Remove optional silence (SIL).

This commit is contained in:
Fangjun Kuang 2021-09-10 16:24:49 +08:00
parent 31b3e5b27a
commit 5390ced2d1
15 changed files with 413 additions and 399 deletions

View File

@ -61,29 +61,6 @@ def get_parser():
help="Should various information be logged in tensorboard.",
)
parser.add_argument(
"--use-ali-model",
type=str2bool,
default=False,
help="If true, we assume that you have run tdnn_lstm_ctc/train_bpe.py "
"and you have some checkpoints inside the directory "
"tdnn_lstm_ctc/exp_bpe_500 ."
"It will use tdnn_lstm_ctc/exp_bpe_500/epoch-{ali-model-epoch}.pt "
"as the pre-trained alignment model",
)
parser.add_argument(
"--ali-model-epoch",
type=int,
default=19,
help="If --use-ali-model is True, load "
"tdnn_lstm_ctc/exp_bpe_500/epoch-{ali-model-epoch}.pt as "
"the alignment model."
"Used only if --use-ali-model is True.",
)
# TODO: add extra arguments and support DDP training.
# Currently, only single GPU training is implemented. Will add
# DDP training once single GPU training is finished.
return parser
@ -158,7 +135,7 @@ def get_params() -> AttributeDict:
"use_pruned_intersect": False,
"den_scale": 1.0,
#
"att_rate": 0,
"att_rate": 0, # If not zero, use attention decoder
"attention_dim": 512,
"nhead": 8,
"num_decoder_layers": 0,
@ -166,7 +143,6 @@ def get_params() -> AttributeDict:
"use_feat_batchnorm": True,
"lr_factor": 5.0,
"warm_step": 80000,
# "warm_step": 10000,
}
)
@ -260,10 +236,9 @@ def save_checkpoint(
copyfile(src=filename, dst=best_valid_filename)
def compute_loss_impl(
def compute_loss(
params: AttributeDict,
model: nn.Module,
ali_model: Optional[nn.Module],
batch: dict,
graph_compiler: MmiTrainingGraphCompiler,
is_training: bool,
@ -296,22 +271,6 @@ def compute_loss_impl(
with torch.set_grad_enabled(is_training):
nnet_output, encoder_memory, memory_mask = model(feature, supervisions)
# nnet_output is [N, T, C]
if ali_model is not None and params.batch_idx_train < 4000:
feature = feature.permute(0, 2, 1) # [N, T, C]->[N, C, T]
ali_model_output = ali_model(feature)
# subsampling is done slightly differently, may be small length
# differences.
min_len = min(ali_model_output.shape[1], nnet_output.shape[1])
# scale less than one so it will be encouraged
# to mimic ali_model's output
ali_model_scale = 500.0 / (params.batch_idx_train + 500)
# Use clone() here or log-softmax backprop will fail.
nnet_output = nnet_output.clone()
nnet_output[:, :min_len, :] += (
ali_model_scale * ali_model_output[:, :min_len, :]
)
# NOTE: We need `encode_supervisions` to sort sequences with
# different duration in decreasing order, required by
@ -374,58 +333,9 @@ def compute_loss_impl(
return loss, mmi_loss.detach(), att_loss.detach()
def compute_loss(
params: AttributeDict,
model: nn.Module,
ali_model: Optional[nn.Module],
batch: dict,
graph_compiler: MmiTrainingGraphCompiler,
is_training: bool,
):
try:
return compute_loss_impl(
params=params,
model=model,
ali_model=ali_model,
batch=batch,
graph_compiler=graph_compiler,
is_training=is_training,
)
except RuntimeError as ex:
if "out of memory" not in str(ex):
raise ex
logging.exception(ex)
s = f"\nCaught exception: {str(ex)}\n"
total_duration = 0.0
max_cut_duration = 0.0
for cut in batch["supervisions"]["cut"]:
s += f" id: {cut.id}, duration: {cut.duration} seconds\n"
total_duration += cut.duration
max_cut_duration = max(max_cut_duration, cut.duration)
s += f" total duration: {total_duration:.3f} s\n"
s += f" max duration: {max_cut_duration:.3f} s \n"
logging.info(s)
torch.cuda.empty_cache()
gc.collect()
# See https://github.com/pytorch/pytorch/issues/18853#issuecomment-583779161
return compute_loss_impl(
params=params,
model=model,
ali_model=ali_model,
batch=params.saved_batch,
graph_compiler=graph_compiler,
is_training=is_training,
)
def compute_validation_loss(
params: AttributeDict,
model: nn.Module,
ali_model: Optional[nn.Module],
graph_compiler: MmiTrainingGraphCompiler,
valid_dl: torch.utils.data.DataLoader,
world_size: int = 1,
@ -443,7 +353,6 @@ def compute_validation_loss(
loss, mmi_loss, att_loss = compute_loss(
params=params,
model=model,
ali_model=ali_model,
batch=batch,
graph_compiler=graph_compiler,
is_training=False,
@ -484,7 +393,6 @@ def compute_validation_loss(
def train_one_epoch(
params: AttributeDict,
model: nn.Module,
ali_model: Optional[nn.Module],
optimizer: torch.optim.Optimizer,
graph_compiler: MmiTrainingGraphCompiler,
train_dl: torch.utils.data.DataLoader,
@ -503,9 +411,6 @@ def train_one_epoch(
It is returned by :func:`get_params`.
model:
The model for training.
ali_model:
The force alignment model for training. It is from
tdnn_lstm_ctc/train_bpe.py
optimizer:
The optimizer we are using.
graph_compiler:
@ -529,18 +434,12 @@ def train_one_epoch(
params.tot_loss = 0.0
params.tot_frames = 0.0
for batch_idx, batch in enumerate(train_dl):
if batch_idx == 0:
logging.info("save a batch for OOM handling")
# Use this batch to replace the batch that's causing OOM
params.saved_batch = batch
params.batch_idx_train += 1
batch_size = len(batch["supervisions"]["text"])
loss, mmi_loss, att_loss = compute_loss(
params=params,
model=model,
ali_model=ali_model,
batch=batch,
graph_compiler=graph_compiler,
is_training=True,
@ -632,7 +531,6 @@ def train_one_epoch(
compute_validation_loss(
params=params,
model=model,
ali_model=ali_model,
graph_compiler=graph_compiler,
valid_dl=valid_dl,
world_size=world_size,
@ -669,9 +567,6 @@ def train_one_epoch(
params.best_train_epoch = params.cur_epoch
params.best_train_loss = params.train_loss
if "saved_batch" in params:
del params["saved_batch"]
def run(rank, world_size, args):
"""
@ -745,35 +640,6 @@ def run(rank, world_size, args):
if checkpoints and checkpoints["optimizer"]:
optimizer.load_state_dict(checkpoints["optimizer"])
assert args.use_ali_model is False
if args.use_ali_model:
ali_model = TdnnLstm(
num_features=params.feature_dim,
num_classes=num_classes,
subsampling_factor=params.subsampling_factor,
)
# TODO: add an option to switch among
# bpe_500, bpe_1000, and bpe_5000
ali_model_fname = Path(
f"tdnn_lstm_ctc/exp_bpe_500/epoch-{args.ali_model_epoch}.pt"
)
assert (
ali_model_fname.is_file()
), f"ali model filename {ali_model_fname} does not exist!"
ali_model.load_state_dict(
torch.load(ali_model_fname, map_location="cpu")["model"]
)
ali_model.to(device)
ali_model.eval()
ali_model.requires_grad_(False)
logging.info(f"Use ali_model: {ali_model_fname}")
else:
ali_model = None
logging.info("No ali_model")
librispeech = LibriSpeechAsrDataModule(args)
train_dl = librispeech.train_dataloaders()
valid_dl = librispeech.valid_dataloaders()
@ -796,7 +662,6 @@ def run(rank, world_size, args):
train_one_epoch(
params=params,
model=model,
ali_model=ali_model,
optimizer=optimizer,
graph_compiler=graph_compiler,
train_dl=train_dl,

1
egs/librispeech/ASR/local/.gitignore vendored Normal file
View File

@ -0,0 +1 @@
tmp_lang

View File

@ -8,8 +8,8 @@ for LM training with the help of a lexicon.
If the lexicon contains phones, the resulting LM will be a phone LM; If the
lexicon contains word pieces, the resulting LM will be a word piece LM.
If a word has multiple pronunciations, the one that appears last in the lexicon
is used.
If a word has multiple pronunciations, the one that appears first in the lexicon
is kept; others are removed.
If the input transcript is:
@ -20,8 +20,8 @@ If the input transcript is:
and if the lexicon is
<UNK> SPN
hello h e l l o
hello h e l l o 2
hello h e l l o
world w o r l d
zoo z o o
@ -36,6 +36,8 @@ import argparse
from pathlib import Path
from typing import Dict, List
from generate_unique_lexicon import filter_multiple_pronunications
from icefall.lexicon import read_lexicon
@ -87,8 +89,10 @@ def main():
assert Path(args.transcript).is_file()
assert len(args.oov) > 0
# Only the last pronunciation of a word is kept
lexicon = dict(read_lexicon(args.lexicon))
# Only the first pronunciation of a word is kept
lexicon = filter_multiple_pronunications(read_lexicon(args.lexicon))
lexicon = dict(lexicon)
assert args.oov in lexicon

View File

@ -25,7 +25,7 @@ This file downloads the following LibriSpeech LM files:
- librispeech-lexicon.txt
from http://www.openslr.org/resources/11
and save them in the user provided directory.
and saves them in the user provided directory.
Files are not re-downloaded if they already exist.

View File

@ -0,0 +1,100 @@
#!/usr/bin/env python3
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This file takes as input a lexicon.txt and output a new lexicon,
in which each word has a unique pronunciation.
The way to do this is to keep only the first pronunciation of a word
in lexicon.txt.
"""
import argparse
import logging
from pathlib import Path
from typing import List, Tuple
from icefall.lexicon import read_lexicon, write_lexicon
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--lang-dir",
type=str,
help="""Input and output directory.
It should contain a file lexicon.txt.
This file will generate a new file uniq_lexicon.txt
in it.
""",
)
return parser.parse_args()
def filter_multiple_pronunications(
lexicon: List[Tuple[str, List[str]]]
) -> List[Tuple[str, List[str]]]:
"""Remove multiple pronunciations of words from a lexicon.
If a word has more than one pronunciation in the lexicon, only
the first one is kept, while other pronunciations are removed
from the lexicon.
Args:
lexicon:
The input lexicon, containing a list of (word, [p1, p2, ..., pn]),
where "p1, p2, ..., pn" are the pronunciations of the "word".
Returns:
Return a new lexicon where each word has a unique pronunciation.
"""
seen = set()
ans = []
for word, tokens in lexicon:
if word in seen:
continue
seen.add(word)
ans.append((word, tokens))
return ans
def main():
args = get_args()
lang_dir = Path(args.lang_dir)
lexicon_filename = lang_dir / "lexicon.txt"
in_lexicon = read_lexicon(lexicon_filename)
out_lexicon = filter_multiple_pronunications(in_lexicon)
write_lexicon(lang_dir / "uniq_lexicon.txt", out_lexicon)
logging.info(f"Number of entries in lexicon.txt: {len(in_lexicon)}")
logging.info(f"Number of entries in uniq_lexicon.txt: {len(out_lexicon)}")
if __name__ == "__main__":
formatter = (
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
)
logging.basicConfig(format=formatter, level=logging.INFO)
main()

View File

@ -17,8 +17,9 @@
"""
This script takes as input a lexicon file "data/lang_phone/lexicon.txt"
consisting of words and tokens (i.e., phones) and does the following:
This script takes as input a `lang_dir`, which is expected to contain
a lexicon file "lexicon.txt" consisting of words and tokens (i.e., phones)
and does the following:
1. Add disambiguation symbols to the lexicon and generate lexicon_disambig.txt
@ -36,11 +37,12 @@ consisting of words and tokens (i.e., phones) and does the following:
The generated files are saved into `lang_dir`.
"""
import argparse
import math
from collections import defaultdict
from pathlib import Path
from typing import Any, Dict, List, Tuple
from icefall.utils import str2bool
import k2
import torch
@ -55,7 +57,22 @@ def get_args():
"--lang-dir",
type=str,
help="""Input and output directory.
It should contain a file lexicon.txt
It should contain a file lexicon.txt.
Generated files by this script are saved into this directory.
""",
)
parser.add_argument(
"--debug",
type=str2bool,
default=False,
help="""True for debugging, which will generate
a visualization of the lexicon FST.
Caution: If your lexicon contains hundreds of thousands
of lines, please set it to False!
See "local/test_prepare_lang.sh" for usage.
""",
)
@ -85,6 +102,10 @@ def write_mapping(filename: str, sym2id: Dict[str, int]) -> None:
def get_tokens(lexicon: Lexicon) -> List[str]:
"""Get tokens from a lexicon.
If pronunciations are phones, then tokens are phones.
If pronunciations are word pieces, then tokens are word pieces.
Args:
lexicon:
It is the return value of :func:`read_lexicon`.
@ -208,6 +229,9 @@ def add_self_loops(
The input label of a self-loop is `disambig_token`, while the output
label is `disambig_word`.
Caution:
Don't be confused with :func:`k2.add_epsilon_self_loops`.
Args:
arcs:
A list-of-list. The sublist contains
@ -237,12 +261,9 @@ def lexicon_to_fst(
lexicon: Lexicon,
token2id: Dict[str, int],
word2id: Dict[str, int],
sil_token: str = "SIL",
sil_prob: float = 0.5,
need_self_loops: bool = False,
) -> k2.Fsa:
"""Convert a lexicon to an FST (in k2 format) with optional silence at
the beginning and end of each word.
"""Convert a lexicon to an FST (in k2 format).
Args:
lexicon:
@ -251,11 +272,6 @@ def lexicon_to_fst(
A dict mapping tokens to IDs.
word2id:
A dict mapping words to IDs.
sil_token:
The silence token.
sil_prob:
The probability for adding a silence at the beginning and end
of the word.
need_self_loops:
If True, add self-loop to states with non-epsilon output symbols
on at least one arc out of the state. The input label for this
@ -263,50 +279,43 @@ def lexicon_to_fst(
Returns:
Return an instance of `k2.Fsa` representing the given lexicon.
"""
assert sil_prob > 0.0 and sil_prob < 1.0
# CAUTION: we use score, i.e, negative cost.
sil_score = math.log(sil_prob)
no_sil_score = math.log(1.0 - sil_prob)
loop_state = 0 # words enter and leave from here
next_state = 1 # the next un-allocated state, will be incremented as we go
start_state = 0
loop_state = 1 # words enter and leave from here
sil_state = 2 # words terminate here when followed by silence; this state
# has a silence transition to loop_state.
next_state = 3 # the next un-allocated state, will be incremented as we go.
arcs = []
assert token2id["<eps>"] == 0
if "<blk>" in token2id:
# For BPE based lexicon
# The blank symbol <blk> is defined in local/train_bpe_model.py
assert token2id["<blk>"] == 0
else:
# For phone based lexicon in the CTC topo,
# 0 on the left side (i.e., as label) indicates a blank.
# 0 on the right side (i.e., as aux_label) represents an epsilon
assert token2id["<eps>"] == 0
assert word2id["<eps>"] == 0
eps = 0
sil_token = token2id[sil_token]
arcs.append([start_state, loop_state, eps, eps, no_sil_score])
arcs.append([start_state, sil_state, eps, eps, sil_score])
arcs.append([sil_state, loop_state, sil_token, eps, 0])
for word, tokens in lexicon:
assert len(tokens) > 0, f"{word} has no pronunciations"
for word, pieces in lexicon:
assert len(pieces) > 0, f"{word} has no pronunciations"
cur_state = loop_state
word = word2id[word]
tokens = [token2id[i] for i in tokens]
pieces = [token2id[i] for i in pieces]
for i in range(len(tokens) - 1):
for i in range(len(pieces) - 1):
w = word if i == 0 else eps
arcs.append([cur_state, next_state, tokens[i], w, 0])
arcs.append([cur_state, next_state, pieces[i], w, 0])
cur_state = next_state
next_state += 1
# now for the last token of this word
# It has two out-going arcs, one to the loop state,
# the other one to the sil_state.
i = len(tokens) - 1
# now for the last piece of this word
i = len(pieces) - 1
w = word if i == 0 else eps
arcs.append([cur_state, loop_state, tokens[i], w, no_sil_score])
arcs.append([cur_state, sil_state, tokens[i], w, sil_score])
arcs.append([cur_state, loop_state, pieces[i], w, 0])
if need_self_loops:
disambig_token = token2id["#0"]
@ -335,8 +344,6 @@ def main():
lang_dir = Path(args.lang_dir)
lexicon_filename = lang_dir / "lexicon.txt"
sil_token = "SIL"
sil_prob = 0.5
lexicon = read_lexicon(lexicon_filename)
tokens = get_tokens(lexicon)
@ -370,21 +377,29 @@ def main():
lexicon,
token2id=token2id,
word2id=word2id,
sil_token=sil_token,
sil_prob=sil_prob,
)
L_disambig = lexicon_to_fst(
lexicon_disambig,
token2id=token2id,
word2id=word2id,
sil_token=sil_token,
sil_prob=sil_prob,
need_self_loops=True,
)
torch.save(L.as_dict(), lang_dir / "L.pt")
torch.save(L_disambig.as_dict(), lang_dir / "L_disambig.pt")
if args.debug:
labels_sym = k2.SymbolTable.from_file(lang_dir / "tokens.txt")
aux_labels_sym = k2.SymbolTable.from_file(lang_dir / "words.txt")
L.labels_sym = labels_sym
L.aux_labels_sym = aux_labels_sym
L.draw(f"{lang_dir / 'L.svg'}", title="L.pt")
L_disambig.labels_sym = labels_sym
L_disambig.aux_labels_sym = aux_labels_sym
L_disambig.draw(f"{lang_dir / 'L_disambig.svg'}", title="L_disambig.pt")
if __name__ == "__main__":
main()

View File

@ -44,86 +44,12 @@ import torch
from prepare_lang import (
Lexicon,
add_disambig_symbols,
add_self_loops,
lexicon_to_fst,
write_lexicon,
write_mapping,
)
def lexicon_to_fst_no_sil(
lexicon: Lexicon,
token2id: Dict[str, int],
word2id: Dict[str, int],
need_self_loops: bool = False,
) -> k2.Fsa:
"""Convert a lexicon to an FST (in k2 format).
Args:
lexicon:
The input lexicon. See also :func:`read_lexicon`
token2id:
A dict mapping tokens to IDs.
word2id:
A dict mapping words to IDs.
need_self_loops:
If True, add self-loop to states with non-epsilon output symbols
on at least one arc out of the state. The input label for this
self loop is `token2id["#0"]` and the output label is `word2id["#0"]`.
Returns:
Return an instance of `k2.Fsa` representing the given lexicon.
"""
loop_state = 0 # words enter and leave from here
next_state = 1 # the next un-allocated state, will be incremented as we go
arcs = []
# The blank symbol <blk> is defined in local/train_bpe_model.py
assert token2id["<blk>"] == 0
assert word2id["<eps>"] == 0
eps = 0
for word, pieces in lexicon:
assert len(pieces) > 0, f"{word} has no pronunciations"
cur_state = loop_state
word = word2id[word]
pieces = [token2id[i] for i in pieces]
for i in range(len(pieces) - 1):
w = word if i == 0 else eps
arcs.append([cur_state, next_state, pieces[i], w, 0])
cur_state = next_state
next_state += 1
# now for the last piece of this word
i = len(pieces) - 1
w = word if i == 0 else eps
arcs.append([cur_state, loop_state, pieces[i], w, 0])
if need_self_loops:
disambig_token = token2id["#0"]
disambig_word = word2id["#0"]
arcs = add_self_loops(
arcs,
disambig_token=disambig_token,
disambig_word=disambig_word,
)
final_state = next_state
arcs.append([loop_state, final_state, -1, -1, 0])
arcs.append([final_state])
arcs = sorted(arcs, key=lambda arc: arc[0])
arcs = [[str(i) for i in arc] for arc in arcs]
arcs = [" ".join(arc) for arc in arcs]
arcs = "\n".join(arcs)
fsa = k2.Fsa.from_str(arcs, acceptor=False)
return fsa
def generate_lexicon(
model_file: str, words: List[str]
) -> Tuple[Lexicon, Dict[str, int]]:
@ -206,13 +132,13 @@ def main():
write_lexicon(lang_dir / "lexicon.txt", lexicon)
write_lexicon(lang_dir / "lexicon_disambig.txt", lexicon_disambig)
L = lexicon_to_fst_no_sil(
L = lexicon_to_fst(
lexicon,
token2id=token_sym_table,
word2id=word_sym_table,
)
L_disambig = lexicon_to_fst_no_sil(
L_disambig = lexicon_to_fst(
lexicon_disambig,
token2id=token_sym_table,
word2id=word_sym_table,

View File

@ -1,106 +0,0 @@
#!/usr/bin/env python3
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Copyright (c) 2021 Xiaomi Corporation (authors: Fangjun Kuang)
import os
import tempfile
import k2
from prepare_lang import (
add_disambig_symbols,
generate_id_map,
get_phones,
get_words,
lexicon_to_fst,
read_lexicon,
write_lexicon,
write_mapping,
)
def generate_lexicon_file() -> str:
fd, filename = tempfile.mkstemp()
os.close(fd)
s = """
!SIL SIL
<SPOKEN_NOISE> SPN
<UNK> SPN
f f
a a
foo f o o
bar b a r
bark b a r k
food f o o d
food2 f o o d
fo f o
""".strip()
with open(filename, "w") as f:
f.write(s)
return filename
def test_read_lexicon(filename: str):
lexicon = read_lexicon(filename)
phones = get_phones(lexicon)
words = get_words(lexicon)
print(lexicon)
print(phones)
print(words)
lexicon_disambig, max_disambig = add_disambig_symbols(lexicon)
print(lexicon_disambig)
print("max disambig:", f"#{max_disambig}")
phones = ["<eps>", "SIL", "SPN"] + phones
for i in range(max_disambig + 1):
phones.append(f"#{i}")
words = ["<eps>"] + words
phone2id = generate_id_map(phones)
word2id = generate_id_map(words)
print(phone2id)
print(word2id)
write_mapping("phones.txt", phone2id)
write_mapping("words.txt", word2id)
write_lexicon("a.txt", lexicon)
write_lexicon("a_disambig.txt", lexicon_disambig)
fsa = lexicon_to_fst(lexicon, phone2id=phone2id, word2id=word2id)
fsa.labels_sym = k2.SymbolTable.from_file("phones.txt")
fsa.aux_labels_sym = k2.SymbolTable.from_file("words.txt")
fsa.draw("L.pdf", title="L")
fsa_disambig = lexicon_to_fst(
lexicon_disambig, phone2id=phone2id, word2id=word2id
)
fsa_disambig.labels_sym = k2.SymbolTable.from_file("phones.txt")
fsa_disambig.aux_labels_sym = k2.SymbolTable.from_file("words.txt")
fsa_disambig.draw("L_disambig.pdf", title="L_disambig")
def main():
filename = generate_lexicon_file()
test_read_lexicon(filename)
os.remove(filename)
if __name__ == "__main__":
main()

View File

@ -0,0 +1,37 @@
#!/usr/bin/env bash
lang_dir=tmp_lang
mkdir -p $lang_dir
cat <<EOF > $lang_dir/lexicon.txt
<UNK> SPN
f f
a a
foo f o o
bar b a r
bark b a r k
food f o o d
food2 f o o d
fo f o
fo f o o
EOF
./prepare_lang.py --lang-dir $lang_dir --debug 1
./generate_unique_lexicon.py --lang-dir $lang_dir
cat <<EOF > $lang_dir/transcript_words.txt
foo bar bark food food2 fo f a foo bar
bar food2 fo bark
EOF
./convert_transcript_words_to_tokens.py \
--lexicon $lang_dir/uniq_lexicon.txt \
--transcript $lang_dir/transcript_words.txt \
--oov "<UNK>" \
> $lang_dir/transcript_tokens.txt
../shared/make_kn_lm.py \
-ngram-order 2 \
-text $lang_dir/transcript_tokens.txt \
-lm $lang_dir/P.arpa
echo "Please delete the directory '$lang_dir' manually"

View File

@ -38,7 +38,7 @@ def get_args():
"--lang-dir",
type=str,
help="""Input and output directory.
It should contain the training corpus: train.txt.
It should contain the training corpus: transcript_words.txt.
The generated bpe.model is saved to this directory.
""",
)
@ -59,7 +59,7 @@ def main():
model_type = "unigram"
model_prefix = f"{lang_dir}/{model_type}_{vocab_size}"
train_text = f"{lang_dir}/train.txt"
train_text = f"{lang_dir}/transcript_words.txt"
character_coverage = 1.0
input_sentence_size = 100000000

View File

@ -116,16 +116,18 @@ if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
lang_dir=data/lang_phone
mkdir -p $lang_dir
(echo '!SIL SIL'; echo '<SPOKEN_NOISE> SPN'; echo '<UNK> SPN'; ) |
echo '<UNK> SPN' |
cat - $dl_dir/lm/librispeech-lexicon.txt |
sort | uniq > $lang_dir/lexicon.txt
./local/generate_unique_lexicon.py --lang-dir $lang_dir
if [ ! -f $lang_dir/L_disambig.pt ]; then
./local/prepare_lang.py --lang-dir $lang_dir
fi
# Train a bigram P for MMI training
if [ ! -f $lang_dir/train.txt ]; then
if [ ! -f $lang_dir/transcript_words.txt ]; then
log "Generate data to train phone based bigram P"
files=$(
find -L "$dl_dir/LibriSpeech/train-clean-100" -name "*.trans.txt"
@ -134,30 +136,21 @@ if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
)
for f in ${files[@]}; do
cat $f | cut -d " " -f 2-
done > $lang_dir/train.txt
done > $lang_dir/transcript_words.txt
fi
if [ ! -f $lang_dir/train_with_sil.txt ]; then
./local/add_silence_to_transcript.py \
--transcript $lang_dir/train.txt \
--sil-word "!SIL" \
--sil-prob 0.5 \
--seed 20210823 \
> $lang_dir/train_with_sil.txt
fi
if [ ! -f $lang_dir/corpus.txt ]; then
./local/convert_transcript_to_corpus.py \
--lexicon $lang_dir/lexicon.txt \
--transcript $lang_dir/train_with_sil.txt \
if [ ! -f $lang_dir/transcript_tokens.txt ]; then
./local/convert_transcript_words_to_tokens.py \
--lexicon $lang_dir/uniq_lexicon.txt \
--transcript $lang_dir/transcript_words.txt \
--oov "<UNK>" \
> $lang_dir/corpus.txt
> $lang_dir/transcript_tokens.txt
fi
if [ ! -f $lang_dir/P.arpa ]; then
./shared/make_kn_lm.py \
-ngram-order 2 \
-text $lang_dir/corpus.txt \
-text $lang_dir/transcript_tokens.txt \
-lm $lang_dir/P.arpa
fi
@ -180,7 +173,7 @@ if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
# so that the two can share G.pt later.
cp data/lang_phone/words.txt $lang_dir
if [ ! -f $lang_dir/train.txt ]; then
if [ ! -f $lang_dir/transcript_words.txt ]; then
log "Generate data for BPE training"
files=$(
find "$dl_dir/LibriSpeech/train-clean-100" -name "*.trans.txt"
@ -189,7 +182,7 @@ if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
)
for f in ${files[@]}; do
cat $f | cut -d " " -f 2-
done > $lang_dir/train.txt
done > $lang_dir/transcript_words.txt
fi
./local/train_bpe_model.py \
@ -204,7 +197,7 @@ fi
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
log "Stage 7: Prepare G"
# We assume you have install kaldilm, if not, please install
# We assume you have installed kaldilm, if not, please install
# it using: pip install kaldilm
mkdir -p data/lm
@ -237,4 +230,4 @@ if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
done
fi
cd data && ln -sfv lang_bpe_5000 lang_bpe
# cd data && ln -sfv lang_bpe_5000 lang_bpe

View File

@ -106,7 +106,7 @@ class CtcTrainingGraphCompiler(object):
word_ids_list = []
for text in texts:
word_ids = []
for word in text.split(" "):
for word in text.split():
if word in self.word_table:
word_ids.append(self.word_table[word])
else:

View File

@ -95,7 +95,7 @@ class Lexicon(object):
"""
Args:
lang_dir:
Path to the lang director. It is expected to contain the following
Path to the lang directory. It is expected to contain the following
files:
- tokens.txt
- words.txt

View File

@ -130,6 +130,11 @@ class MmiTrainingGraphCompiler(object):
transcript_fsa_with_self_loops,
treat_epsilons_specially=False,
)
# CAUTION: Due to the presence of P,
# the resulting `num` may not be connected
num = k2.connect(num)
num = k2.arc_sort(num)
ctc_topo_P_vec = k2.create_fsa_vec([self.ctc_topo_P])
@ -160,7 +165,7 @@ class MmiTrainingGraphCompiler(object):
word_ids_list = []
for text in texts:
word_ids = []
for word in text.split(" "):
for word in text.split():
if word in self.lexicon.word_table:
word_ids.append(self.lexicon.word_table[word])
else:

174
test/test_mmi_graph_compiler.py Executable file
View File

@ -0,0 +1,174 @@
#!/usr/bin/env python3
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
You can run this file in one of the two ways:
(1) cd icefall; pytest test/test_mmi_graph_compiler.py
(2) cd icefall; ./test/test_mmi_graph_compiler.py
"""
import os
import shutil
import sys
import copy
from pathlib import Path
import k2
from icefall.mmi_graph_compiler import MmiTrainingGraphCompiler
TMP_DIR = "/tmp/icefall-test-mmi-graph-compiler"
USING_PYTEST = "pytest" in sys.modules
ICEFALL_DIR = Path(__file__).resolve().parent.parent
print(ICEFALL_DIR)
def generate_test_data():
# if Path(TMP_DIR).exists():
# return
Path(TMP_DIR).mkdir(exist_ok=True)
lexicon = """
<UNK> SPN
cat c a t
at a t
at a a t
ac a c
ac a c c
"""
lexicon_filename = Path(TMP_DIR) / "lexicon.txt"
with open(lexicon_filename, "w") as f:
for line in lexicon.strip().split("\n"):
f.write(f"{line}\n")
transcript_words = """
cat at ta
at at cat ta
"""
transcript_words_filename = Path(TMP_DIR) / "transcript_words.txt"
with open(transcript_words_filename, "w") as f:
for line in transcript_words.strip().split("\n"):
f.write(f"{line}\n")
os.system(
f"""
cd {ICEFALL_DIR}/egs/librispeech/ASR
./local/generate_unique_lexicon.py --lang-dir {TMP_DIR}
./local/prepare_lang.py --lang-dir {TMP_DIR}
./local/convert_transcript_words_to_tokens.py \
--lexicon {TMP_DIR}/uniq_lexicon.txt \
--transcript {TMP_DIR}/transcript_words.txt \
--oov "<UNK>" \
> {TMP_DIR}/transcript_tokens.txt
shared/make_kn_lm.py \
-ngram-order 2 \
-text {TMP_DIR}/transcript_tokens.txt \
-lm {TMP_DIR}/P.arpa
python3 -m kaldilm \
--read-symbol-table="{TMP_DIR}/tokens.txt" \
--disambig-symbol='#0' \
--max-order=2 \
{TMP_DIR}/P.arpa > {TMP_DIR}/P.fst.txt
"""
)
def delete_test_data():
shutil.rmtree(TMP_DIR)
def mmi_graph_compiler_test():
graph_compiler = MmiTrainingGraphCompiler(lang_dir=TMP_DIR)
print(graph_compiler.device)
L_inv = graph_compiler.L_inv
L = k2.invert(L_inv)
L.labels_sym = graph_compiler.lexicon.token_table
L.aux_labels_sym = graph_compiler.lexicon.word_table
L.draw(f"{TMP_DIR}/L.svg", title="L")
L_inv.labels_sym = graph_compiler.lexicon.word_table
L_inv.aux_labels_sym = graph_compiler.lexicon.token_table
L_inv.draw(f"{TMP_DIR}/L_inv.svg", title="L")
ctc_topo_P = graph_compiler.ctc_topo_P
ctc_topo_P.labels_sym = copy.deepcopy(graph_compiler.lexicon.token_table)
ctc_topo_P.labels_sym._id2sym[0] = "<blk>"
ctc_topo_P.labels_sym._sym2id["<blk>"] = 0
ctc_topo_P.aux_labels_sym = graph_compiler.lexicon.token_table
ctc_topo_P.draw(f"{TMP_DIR}/ctc_topo_P.svg", title="ctc_topo_P")
print(ctc_topo_P.num_arcs)
print(k2.connect(ctc_topo_P).num_arcs)
with open(str(TMP_DIR) + "/P.fst.txt") as f:
# P is not an acceptor because there is
# a back-off state, whose incoming arcs
# have label #0 and aux_label 0 (i.e., <eps>).
P = k2.Fsa.from_openfst(f.read(), acceptor=False)
P.labels_sym = graph_compiler.lexicon.token_table
P.aux_labels_sym = graph_compiler.lexicon.token_table
P.draw(f"{TMP_DIR}/P.svg", title="P")
ctc_topo = k2.ctc_topo(max(graph_compiler.lexicon.tokens), False)
ctc_topo.labels_sym = ctc_topo_P.labels_sym
ctc_topo.aux_labels_sym = graph_compiler.lexicon.token_table
ctc_topo.draw(f"{TMP_DIR}/ctc_topo.svg", title="ctc_topo")
print("p num arcs", P.num_arcs)
print("ctc_topo num arcs", ctc_topo.num_arcs)
print("ctc_topo_P num arcs", ctc_topo_P.num_arcs)
texts = ["cat at ac at", "at ac cat zoo", "cat zoo"]
transcript_fsa = graph_compiler.build_transcript_fsa(texts)
transcript_fsa[0].draw(f"{TMP_DIR}/cat_at_ac_at.svg", title="cat_at_ac_at")
transcript_fsa[1].draw(
f"{TMP_DIR}/at_ac_cat_zoo.svg", title="at_ac_cat_zoo"
)
transcript_fsa[2].draw(f"{TMP_DIR}/cat_zoo.svg", title="cat_zoo")
num_graphs, den_graphs = graph_compiler.compile(texts, replicate_den=True)
num_graphs[0].draw(
f"{TMP_DIR}/num_cat_at_ac_at.svg", title="num_cat_at_ac_at"
)
num_graphs[1].draw(
f"{TMP_DIR}/num_at_ac_cat_zoo.svg", title="num_at_ac_cat_zoo"
)
num_graphs[2].draw(f"{TMP_DIR}/num_cat_zoo.svg", title="num_cat_zoo")
den_graphs[0].draw(
f"{TMP_DIR}/den_cat_at_ac_at.svg", title="den_cat_at_ac_at"
)
den_graphs[2].draw(f"{TMP_DIR}/den_cat_zoo.svg", title="den_cat_zoo")
def test_main():
generate_test_data()
mmi_graph_compiler_test()
if USING_PYTEST:
delete_test_data()
def main():
test_main()
if __name__ == "__main__" and not USING_PYTEST:
main()