mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
Merge 7b7d710fd1ef9093a9f1ec333872ac56d234023e into 34fc1fdf0d8ff520e2bb18267d046ca207c78ef9
This commit is contained in:
commit
52b456be46
449
egs/librispeech/ASR/conformer_ctc/gigaspeech_datamodule.py
Normal file
449
egs/librispeech/ASR/conformer_ctc/gigaspeech_datamodule.py
Normal file
@ -0,0 +1,449 @@
|
||||
# Copyright (c) 2021 Johns Hopkins University (Piotr Żelasko)
|
||||
# Apache 2.0
|
||||
import argparse
|
||||
import logging
|
||||
import warnings
|
||||
from functools import lru_cache
|
||||
from pathlib import Path
|
||||
from typing import List, Union
|
||||
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from lhotse import CutSet, KaldifeatFbank, KaldifeatFbankConfig, load_manifest
|
||||
from lhotse.dataset import (
|
||||
BucketingSampler,
|
||||
CutConcatenate,
|
||||
CutMix,
|
||||
K2SpeechRecognitionDataset,
|
||||
PrecomputedFeatures,
|
||||
SingleCutSampler,
|
||||
SpecAugment,
|
||||
)
|
||||
from lhotse.dataset.dataloading import LhotseDataLoader
|
||||
from lhotse.dataset.input_strategies import OnTheFlyFeatures
|
||||
from icefall.utils import str2bool
|
||||
from icefall.dataset.datamodule import DataModule
|
||||
|
||||
|
||||
def get_context_suffix(args, subparser=True):
|
||||
if subparser:
|
||||
if args.giga_context_window is None or args.giga_context_window <= 0.0:
|
||||
ctx_suffix = ""
|
||||
else:
|
||||
ctx_suffix = f"_{args.giga_context_direction}{args.giga_context_window}"
|
||||
else:
|
||||
if args.context_window is None or args.context_window <= 0.0:
|
||||
ctx_suffix = ""
|
||||
else:
|
||||
ctx_suffix = f"_{args.context_direction}{args.context_window}"
|
||||
return ctx_suffix
|
||||
|
||||
|
||||
class GigaSpeechAsrDataModule(DataModule):
|
||||
"""
|
||||
DataModule for K2 ASR experiments.
|
||||
It assumes there is always one train and valid dataloader,
|
||||
|
||||
It contains all the common data pipeline modules used in ASR experiments, e.g.:
|
||||
- dynamic batch size,
|
||||
- bucketing samplers,
|
||||
- cut concatenation,
|
||||
- augmentation,
|
||||
- on-the-fly feature extraction
|
||||
|
||||
This class should be derived for specific corpora used in ASR tasks.
|
||||
"""
|
||||
|
||||
def __init__(self, args):
|
||||
self.total_train_cuts = 0
|
||||
self.consumed_cuts = 0
|
||||
self.args = args
|
||||
|
||||
@classmethod
|
||||
def add_arguments(cls, parser: argparse.ArgumentParser):
|
||||
subparsers = parser.add_subparsers(help='seperate gigaspeech arguments from librispeech arguments')
|
||||
parser = subparsers.add_parser(name='giga')
|
||||
super().add_arguments(parser)
|
||||
group = parser.add_argument_group(
|
||||
title="ASR data related options",
|
||||
description="These options are used for the preparation of PyTorch DataLoaders "
|
||||
"from Lhotse CutSet's -- they control the effective batch sizes, "
|
||||
"sampling strategies, applied data augmentations, etc.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--feature-dir",
|
||||
dest="giga_feature_dir",
|
||||
type=Path,
|
||||
default=Path('exp/giga_data'),
|
||||
help="Path to directory with train/valid/test cuts.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--max-duration",
|
||||
dest="giga_max_duration",
|
||||
type=int,
|
||||
default=500.0,
|
||||
help="Maximum pooled recordings duration (seconds) in a single batch.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--bucketing-sampler",
|
||||
dest="giga_bucketing_sampler",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="When enabled, the batches will come from buckets of "
|
||||
"similar duration (saves padding frames).",
|
||||
)
|
||||
group.add_argument(
|
||||
"--num-buckets",
|
||||
dest="giga_num_buckets",
|
||||
type=int,
|
||||
default=30,
|
||||
help="The number of buckets for the BucketingSampler"
|
||||
"(you might want to increase it for larger datasets).",
|
||||
)
|
||||
group.add_argument(
|
||||
"--concatenate-cuts",
|
||||
dest="giga_concatenate_cuts",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, utterances (cuts) will be concatenated "
|
||||
"to minimize the amount of padding.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--duration-factor",
|
||||
dest="giga_duration_factor",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="Determines the maximum duration of a concatenated cut "
|
||||
"relative to the duration of the longest cut in a batch.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--gap",
|
||||
dest="giga_gap",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="The amount of padding (in seconds) inserted between concatenated cuts. "
|
||||
"This padding is filled with noise when noise augmentation is used.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--on-the-fly-feats",
|
||||
dest="giga_on_the_fly_feats",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="When enabled, use on-the-fly cut mixing and feature extraction. "
|
||||
"Will drop existing precomputed feature manifests if available.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--shuffle",
|
||||
dest="giga_shuffle",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled (=default), the examples will be shuffled for each epoch.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--return-cuts",
|
||||
dest="giga_return_cuts",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="When enabled, each batch will have the field: batch['supervisions']['cut']"
|
||||
" with the cuts that were used to construct it.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--num-workers",
|
||||
dest="giga_num_workers",
|
||||
type=int,
|
||||
default=4,
|
||||
help="The number of training dataloader workers that collect the batches.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--num-workers-inner",
|
||||
dest="giga_num_workers_inner",
|
||||
type=int,
|
||||
default=16,
|
||||
help="The number of sub-workers (replicated for each of training dataloader"
|
||||
" workers) that parallelize the I/O to collect each batch.",
|
||||
)
|
||||
|
||||
# GigaSpeech specific arguments
|
||||
group.add_argument(
|
||||
"--subset",
|
||||
dest="giga_subset",
|
||||
type=str,
|
||||
default="XS",
|
||||
help="Select the GigaSpeech subset (XS|S|M|L|XL)",
|
||||
)
|
||||
group.add_argument(
|
||||
"--context-window",
|
||||
dest="giga_context_window",
|
||||
type=float,
|
||||
default=0.0,
|
||||
help="Training cut duration in seconds. "
|
||||
"Use 0 to train on supervision segments without acoustic context, with variable cut lengths; "
|
||||
"number larger than zero will create multi-supervisions cuts with actual acoustic context. ",
|
||||
)
|
||||
group.add_argument(
|
||||
"--context-direction",
|
||||
dest="giga_context_direction",
|
||||
type=str,
|
||||
default="center",
|
||||
help="If context-window is 0, does nothing. "
|
||||
"If it's larger than 0, determines in which direction (relative to the supervision) "
|
||||
"to seek for extra acoustic context. Available values: (left|right|center|random).",
|
||||
)
|
||||
group.add_argument(
|
||||
"--use-context-for-test",
|
||||
dest="giga_use_context_for_text",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="Should we read cuts with acoustic context or without it. "
|
||||
"(note: for now, they may contain duplicated segments)",
|
||||
)
|
||||
group.add_argument(
|
||||
"--small-dev",
|
||||
dest="giga_small_dev",
|
||||
type=str2bool,
|
||||
default=False,
|
||||
help="Should we use only 1000 utterances for dev (speeds up training)",
|
||||
)
|
||||
|
||||
def validate_args(self):
|
||||
if self.args.giga_subset in ["L", "XL"]:
|
||||
assert (
|
||||
self.args.giga_shuffle == False
|
||||
), "For GigaSpeech L/XL, you must use --shuffle 0 to avoid eagerly reading pyarrow manifests."
|
||||
assert (
|
||||
self.args.giga_bucketing_sampler == False
|
||||
), "For GigaSpeech L/XL, you must use --bucketing-sampler 0 to avoid eagerly reading pyarrow manifests."
|
||||
# compute_and_store_features_batch is efficient for L/XL subsets.
|
||||
# if not self.args.giga_on_the_fly_feats:
|
||||
# warnings.warn(
|
||||
# "For GigaSpeech L/XL, we advise to set --on-the-fly-feats 1,"
|
||||
# " as we do not pre-compute them by default. If you pre-computed them,"
|
||||
# " ignore this warning."
|
||||
# )
|
||||
|
||||
def train_dataloaders(self) -> DataLoader:
|
||||
self.validate_args()
|
||||
logging.info("About to get train cuts")
|
||||
cuts_train = self.train_cuts()
|
||||
self.total_train_cuts = len(cuts_train)
|
||||
self.consumed_cuts = 0
|
||||
|
||||
logging.info("About to get Musan cuts")
|
||||
cuts_musan = load_manifest(self.args.giga_feature_dir / "cuts_musan.json.gz")
|
||||
|
||||
logging.info("About to create train dataset")
|
||||
transforms = [CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20))]
|
||||
if self.args.giga_concatenate_cuts:
|
||||
logging.info(
|
||||
f"Using cut concatenation with duration factor "
|
||||
f"{self.args.giga_duration_factor} and gap {self.args.giga_gap}."
|
||||
)
|
||||
# Cut concatenation should be the first transform in the list,
|
||||
# so that if we e.g. mix noise in, it will fill the gaps between different utterances.
|
||||
transforms = [
|
||||
CutConcatenate(
|
||||
duration_factor=self.args.giga_duration_factor, gap=self.args.giga_gap
|
||||
)
|
||||
] + transforms
|
||||
|
||||
train = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
return_cuts=self.args.giga_return_cuts,
|
||||
)
|
||||
|
||||
if self.args.giga_on_the_fly_feats:
|
||||
# NOTE: the PerturbSpeed transform should be added only if we remove it from data prep stage.
|
||||
# # Add on-the-fly speed perturbation; since originally it would have increased epoch
|
||||
# # size by 3, we will apply prob 2/3 and use 3x more epochs.
|
||||
# # Speed perturbation probably should come first before concatenation,
|
||||
# # but in principle the transforms order doesn't have to be strict (e.g. could be randomized)
|
||||
# transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2 / 3)] + transforms
|
||||
train = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
input_strategy=OnTheFlyFeatures(
|
||||
# To avoid unexpected GPU OOM issue during training,
|
||||
# I think using the cpu version is safer
|
||||
# KaldifeatFbank(KaldifeatFbankConfig(device='cuda')),
|
||||
KaldifeatFbank(KaldifeatFbankConfig()),
|
||||
num_workers=self.args.giga_num_workers_inner,
|
||||
),
|
||||
return_cuts=self.args.giga_return_cuts,
|
||||
)
|
||||
|
||||
if self.args.giga_bucketing_sampler:
|
||||
logging.info("Using BucketingSampler.")
|
||||
train_sampler = BucketingSampler(
|
||||
cuts_train,
|
||||
max_duration=self.args.giga_max_duration,
|
||||
shuffle=self.args.giga_shuffle,
|
||||
num_buckets=self.args.giga_num_buckets,
|
||||
)
|
||||
else:
|
||||
logging.info("Using SingleCutSampler.")
|
||||
train_sampler = SingleCutSampler(
|
||||
cuts_train,
|
||||
max_duration=self.args.giga_max_duration,
|
||||
shuffle=self.args.giga_shuffle,
|
||||
)
|
||||
logging.info("About to create train dataloader")
|
||||
# train_dl = DataLoader(
|
||||
# train,
|
||||
# sampler=train_sampler,
|
||||
# batch_size=None,
|
||||
# num_workers=16,
|
||||
# persistent_workers=True,
|
||||
# )
|
||||
train_dl = LhotseDataLoader(
|
||||
train,
|
||||
sampler=train_sampler,
|
||||
num_workers=self.args.giga_num_workers,
|
||||
prefetch_factor=5,
|
||||
)
|
||||
return train_dl
|
||||
|
||||
def valid_dataloaders(self) -> DataLoader:
|
||||
self.validate_args()
|
||||
logging.info("About to get dev cuts")
|
||||
cuts_valid = self.valid_cuts()
|
||||
|
||||
transforms = []
|
||||
if self.args.giga_concatenate_cuts:
|
||||
transforms = [
|
||||
CutConcatenate(
|
||||
duration_factor=self.args.giga_duration_factor, gap=self.args.giga_gap
|
||||
)
|
||||
] + transforms
|
||||
|
||||
logging.info("About to create dev dataset")
|
||||
if self.args.giga_on_the_fly_feats:
|
||||
validate = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
input_strategy=OnTheFlyFeatures(
|
||||
# To avoid unexpected GPU OOM issue during training,
|
||||
# I think using the cpu version is safer
|
||||
# KaldifeatFbank(KaldifeatFbankConfig(device='cuda')), num_workers=8
|
||||
KaldifeatFbank(KaldifeatFbankConfig()), num_workers=8
|
||||
),
|
||||
return_cuts=self.args.giga_return_cuts,
|
||||
)
|
||||
else:
|
||||
validate = K2SpeechRecognitionDataset(
|
||||
cut_transforms=transforms,
|
||||
return_cuts=self.args.giga_return_cuts,
|
||||
)
|
||||
valid_sampler = SingleCutSampler(
|
||||
cuts_valid,
|
||||
max_duration=self.args.giga_max_duration,
|
||||
shuffle=False,
|
||||
)
|
||||
logging.info("About to create dev dataloader")
|
||||
# valid_dl = DataLoader(
|
||||
# validate,
|
||||
# sampler=valid_sampler,
|
||||
# batch_size=None,
|
||||
# num_workers=8,
|
||||
# persistent_workers=True,
|
||||
# )
|
||||
valid_dl = LhotseDataLoader(
|
||||
validate,
|
||||
sampler=valid_sampler,
|
||||
num_workers=2,
|
||||
)
|
||||
return valid_dl
|
||||
|
||||
def test_dataloaders(self) -> Union[DataLoader, List[DataLoader]]:
|
||||
self.validate_args()
|
||||
cuts = self.test_cuts()
|
||||
is_list = isinstance(cuts, list)
|
||||
test_loaders = []
|
||||
if not is_list:
|
||||
cuts = [cuts]
|
||||
|
||||
for cuts_test in cuts:
|
||||
logging.debug("About to create test dataset")
|
||||
test = K2SpeechRecognitionDataset(
|
||||
input_strategy=(
|
||||
# To avoid unexpected GPU OOM issue during training,
|
||||
# I think using the cpu version is safer
|
||||
# OnTheFlyFeatures(KaldifeatFbank(KaldifeatFbankConfig(device='cuda')), num_workers=8)
|
||||
OnTheFlyFeatures(KaldifeatFbank(KaldifeatFbankConfig()), num_workers=8)
|
||||
if self.args.giga_on_the_fly_feats
|
||||
else PrecomputedFeatures()
|
||||
),
|
||||
return_cuts=self.args.giga_return_cuts,
|
||||
)
|
||||
sampler = SingleCutSampler(cuts_test, max_duration=self.args.giga_max_duration)
|
||||
logging.debug("About to create test dataloader")
|
||||
# test_dl = DataLoader(test, batch_size=None, sampler=sampler, num_workers=1)
|
||||
test_dl = LhotseDataLoader(test, sampler=sampler, num_workers=2)
|
||||
test_loaders.append(test_dl)
|
||||
|
||||
if is_list:
|
||||
return test_loaders
|
||||
else:
|
||||
return test_loaders[0]
|
||||
|
||||
@lru_cache()
|
||||
def train_cuts(self) -> CutSet:
|
||||
logging.info("About to get train cuts")
|
||||
path = (
|
||||
self.args.giga_feature_dir
|
||||
/ f"gigaspeech_cuts_{self.args.giga_subset}{get_context_suffix(self.args)}.jsonl.gz"
|
||||
)
|
||||
if self.args.giga_subset in ["L", "XL"]:
|
||||
# "L" and "XL" partitions are large enough that we have to read their manifests lazily;
|
||||
# The "CutSet" holds a file handle and reads the items sequentially on-the-fly to avoid
|
||||
# wasting memory and time pre-reading everything. Some operations on "CutSet" won't work,
|
||||
# e.g. shuffling (or they would have read everything into memory in the process).
|
||||
# We expect that the manifests read lazily are pre-shuffled, otherwise you might experience
|
||||
# issues with convergence.
|
||||
cuts_train = CutSet.from_jsonl_lazy(path)
|
||||
else:
|
||||
# For other subsets, just read everything into memory.
|
||||
cuts_train = CutSet.from_file(path)
|
||||
return cuts_train
|
||||
|
||||
@lru_cache()
|
||||
def valid_cuts(self) -> CutSet:
|
||||
if self.args.giga_use_context_for_test:
|
||||
path = (
|
||||
self.args.giga_feature_dir
|
||||
/ f"gigaspeech_cuts_DEV{get_context_suffix(self.args)}.jsonl.gz"
|
||||
)
|
||||
else:
|
||||
path = self.args.giga_feature_dir / f"gigaspeech_cuts_DEV.jsonl.gz"
|
||||
logging.info(f"About to get valid cuts from {path}")
|
||||
cuts_valid = load_manifest(path)
|
||||
if self.args.giga_small_dev:
|
||||
return cuts_valid.subset(first=1000)
|
||||
else:
|
||||
return cuts_valid
|
||||
|
||||
@lru_cache()
|
||||
def test_cuts(self) -> CutSet:
|
||||
if self.args.giga_use_context_for_test:
|
||||
path = (
|
||||
self.args.giga_feature_dir
|
||||
/ f"gigaspeech_cuts_TEST{get_context_suffix(self.args)}.jsonl.gz"
|
||||
)
|
||||
else:
|
||||
path = self.args.giga_feature_dir / f"gigaspeech_cuts_TEST.jsonl.gz"
|
||||
logging.info(f"About to get test cuts from {path}")
|
||||
cuts_test = load_manifest(path)
|
||||
return cuts_test
|
||||
|
||||
def inexhaustible_train_dataloaders(self):
|
||||
return self
|
||||
|
||||
def __iter__(self):
|
||||
# work horse for inexhuastible_train_dataloaders
|
||||
while True:
|
||||
# self.total_train_cuts == 0 for the first run
|
||||
# self.consumed_cuts == self.total_train_cuts for recreating dataloader
|
||||
if self.total_train_cuts == 0 or self.consumed_cuts == self.total_train_cuts:
|
||||
self.train_dl = self.train_dataloaders()
|
||||
self.consumed_cuts = 0
|
||||
|
||||
for batch in self.train_dl:
|
||||
self.consumed_cuts += len(batch["supervisions"]["text"])
|
||||
yield batch
|
28
egs/librispeech/ASR/example_giga_dataloader.py
Normal file
28
egs/librispeech/ASR/example_giga_dataloader.py
Normal file
@ -0,0 +1,28 @@
|
||||
import argparse
|
||||
import json
|
||||
from pathlib import Path
|
||||
|
||||
from gigaspeech_datamodule import GigaSpeechAsrDataModule
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
group = parser.add_argument_group(title='libri related options')
|
||||
group.add_argument(
|
||||
'--max-duration',
|
||||
type=int,
|
||||
default=500.0,
|
||||
help="Maximum pooled recordings duration (seconds) in a single batch.")
|
||||
return parser
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = get_parser()
|
||||
GigaSpeechAsrDataModule.add_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
gigaspeech = GigaSpeechAsrDataModule(args)
|
||||
train_dl = gigaspeech.inexhaustible_train_dataloaders()
|
||||
for idx, batch in enumerate(train_dl):
|
||||
print(batch["inputs"].shape)
|
||||
print(len(batch["supervisions"]["text"]))
|
||||
print(batch["supervisions"]["text"][0:2])
|
313
egs/librispeech/ASR/prepare_gigaspeech.py
Executable file
313
egs/librispeech/ASR/prepare_gigaspeech.py
Executable file
@ -0,0 +1,313 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
# Copyright (c) 2021 Johns Hopkins University (Piotr Żelasko)
|
||||
# Apache 2.0
|
||||
import argparse
|
||||
import os
|
||||
import re
|
||||
import subprocess
|
||||
import sys
|
||||
from contextlib import contextmanager
|
||||
from pathlib import Path
|
||||
from functools import partial
|
||||
|
||||
import torch
|
||||
|
||||
from gigaspeech_datamodule import get_context_suffix
|
||||
from lhotse import (
|
||||
CutSet,
|
||||
KaldifeatFbank,
|
||||
KaldifeatFbankConfig,
|
||||
LilcomHdf5Writer,
|
||||
SupervisionSegment,
|
||||
combine,
|
||||
)
|
||||
from lhotse.recipes import prepare_gigaspeech, prepare_musan
|
||||
from icefall.utils import str2bool
|
||||
|
||||
# Torch's multithreaded behavior needs to be disabled or it wastes a lot of CPU and
|
||||
# slow things down. Do this outside of main() in case it needs to take effect
|
||||
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
||||
torch.set_num_threads(1)
|
||||
torch.set_num_interop_threads(1)
|
||||
|
||||
|
||||
@contextmanager
|
||||
def get_executor():
|
||||
# We'll either return a process pool or a distributed worker pool.
|
||||
# Note that this has to be a context manager because we might use multiple
|
||||
# context manager ("with" clauses) inside, and this way everything will
|
||||
# free up the resources at the right time.
|
||||
try:
|
||||
# If this is executed on the CLSP grid, we will try to use the
|
||||
# Grid Engine to distribute the tasks.
|
||||
# Other clusters can also benefit from that, provided a cluster-specific wrapper.
|
||||
# (see https://github.com/pzelasko/plz for reference)
|
||||
#
|
||||
# The following must be installed:
|
||||
# $ pip install dask distributed
|
||||
# $ pip install git+https://github.com/pzelasko/plz
|
||||
name = subprocess.check_output("hostname -f", shell=True, text=True)
|
||||
if name.strip().endswith(".clsp.jhu.edu"):
|
||||
import plz
|
||||
from distributed import Client
|
||||
|
||||
with plz.setup_cluster() as cluster:
|
||||
cluster.scale(80)
|
||||
yield Client(cluster)
|
||||
return
|
||||
except:
|
||||
pass
|
||||
# No need to return anything - compute_and_store_features
|
||||
# will just instantiate the pool itself.
|
||||
yield None
|
||||
|
||||
|
||||
def locate_corpus(*corpus_dirs):
|
||||
for d in corpus_dirs:
|
||||
if os.path.exists(d):
|
||||
return d
|
||||
print(
|
||||
"Please create a place on your system to put the downloaded Librispeech data "
|
||||
"and add it to `corpus_dirs`"
|
||||
)
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
def get_parser():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
parser.add_argument(
|
||||
"--num-jobs",
|
||||
type=int,
|
||||
default=min(15, os.cpu_count()),
|
||||
help="Number of parallel jobs.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--subset",
|
||||
type=str,
|
||||
default="XS",
|
||||
help="Select the GigaSpeech subset (XS|S|M|L|XL)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--context-window",
|
||||
type=float,
|
||||
default=0.0,
|
||||
help="Training cut duration in seconds. "
|
||||
"Use 0 to train on supervision segments without acoustic context, with variable cut lengths; "
|
||||
"number larger than zero will create multi-supervisions cuts with actual acoustic context. ",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--context-direction",
|
||||
type=str,
|
||||
default="center",
|
||||
help="If context-window is 0, does nothing. "
|
||||
"If it's larger than 0, determines in which direction (relative to the supervision) "
|
||||
"to seek for extra acoustic context. Available values: (left|right|center|random).",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--precomputed-features",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="Should we pre-compute features and store them on disk or not. "
|
||||
"It is recommended to disable it for L and XL splits as the pre-computation "
|
||||
"might currently consume excessive memory and time -- use on-the-fly feature "
|
||||
"extraction in the training script instead.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--num-workers",
|
||||
type=int,
|
||||
default=4,
|
||||
help="Number of workers for compute_and_store_features_batch.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--batch-duration",
|
||||
type=float,
|
||||
default=600.0,
|
||||
help="The maximum number of audio seconds in a batch"
|
||||
"for compute_and_store_features_batch.",
|
||||
)
|
||||
return parser
|
||||
|
||||
|
||||
# Similar text filtering and normalization procedure as in:
|
||||
# https://github.com/SpeechColab/GigaSpeech/blob/main/toolkits/kaldi/gigaspeech_data_prep.sh
|
||||
|
||||
|
||||
def normalize_text(
|
||||
utt: str,
|
||||
punct_pattern=re.compile(r"<(COMMA|PERIOD|QUESTIONMARK|EXCLAMATIONPOINT)>"),
|
||||
whitespace_pattern=re.compile(r"\s\s+"),
|
||||
) -> str:
|
||||
return whitespace_pattern.sub(" ", punct_pattern.sub("", utt))
|
||||
|
||||
|
||||
def has_no_oov(
|
||||
sup: SupervisionSegment, oov_pattern=re.compile(r"<(SIL|MUSIC|NOISE|OTHER)>")
|
||||
) -> bool:
|
||||
return oov_pattern.search(sup.text) is None
|
||||
|
||||
|
||||
def main():
|
||||
args = get_parser().parse_args()
|
||||
dataset_parts = [args.subset, "DEV", "TEST"]
|
||||
|
||||
print("Parts we will prepare: ", dataset_parts)
|
||||
|
||||
corpus_dir = locate_corpus(
|
||||
Path("/export/corpora5/gigaspeech"),
|
||||
Path("/exp/pzelasko/gigaspeech"),
|
||||
Path("/home/storage07/zhangjunbo/data/GigaSpeech")
|
||||
)
|
||||
musan_dir = locate_corpus(
|
||||
Path("/export/corpora5/JHU/musan"),
|
||||
Path("/export/common/data/corpora/MUSAN/musan"),
|
||||
Path("/root/fangjun/data/musan"),
|
||||
)
|
||||
|
||||
output_dir = Path("exp/giga_data")
|
||||
print("GigaSpeech manifest preparation:")
|
||||
gigaspeech_manifests = prepare_gigaspeech(
|
||||
corpus_dir=corpus_dir,
|
||||
dataset_parts=dataset_parts,
|
||||
output_dir=output_dir,
|
||||
num_jobs=args.num_jobs,
|
||||
)
|
||||
|
||||
print("Musan manifest preparation:")
|
||||
musan_cuts_path = output_dir / "cuts_musan.json.gz"
|
||||
musan_manifests = prepare_musan(
|
||||
corpus_dir=musan_dir, output_dir=output_dir, parts=("music", "speech", "noise")
|
||||
)
|
||||
|
||||
ctx_suffix = get_context_suffix(args, subparser=False)
|
||||
|
||||
print("Feature extraction:")
|
||||
# extractor = Fbank(FbankConfig(num_mel_bins=80))
|
||||
extractor = KaldifeatFbank(KaldifeatFbankConfig(device='cuda')) # default config uses 80 mel bins already
|
||||
with get_executor() as ex: # Initialize the executor only once.
|
||||
for partition, manifests in gigaspeech_manifests.items():
|
||||
raw_cuts_path = output_dir / f"gigaspeech_cuts_{partition}_raw.jsonl.gz"
|
||||
cuts_path = (
|
||||
output_dir / f"gigaspeech_cuts_{partition}{ctx_suffix}.jsonl.gz"
|
||||
)
|
||||
|
||||
if raw_cuts_path.is_file():
|
||||
print(f"{partition} already exists - skipping feature extraction.")
|
||||
else:
|
||||
# Note this step makes the recipe different than LibriSpeech:
|
||||
# We must filter out some utterances and remove punctuation to be consistent with Kaldi.
|
||||
print("Filtering OOV utterances from supervisions")
|
||||
manifests["supervisions"] = manifests["supervisions"].filter(has_no_oov)
|
||||
print("Normalizing text in", partition)
|
||||
for sup in manifests["supervisions"]:
|
||||
sup.text = normalize_text(sup.text)
|
||||
|
||||
# Create long-recording cut manifests.
|
||||
print("Processing", partition)
|
||||
cut_set = CutSet.from_manifests(
|
||||
recordings=manifests["recordings"],
|
||||
supervisions=manifests["supervisions"],
|
||||
)
|
||||
|
||||
# Run data augmentation that needs to be done in the time domain.
|
||||
if partition not in ["DEV", "TEST"]:
|
||||
cut_set = (
|
||||
cut_set
|
||||
+ cut_set.perturb_speed(0.9)
|
||||
+ cut_set.perturb_speed(1.1)
|
||||
)
|
||||
|
||||
cut_set.to_file(raw_cuts_path)
|
||||
|
||||
if cuts_path.is_file():
|
||||
print(
|
||||
f"{partition} already exists - skipping cutting into sub-segments."
|
||||
)
|
||||
else:
|
||||
try:
|
||||
# If we skipped initializing `cut_set` because it exists on disk, we'll load it.
|
||||
# This helps us avoid re-computing the features for different variants of
|
||||
# context windows.
|
||||
cut_set
|
||||
except NameError:
|
||||
print(f"Reading {partition} raw cuts from disk.")
|
||||
cut_set = CutSet.from_file(raw_cuts_path)
|
||||
# Note this step makes the recipe different than LibriSpeech:
|
||||
# Since recordings are long, the initial CutSet has very long cuts with a plenty of supervisions.
|
||||
# We cut these into smaller chunks centered around each supervision, possibly adding acoustic
|
||||
# context.
|
||||
print(f"About to split {partition} raw cuts into smaller chunks.")
|
||||
cut_set = cut_set.trim_to_supervisions(
|
||||
keep_overlapping=False,
|
||||
min_duration=None
|
||||
if args.context_window <= 0.0
|
||||
else args.context_window,
|
||||
context_direction=args.context_direction,
|
||||
)
|
||||
if partition in ["L", "XL"]:
|
||||
# Before storing manifests in, we want to pre-shuffle them,
|
||||
# as the sampler won't be able to do it later in an efficient manner.
|
||||
cut_set = cut_set.shuffle()
|
||||
|
||||
if args.precomputed_features:
|
||||
# Extract the features after cutting large recordings into smaller cuts.
|
||||
# Note: we support very efficient "chunked" feature reads with the argument
|
||||
# `storage_type=ChunkedLilcomHdf5Writer`, but we don't support efficient
|
||||
# data augmentation and feature computation for long recordings yet.
|
||||
# Therefore, we sacrifice some storage for the ability to precompute
|
||||
# features on shorter chunks, without memory blow-ups.
|
||||
# cut_set = cut_set.compute_and_store_features(
|
||||
# extractor=extractor,
|
||||
# storage_path=f"{output_dir}/feats_gigaspeech_{partition}",
|
||||
# # when an executor is specified, make more partitions
|
||||
# num_jobs=args.num_jobs if ex is None else 80,
|
||||
# executor=ex,
|
||||
# )
|
||||
cut_set = cut_set.compute_and_store_features_batch(
|
||||
extractor=extractor,
|
||||
storage_path=f"{output_dir}/feats_gigaspeech_{partition}",
|
||||
batch_duration=args.batch_duration,
|
||||
num_workers=args.num_workers,
|
||||
storage_type=partial(LilcomHdf5Writer, tick_power=-3),
|
||||
)
|
||||
|
||||
|
||||
cut_set.to_file(cuts_path)
|
||||
|
||||
# Remove cut_set so the next iteration can correctly infer whether it needs to
|
||||
# load the raw cuts from disk or not.
|
||||
del cut_set
|
||||
|
||||
# Now onto Musan
|
||||
if not musan_cuts_path.is_file():
|
||||
print("Extracting features for Musan")
|
||||
# create chunks of Musan with duration 5 - 10 seconds
|
||||
musan_cuts = (
|
||||
CutSet.from_manifests(
|
||||
recordings=combine(
|
||||
part["recordings"] for part in musan_manifests.values()
|
||||
)
|
||||
)
|
||||
.cut_into_windows(10.0)
|
||||
.filter(lambda c: c.duration > 5)
|
||||
.compute_and_store_features_batch(
|
||||
extractor=extractor,
|
||||
storage_path=f"{output_dir}/feats_musan",
|
||||
batch_duration=args.batch_duration,
|
||||
num_workers=args.num_workers,
|
||||
)
|
||||
# .compute_and_store_features(
|
||||
# extractor=extractor,
|
||||
# storage_path=f"{output_dir}/feats_musan",
|
||||
# num_jobs=args.num_jobs if ex is None else 80,
|
||||
# executor=ex,
|
||||
# storage_type=LilcomHdf5Writer,
|
||||
# )
|
||||
)
|
||||
musan_cuts.to_file(musan_cuts_path)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
x
Reference in New Issue
Block a user