch_idx % params.log_interval == 0:
|
||||||
logging.info(
|
logging.info(
|
||||||
@ -494,9 +505,6 @@ def train_one_epoch(
|
|||||||
f"batch {batch_idx}, loss[{loss_info}], "
|
f"batch {batch_idx}, loss[{loss_info}], "
|
||||||
f"tot_loss[{tot_loss}], batch size: {batch_size}"
|
f"tot_loss[{tot_loss}], batch size: {batch_size}"
|
||||||
)
|
)
|
||||||
|
|
||||||
if batch_idx % params.log_interval == 0:
|
|
||||||
|
|
||||||
if tb_writer is not None:
|
if tb_writer is not None:
|
||||||
loss_info.write_summary(
|
loss_info.write_summary(
|
||||||
tb_writer, "train/current_", params.batch_idx_train
|
tb_writer, "train/current_", params.batch_idx_train
|
||||||
@ -599,6 +607,11 @@ def run(rank, world_size, args):
|
|||||||
|
|
||||||
librispeech = LibriSpeechAsrDataModule(args)
|
librispeech = LibriSpeechAsrDataModule(args)
|
||||||
|
|
||||||
|
if params.print_diagnostics:
|
||||||
|
opts = diagnostics.TensorDiagnosticOptions(2**22) # allow 4 megabytes per sub-module
|
||||||
|
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||||
|
|
||||||
|
|
||||||
train_cuts = librispeech.train_clean_100_cuts()
|
train_cuts = librispeech.train_clean_100_cuts()
|
||||||
if params.full_libri:
|
if params.full_libri:
|
||||||
train_cuts += librispeech.train_clean_360_cuts()
|
train_cuts += librispeech.train_clean_360_cuts()
|
||||||
@ -626,6 +639,7 @@ def run(rank, world_size, args):
|
|||||||
valid_cuts += librispeech.dev_other_cuts()
|
valid_cuts += librispeech.dev_other_cuts()
|
||||||
valid_dl = librispeech.valid_dataloaders(valid_cuts)
|
valid_dl = librispeech.valid_dataloaders(valid_cuts)
|
||||||
|
|
||||||
|
if not params.print_diagnostics:
|
||||||
scan_pessimistic_batches_for_oom(
|
scan_pessimistic_batches_for_oom(
|
||||||
model=model,
|
model=model,
|
||||||
train_dl=train_dl,
|
train_dl=train_dl,
|
||||||
@ -660,6 +674,10 @@ def run(rank, world_size, args):
|
|||||||
world_size=world_size,
|
world_size=world_size,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
if params.print_diagnostics:
|
||||||
|
diagnostic.print_diagnostics()
|
||||||
|
break
|
||||||
|
|
||||||
save_checkpoint(
|
save_checkpoint(
|
||||||
params=params,
|
params=params,
|
||||||
model=model,
|
model=model,
|
||||||
|
Loading…
x
Reference in New Issue
Block a user