mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-26 18:24:18 +00:00
Fix incorrect doc.
This commit is contained in:
parent
e3d7f21372
commit
57b9c8868b
@ -39,8 +39,8 @@ The following shows the steps:
|
|||||||
(iv) Use "b" as "src" and its shifted version as "tgt".
|
(iv) Use "b" as "src" and its shifted version as "tgt".
|
||||||
We can get another likelihood value, denoted as "ab_other"
|
We can get another likelihood value, denoted as "ab_other"
|
||||||
|
|
||||||
So for the path pair (a, b), (a, c), we can get the following log-likelihood
|
So for the path pair (a, b), (a, c), (b, a), (b, c), (c, a), and (c, b),
|
||||||
values, viewed as two tensors:
|
we can get the following log-likelihood values, viewed as two tensors:
|
||||||
|
|
||||||
self = [ab_self, ac_self, ba_self, bc_self, ca_self, cb_self]
|
self = [ab_self, ac_self, ba_self, bc_self, ca_self, cb_self]
|
||||||
|
|
||||||
@ -219,7 +219,7 @@ def make_repeat_map(row_splits: torch.Tensor):
|
|||||||
|
|
||||||
>>> row_splits = torch.tensor([0, 3, 5], dtype=torch.int32)
|
>>> row_splits = torch.tensor([0, 3, 5], dtype=torch.int32)
|
||||||
>>> make_repeat_map(row_splits)
|
>>> make_repeat_map(row_splits)
|
||||||
tensor([0, 1, 2, 0, 1, 2, 0, 1, 2, 3, 4, 3, 4], dtype=torch.int32)
|
tensor([1, 2, 0, 2, 0, 1, 4, 3], dtype=torch.int32)
|
||||||
|
|
||||||
"""
|
"""
|
||||||
device = row_splits.device
|
device = row_splits.device
|
||||||
@ -250,12 +250,11 @@ def make_repeat_map(row_splits: torch.Tensor):
|
|||||||
|
|
||||||
|
|
||||||
def make_repeat(tokens: k2.RaggedTensor) -> k2.RaggedTensor:
|
def make_repeat(tokens: k2.RaggedTensor) -> k2.RaggedTensor:
|
||||||
"""Repeat the number of paths of an utterance to the number that
|
"""Repeat paths in an utterance.
|
||||||
equals to the number of paths in the utterance.
|
|
||||||
|
|
||||||
For instance, if an utterance contains 3 paths: [path1 path2 path3],
|
For instance, if an utterance contains 3 paths: [path1 path2 path3],
|
||||||
after repeating, this utterance will contain 9 paths:
|
after repeating, this utterance will contain 6 paths:
|
||||||
[path1 path2 path3] [path1 path2 path3] [path1 path2 path3]
|
[path2 path3] [path1 path3] [path1 path2]
|
||||||
|
|
||||||
>>> tokens = k2.RaggedTensor([ [[1, 2, 3], [4, 5], [9]], [[5, 8], [10, 1]] ])
|
>>> tokens = k2.RaggedTensor([ [[1, 2, 3], [4, 5], [9]], [[5, 8], [10, 1]] ])
|
||||||
>>> tokens.to_str_simple()
|
>>> tokens.to_str_simple()
|
||||||
|
Loading…
x
Reference in New Issue
Block a user