mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 18:12:19 +00:00
add export ncnn
This commit is contained in:
parent
7556811d64
commit
5596da0704
337
egs/tal_csasr/ASR/lstm_transducer_stateless3/export-for-ncnn.py
Executable file
337
egs/tal_csasr/ASR/lstm_transducer_stateless3/export-for-ncnn.py
Executable file
@ -0,0 +1,337 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
|
"""
|
||||||
|
Please see
|
||||||
|
https://k2-fsa.github.io/icefall/model-export/export-ncnn.html
|
||||||
|
for more details about how to use this file.
|
||||||
|
|
||||||
|
We use the pre-trained model from
|
||||||
|
https://huggingface.co/csukuangfj/icefall-asr-librispeech-lstm-transducer-stateless2-2022-09-03
|
||||||
|
as an example to show how to use this file.
|
||||||
|
|
||||||
|
1. Download the pre-trained model
|
||||||
|
|
||||||
|
cd egs/librispeech/ASR
|
||||||
|
|
||||||
|
repo_url=https://huggingface.co/csukuangfj/icefall-asr-librispeech-lstm-transducer-stateless2-2022-09-03
|
||||||
|
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
|
||||||
|
repo=$(basename $repo_url)
|
||||||
|
|
||||||
|
pushd $repo
|
||||||
|
git lfs pull --include "data/lang_bpe_500/bpe.model"
|
||||||
|
git lfs pull --include "exp/pretrained-iter-468000-avg-16.pt"
|
||||||
|
|
||||||
|
cd exp
|
||||||
|
ln -s pretrained-iter-468000-avg-16.pt epoch-99.pt
|
||||||
|
popd
|
||||||
|
|
||||||
|
2. Export via torch.jit.trace()
|
||||||
|
|
||||||
|
./lstm_transducer_stateless2/export-for-ncnn.py \
|
||||||
|
--exp-dir $repo/exp \
|
||||||
|
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||||
|
--epoch 99 \
|
||||||
|
--avg 1 \
|
||||||
|
--use-averaged-model 0 \
|
||||||
|
|
||||||
|
cd ./lstm_transducer_stateless2/exp
|
||||||
|
pnnx encoder_jit_trace-pnnx.pt
|
||||||
|
pnnx decoder_jit_trace-pnnx.pt
|
||||||
|
pnnx joiner_jit_trace-pnnx.pt
|
||||||
|
|
||||||
|
See ./streaming-ncnn-decode.py
|
||||||
|
and
|
||||||
|
https://github.com/k2-fsa/sherpa-ncnn
|
||||||
|
for usage.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import sentencepiece as spm
|
||||||
|
import torch
|
||||||
|
from scaling_converter import convert_scaled_to_non_scaled
|
||||||
|
from train import add_model_arguments, get_params, get_transducer_model
|
||||||
|
|
||||||
|
from icefall.checkpoint import (
|
||||||
|
average_checkpoints,
|
||||||
|
average_checkpoints_with_averaged_model,
|
||||||
|
find_checkpoints,
|
||||||
|
load_checkpoint,
|
||||||
|
)
|
||||||
|
from icefall.utils import setup_logger, str2bool
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--epoch",
|
||||||
|
type=int,
|
||||||
|
default=28,
|
||||||
|
help="""It specifies the checkpoint to use for averaging.
|
||||||
|
Note: Epoch counts from 0.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--iter",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="""If positive, --epoch is ignored and it
|
||||||
|
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--avg",
|
||||||
|
type=int,
|
||||||
|
default=15,
|
||||||
|
help="Number of checkpoints to average. Automatically select "
|
||||||
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
|
"'--epoch' and '--iter'",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=str,
|
||||||
|
default="pruned_transducer_stateless2/exp",
|
||||||
|
help="""It specifies the directory where all training related
|
||||||
|
files, e.g., checkpoints, log, etc, are saved
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--bpe-model",
|
||||||
|
type=str,
|
||||||
|
default="data/lang_bpe_500/bpe.model",
|
||||||
|
help="Path to the BPE model",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--context-size",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--use-averaged-model",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Whether to load averaged model. Currently it only supports "
|
||||||
|
"using --epoch. If True, it would decode with the averaged model "
|
||||||
|
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
|
||||||
|
"Actually only the models with epoch number of `epoch-avg` and "
|
||||||
|
"`epoch` are loaded for averaging. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
add_model_arguments(parser)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def export_encoder_model_jit_trace(
|
||||||
|
encoder_model: torch.nn.Module,
|
||||||
|
encoder_filename: str,
|
||||||
|
) -> None:
|
||||||
|
"""Export the given encoder model with torch.jit.trace()
|
||||||
|
|
||||||
|
Note: The warmup argument is fixed to 1.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
encoder_model:
|
||||||
|
The input encoder model
|
||||||
|
encoder_filename:
|
||||||
|
The filename to save the exported model.
|
||||||
|
"""
|
||||||
|
x = torch.zeros(1, 100, 80, dtype=torch.float32)
|
||||||
|
x_lens = torch.tensor([100], dtype=torch.int64)
|
||||||
|
states = encoder_model.get_init_states()
|
||||||
|
|
||||||
|
traced_model = torch.jit.trace(encoder_model, (x, x_lens, states))
|
||||||
|
traced_model.save(encoder_filename)
|
||||||
|
logging.info(f"Saved to {encoder_filename}")
|
||||||
|
|
||||||
|
|
||||||
|
def export_decoder_model_jit_trace(
|
||||||
|
decoder_model: torch.nn.Module,
|
||||||
|
decoder_filename: str,
|
||||||
|
) -> None:
|
||||||
|
"""Export the given decoder model with torch.jit.trace()
|
||||||
|
|
||||||
|
Note: The argument need_pad is fixed to False.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
decoder_model:
|
||||||
|
The input decoder model
|
||||||
|
decoder_filename:
|
||||||
|
The filename to save the exported model.
|
||||||
|
"""
|
||||||
|
y = torch.zeros(10, decoder_model.context_size, dtype=torch.int64)
|
||||||
|
need_pad = torch.tensor([False])
|
||||||
|
|
||||||
|
traced_model = torch.jit.trace(decoder_model, (y, need_pad))
|
||||||
|
traced_model.save(decoder_filename)
|
||||||
|
logging.info(f"Saved to {decoder_filename}")
|
||||||
|
|
||||||
|
|
||||||
|
def export_joiner_model_jit_trace(
|
||||||
|
joiner_model: torch.nn.Module,
|
||||||
|
joiner_filename: str,
|
||||||
|
) -> None:
|
||||||
|
"""Export the given joiner model with torch.jit.trace()
|
||||||
|
|
||||||
|
Note: The argument project_input is fixed to True. A user should not
|
||||||
|
project the encoder_out/decoder_out by himself/herself. The exported joiner
|
||||||
|
will do that for the user.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
joiner_model:
|
||||||
|
The input joiner model
|
||||||
|
joiner_filename:
|
||||||
|
The filename to save the exported model.
|
||||||
|
|
||||||
|
"""
|
||||||
|
encoder_out_dim = joiner_model.encoder_proj.weight.shape[1]
|
||||||
|
decoder_out_dim = joiner_model.decoder_proj.weight.shape[1]
|
||||||
|
encoder_out = torch.rand(1, encoder_out_dim, dtype=torch.float32)
|
||||||
|
decoder_out = torch.rand(1, decoder_out_dim, dtype=torch.float32)
|
||||||
|
|
||||||
|
traced_model = torch.jit.trace(joiner_model, (encoder_out, decoder_out))
|
||||||
|
traced_model.save(joiner_filename)
|
||||||
|
logging.info(f"Saved to {joiner_filename}")
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def main():
|
||||||
|
args = get_parser().parse_args()
|
||||||
|
args.exp_dir = Path(args.exp_dir)
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
|
||||||
|
setup_logger(f"{params.exp_dir}/log-export/log-export-ncnn")
|
||||||
|
|
||||||
|
logging.info(f"device: {device}")
|
||||||
|
|
||||||
|
sp = spm.SentencePieceProcessor()
|
||||||
|
sp.load(params.bpe_model)
|
||||||
|
|
||||||
|
# <blk> is defined in local/train_bpe_model.py
|
||||||
|
params.blank_id = sp.piece_to_id("<blk>")
|
||||||
|
params.vocab_size = sp.get_piece_size()
|
||||||
|
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
params.is_pnnx = True
|
||||||
|
|
||||||
|
logging.info("About to create model")
|
||||||
|
model = get_transducer_model(params, enable_giga=False)
|
||||||
|
|
||||||
|
if not params.use_averaged_model:
|
||||||
|
if params.iter > 0:
|
||||||
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
|
: params.avg
|
||||||
|
]
|
||||||
|
if len(filenames) == 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"No checkpoints found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
elif len(filenames) < params.avg:
|
||||||
|
raise ValueError(
|
||||||
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
elif params.avg == 1:
|
||||||
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||||
|
else:
|
||||||
|
start = params.epoch - params.avg + 1
|
||||||
|
filenames = []
|
||||||
|
for i in range(start, params.epoch + 1):
|
||||||
|
if i >= 1:
|
||||||
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
else:
|
||||||
|
if params.iter > 0:
|
||||||
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
|
: params.avg + 1
|
||||||
|
]
|
||||||
|
if len(filenames) == 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"No checkpoints found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
elif len(filenames) < params.avg + 1:
|
||||||
|
raise ValueError(
|
||||||
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
filename_start = filenames[-1]
|
||||||
|
filename_end = filenames[0]
|
||||||
|
logging.info(
|
||||||
|
"Calculating the averaged model over iteration checkpoints"
|
||||||
|
f" from {filename_start} (excluded) to {filename_end}"
|
||||||
|
)
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(
|
||||||
|
average_checkpoints_with_averaged_model(
|
||||||
|
filename_start=filename_start,
|
||||||
|
filename_end=filename_end,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
assert params.avg > 0, params.avg
|
||||||
|
start = params.epoch - params.avg
|
||||||
|
assert start >= 1, start
|
||||||
|
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
|
||||||
|
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
|
||||||
|
logging.info(
|
||||||
|
f"Calculating the averaged model over epoch range from "
|
||||||
|
f"{start} (excluded) to {params.epoch}"
|
||||||
|
)
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(
|
||||||
|
average_checkpoints_with_averaged_model(
|
||||||
|
filename_start=filename_start,
|
||||||
|
filename_end=filename_end,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
model.to("cpu")
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
convert_scaled_to_non_scaled(model, inplace=True)
|
||||||
|
logging.info("Using torch.jit.trace()")
|
||||||
|
|
||||||
|
logging.info("Exporting encoder")
|
||||||
|
encoder_filename = params.exp_dir / "encoder_jit_trace-pnnx.pt"
|
||||||
|
export_encoder_model_jit_trace(model.encoder, encoder_filename)
|
||||||
|
|
||||||
|
logging.info("Exporting decoder")
|
||||||
|
decoder_filename = params.exp_dir / "decoder_jit_trace-pnnx.pt"
|
||||||
|
export_decoder_model_jit_trace(model.decoder, decoder_filename)
|
||||||
|
|
||||||
|
logging.info("Exporting joiner")
|
||||||
|
joiner_filename = params.exp_dir / "joiner_jit_trace-pnnx.pt"
|
||||||
|
export_joiner_model_jit_trace(model.joiner, joiner_filename)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
|
||||||
|
main()
|
Loading…
x
Reference in New Issue
Block a user