diff --git a/egs/librispeech/ASR/.test.sh.swp b/egs/librispeech/ASR/.test.sh.swp index a7ce6b001..020fd2130 100644 Binary files a/egs/librispeech/ASR/.test.sh.swp and b/egs/librispeech/ASR/.test.sh.swp differ diff --git a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.train.py.swp b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.train.py.swp index df2c13238..af9842993 100644 Binary files a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.train.py.swp and b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.train.py.swp differ diff --git a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/train.py b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/train.py index 914d621e3..38caa2b3e 100755 --- a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/train.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/train.py @@ -1009,6 +1009,8 @@ def train_one_epoch( # NOTE: We use reduction==sum and loss is computed over utterances # in the batch and there is no normalization to it so far. + if scaler._scale.item() < 1.0e-05: + continue scaler.scale(loss).backward() if params.multi_optim and batch_idx % params.accum_grads == 0: set_batch_count(model, params.batch_idx_train)