Use a stateless decoder for transducer_lstm.

This commit is contained in:
Fangjun Kuang 2022-04-21 13:58:43 +08:00
parent 3607c516d6
commit 52b3ed2920
7 changed files with 140 additions and 384 deletions

View File

@ -14,7 +14,7 @@ The following table lists the differences among them.
| `transducer` | Conformer | LSTM | |
| `transducer_stateless` | Conformer | Embedding + Conv1d | Using optimized_transducer from computing RNN-T loss |
| `transducer_stateless2` | Conformer | Embedding + Conv1d | Using torchaudio for computing RNN-T loss |
| `transducer_lstm` | LSTM | LSTM | |
| `transducer_lstm` | LSTM | Embedding + Conv1d | Using torchaudio for computing RNN-T loss |
| `transducer_stateless_multi_datasets` | Conformer | Embedding + Conv1d | Using data from GigaSpeech as extra training data |
| `pruned_transducer_stateless` | Conformer | Embedding + Conv1d | Using k2 pruned RNN-T loss |
| `pruned_transducer_stateless2` | Conformer(modified) | Embedding + Conv1d | Using k2 pruned RNN-T loss |

View File

@ -1,222 +0,0 @@
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple
import torch
from model import Transducer
def greedy_search(model: Transducer, encoder_out: torch.Tensor) -> List[int]:
"""
Args:
model:
An instance of `Transducer`.
encoder_out:
A tensor of shape (N, T, C) from the encoder. Support only N==1 for now.
Returns:
Return the decoded result.
"""
assert encoder_out.ndim == 3
# support only batch_size == 1 for now
assert encoder_out.size(0) == 1, encoder_out.size(0)
blank_id = model.decoder.blank_id
device = model.device
sos = torch.tensor([blank_id], device=device, dtype=torch.int64).reshape(
1, 1
)
decoder_out, (h, c) = model.decoder(sos)
T = encoder_out.size(1)
t = 0
hyp = []
sym_per_frame = 0
sym_per_utt = 0
max_sym_per_utt = 1000
max_sym_per_frame = 3
while t < T and sym_per_utt < max_sym_per_utt:
# fmt: off
current_encoder_out = encoder_out[:, t:t+1, :]
# fmt: on
logits = model.joiner(current_encoder_out, decoder_out)
# logits is (1, 1, 1, vocab_size)
log_prob = logits.log_softmax(dim=-1)
# log_prob is (1, 1, 1, vocab_size)
# TODO: Use logits.argmax()
y = log_prob.argmax()
if y != blank_id:
hyp.append(y.item())
y = y.reshape(1, 1)
decoder_out, (h, c) = model.decoder(y, (h, c))
sym_per_utt += 1
sym_per_frame += 1
if y == blank_id or sym_per_frame > max_sym_per_frame:
sym_per_frame = 0
t += 1
return hyp
@dataclass
class Hypothesis:
ys: List[int] # the predicted sequences so far
log_prob: float # The log prob of ys
# Optional decoder state. We assume it is LSTM for now,
# so the state is a tuple (h, c)
decoder_state: Optional[Tuple[torch.Tensor, torch.Tensor]] = None
def beam_search(
model: Transducer,
encoder_out: torch.Tensor,
beam: int = 5,
) -> List[int]:
"""
It implements Algorithm 1 in https://arxiv.org/pdf/1211.3711.pdf
espnet/nets/beam_search_transducer.py#L247 is used as a reference.
Args:
model:
An instance of `Transducer`.
encoder_out:
A tensor of shape (N, T, C) from the encoder. Support only N==1 for now.
beam:
Beam size.
Returns:
Return the decoded result.
"""
assert encoder_out.ndim == 3
# support only batch_size == 1 for now
assert encoder_out.size(0) == 1, encoder_out.size(0)
blank_id = model.decoder.blank_id
sos_id = model.decoder.sos_id
device = model.device
sos = torch.tensor([blank_id], device=device).reshape(1, 1)
decoder_out, (h, c) = model.decoder(sos)
T = encoder_out.size(1)
t = 0
B = [Hypothesis(ys=[blank_id], log_prob=0.0, decoder_state=None)]
max_u = 20000 # terminate after this number of steps
u = 0
cache: Dict[
str, Tuple[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]
] = {}
while t < T and u < max_u:
# fmt: off
current_encoder_out = encoder_out[:, t:t+1, :]
# fmt: on
A = B
B = []
# for hyp in A:
# for h in A:
# if h.ys == hyp.ys[:-1]:
# # update the score of hyp
# decoder_input = torch.tensor(
# [h.ys[-1]], device=device
# ).reshape(1, 1)
# decoder_out, _ = model.decoder(
# decoder_input, h.decoder_state
# )
# logits = model.joiner(current_encoder_out, decoder_out)
# log_prob = logits.log_softmax(dim=-1)
# log_prob = log_prob.squeeze()
# hyp.log_prob += h.log_prob + log_prob[hyp.ys[-1]].item()
while u < max_u:
y_star = max(A, key=lambda hyp: hyp.log_prob)
A.remove(y_star)
# Note: y_star.ys is unhashable, i.e., cannot be used
# as a key into a dict
cached_key = "_".join(map(str, y_star.ys))
if cached_key not in cache:
decoder_input = torch.tensor(
[y_star.ys[-1]], device=device
).reshape(1, 1)
decoder_out, decoder_state = model.decoder(
decoder_input,
y_star.decoder_state,
)
cache[cached_key] = (decoder_out, decoder_state)
else:
decoder_out, decoder_state = cache[cached_key]
logits = model.joiner(current_encoder_out, decoder_out)
log_prob = logits.log_softmax(dim=-1)
# log_prob is (1, 1, 1, vocab_size)
log_prob = log_prob.squeeze()
# Now log_prob is (vocab_size,)
# If we choose blank here, add the new hypothesis to B.
# Otherwise, add the new hypothesis to A
# First, choose blank
skip_log_prob = log_prob[blank_id]
new_y_star_log_prob = y_star.log_prob + skip_log_prob.item()
# ys[:] returns a copy of ys
new_y_star = Hypothesis(
ys=y_star.ys[:],
log_prob=new_y_star_log_prob,
# Caution: Use y_star.decoder_state here
decoder_state=y_star.decoder_state,
)
B.append(new_y_star)
# Second, choose other labels
for i, v in enumerate(log_prob.tolist()):
if i in (blank_id, sos_id):
continue
new_ys = y_star.ys + [i]
new_log_prob = y_star.log_prob + v
new_hyp = Hypothesis(
ys=new_ys,
log_prob=new_log_prob,
decoder_state=decoder_state,
)
A.append(new_hyp)
u += 1
# check whether B contains more than "beam" elements more probable
# than the most probable in A
A_most_probable = max(A, key=lambda hyp: hyp.log_prob)
B = sorted(
[hyp for hyp in B if hyp.log_prob > A_most_probable.log_prob],
key=lambda hyp: hyp.log_prob,
reverse=True,
)
if len(B) >= beam:
B = B[:beam]
break
t += 1
best_hyp = max(B, key=lambda hyp: hyp.log_prob / len(hyp.ys[1:]))
ys = best_hyp.ys[1:] # [1:] to remove the blank
return ys

View File

@ -0,0 +1 @@
../transducer_stateless/beam_search.py

View File

@ -46,14 +46,15 @@ import sentencepiece as spm
import torch
import torch.nn as nn
from asr_datamodule import LibriSpeechAsrDataModule
from beam_search import beam_search, greedy_search
from decoder import Decoder
from encoder import LstmEncoder
from joiner import Joiner
from model import Transducer
from beam_search import (
beam_search,
greedy_search,
greedy_search_batch,
modified_beam_search,
)
from train import get_params, get_transducer_model
from icefall.checkpoint import average_checkpoints, load_checkpoint
from icefall.env import get_env_info
from icefall.utils import (
AttributeDict,
setup_logger,
@ -104,6 +105,7 @@ def get_parser():
help="""Possible values are:
- greedy_search
- beam_search
- modified_beam_search
""",
)
@ -114,76 +116,25 @@ def get_parser():
help="Used only when --decoding-method is beam_search",
)
parser.add_argument(
"--context-size",
type=int,
default=2,
help="The context size in the decoder. 1 means bigram; "
"2 means tri-gram",
)
parser.add_argument(
"--max-sym-per-frame",
type=int,
default=1,
help="""Maximum number of symbols per frame.
Used only when --decoding_method is greedy_search""",
)
return parser
def get_params() -> AttributeDict:
params = AttributeDict(
{
# parameters for conformer
"feature_dim": 80,
"encoder_out_dim": 512,
"subsampling_factor": 4,
"encoder_hidden_size": 1024,
"num_encoder_layers": 4,
"proj_size": 512,
"vgg_frontend": False,
# decoder params
"decoder_embedding_dim": 1024,
"num_decoder_layers": 4,
"decoder_hidden_dim": 512,
"env_info": get_env_info(),
}
)
return params
def get_encoder_model(params: AttributeDict):
encoder = LstmEncoder(
num_features=params.feature_dim,
hidden_size=params.encoder_hidden_size,
output_dim=params.encoder_out_dim,
subsampling_factor=params.subsampling_factor,
num_encoder_layers=params.num_encoder_layers,
vgg_frontend=params.vgg_frontend,
)
return encoder
def get_decoder_model(params: AttributeDict):
decoder = Decoder(
vocab_size=params.vocab_size,
embedding_dim=params.decoder_embedding_dim,
blank_id=params.blank_id,
sos_id=params.sos_id,
num_layers=params.num_decoder_layers,
hidden_dim=params.decoder_hidden_dim,
output_dim=params.encoder_out_dim,
)
return decoder
def get_joiner_model(params: AttributeDict):
joiner = Joiner(
input_dim=params.encoder_out_dim,
output_dim=params.vocab_size,
)
return joiner
def get_transducer_model(params: AttributeDict):
encoder = get_encoder_model(params)
decoder = get_decoder_model(params)
joiner = get_joiner_model(params)
model = Transducer(
encoder=encoder,
decoder=decoder,
joiner=joiner,
)
return model
def decode_one_batch(
params: AttributeDict,
model: nn.Module,
@ -228,24 +179,47 @@ def decode_one_batch(
encoder_out, encoder_out_lens = model.encoder(
x=feature, x_lens=feature_lens
)
hyps = []
batch_size = encoder_out.size(0)
hyp_list: List[List[int]] = []
for i in range(batch_size):
# fmt: off
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
# fmt: on
if params.decoding_method == "greedy_search":
hyp = greedy_search(model=model, encoder_out=encoder_out_i)
elif params.decoding_method == "beam_search":
hyp = beam_search(
model=model, encoder_out=encoder_out_i, beam=params.beam_size
)
else:
raise ValueError(
f"Unsupported decoding method: {params.decoding_method}"
)
hyps.append(sp.decode(hyp).split())
if (
params.decoding_method == "greedy_search"
and params.max_sym_per_frame == 1
):
hyp_list = greedy_search_batch(
model=model,
encoder_out=encoder_out,
)
elif params.decoding_method == "modified_beam_search":
hyp_list = modified_beam_search(
model=model,
encoder_out=encoder_out,
beam=params.beam_size,
)
else:
batch_size = encoder_out.size(0)
for i in range(batch_size):
# fmt: off
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
# fmt: on
if params.decoding_method == "greedy_search":
hyp = greedy_search(
model=model,
encoder_out=encoder_out_i,
max_sym_per_frame=params.max_sym_per_frame,
)
elif params.decoding_method == "beam_search":
hyp = beam_search(
model=model,
encoder_out=encoder_out_i,
beam=params.beam_size,
)
else:
raise ValueError(
f"Unsupported decoding method: {params.decoding_method}"
)
hyp_list.append(hyp)
hyps = [sp.decode(hyp).split() for hyp in hyp_list]
if params.decoding_method == "greedy_search":
return {"greedy_search": hyps}
@ -393,9 +367,8 @@ def main():
sp = spm.SentencePieceProcessor()
sp.load(params.bpe_model)
# <blk> and <sos/eos> are defined in local/train_bpe_model.py
# <blk> is defined in local/train_bpe_model.py
params.blank_id = sp.piece_to_id("<blk>")
params.sos_id = sp.piece_to_id("<sos/eos>")
params.vocab_size = sp.get_piece_size()
logging.info(params)

View File

@ -14,25 +14,30 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
# TODO(fangjun): Support switching between LSTM and GRU
class Decoder(nn.Module):
"""This class modifies the stateless decoder from the following paper:
RNN-transducer with stateless prediction network
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9054419
It removes the recurrent connection from the decoder, i.e., the prediction
network. Different from the above paper, it adds an extra Conv1d
right after the embedding layer.
TODO: Implement https://arxiv.org/pdf/2109.07513.pdf
"""
def __init__(
self,
vocab_size: int,
embedding_dim: int,
blank_id: int,
sos_id: int,
num_layers: int,
hidden_dim: int,
output_dim: int,
embedding_dropout: float = 0.0,
rnn_dropout: float = 0.0,
context_size: int,
):
"""
Args:
@ -42,18 +47,9 @@ class Decoder(nn.Module):
Dimension of the input embedding.
blank_id:
The ID of the blank symbol.
sos_id:
The ID of the SOS symbol.
num_layers:
Number of LSTM layers.
hidden_dim:
Hidden dimension of LSTM layers.
output_dim:
Output dimension of the decoder.
embedding_dropout:
Dropout rate for the embedding layer.
rnn_dropout:
Dropout for LSTM layers.
context_size:
Number of previous words to use to predict the next word.
1 means bigram; 2 means trigram. n means (n+1)-gram.
"""
super().__init__()
self.embedding = nn.Embedding(
@ -61,41 +57,42 @@ class Decoder(nn.Module):
embedding_dim=embedding_dim,
padding_idx=blank_id,
)
self.embedding_dropout = nn.Dropout(embedding_dropout)
# TODO(fangjun): Use layer normalized LSTM
self.rnn = nn.LSTM(
input_size=embedding_dim,
hidden_size=hidden_dim,
num_layers=num_layers,
batch_first=True,
dropout=rnn_dropout,
)
self.blank_id = blank_id
self.sos_id = sos_id
self.output_linear = nn.Linear(hidden_dim, output_dim)
def forward(
self,
y: torch.Tensor,
states: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
) -> Tuple[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
assert context_size >= 1, context_size
self.context_size = context_size
if context_size > 1:
self.conv = nn.Conv1d(
in_channels=embedding_dim,
out_channels=embedding_dim,
kernel_size=context_size,
padding=0,
groups=embedding_dim,
bias=False,
)
def forward(self, y: torch.Tensor, need_pad: bool = True) -> torch.Tensor:
"""
Args:
y:
A 2-D tensor of shape (N, U) with BOS prepended.
states:
A tuple of two tensors containing the states information of
LSTM layers in this decoder.
A 2-D tensor of shape (N, U).
need_pad:
True to left pad the input. Should be True during training.
False to not pad the input. Should be False during inference.
Returns:
Return a tuple containing:
- rnn_output, a tensor of shape (N, U, C)
- (h, c), containing the state information for LSTM layers.
Both are of shape (num_layers, N, C)
Return a tensor of shape (N, U, embedding_dim).
"""
embeding_out = self.embedding(y)
embeding_out = self.embedding_dropout(embeding_out)
rnn_out, (h, c) = self.rnn(embeding_out, states)
out = self.output_linear(rnn_out)
return out, (h, c)
embedding_out = self.embedding(y)
if self.context_size > 1:
embedding_out = embedding_out.permute(0, 2, 1)
if need_pad is True:
embedding_out = F.pad(
embedding_out, pad=(self.context_size - 1, 0)
)
else:
# During inference time, there is no need to do extra padding
# as we only need one output
assert embedding_out.size(-1) == self.context_size
embedding_out = self.conv(embedding_out)
embedding_out = embedding_out.permute(0, 2, 1)
return embedding_out

View File

@ -13,6 +13,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
from typing import Tuple
import torch
@ -87,7 +88,9 @@ class LstmEncoder(EncoderInterface):
x = self.encoder_embed(x)
# Caution: We assume the subsampling factor is 4!
lengths = ((x_lens - 1) // 2 - 1) // 2
with warnings.catch_warnings():
warnings.simplefilter("ignore")
lengths = ((x_lens - 1) // 2 - 1) // 2
assert x.size(1) == lengths.max().item(), (
x.size(1),
lengths.max(),

View File

@ -49,7 +49,7 @@ class Transducer(nn.Module):
decoder:
It is the prediction network in the paper. Its input shape
is (N, U) and its output shape is (N, U, C). It should contain
two attributes: `blank_id` and `sos_id`.
one attribute: `blank_id`.
joiner:
It has two inputs with shapes: (N, T, C) and (N, U, C). Its
output shape is (N, T, U, C). Note that its output contains
@ -58,7 +58,6 @@ class Transducer(nn.Module):
super().__init__()
assert isinstance(encoder, EncoderInterface)
assert hasattr(decoder, "blank_id")
assert hasattr(decoder, "sos_id")
self.encoder = encoder
self.decoder = decoder
@ -97,13 +96,12 @@ class Transducer(nn.Module):
y_lens = row_splits[1:] - row_splits[:-1]
blank_id = self.decoder.blank_id
sos_id = self.decoder.sos_id
sos_y = add_sos(y, sos_id=sos_id)
sos_y = add_sos(y, sos_id=blank_id)
sos_y_padded = sos_y.pad(mode="constant", padding_value=blank_id)
sos_y_padded = sos_y_padded.to(torch.int64)
decoder_out, _ = self.decoder(sos_y_padded)
decoder_out = self.decoder(sos_y_padded)
logits = self.joiner(encoder_out, decoder_out)

View File

@ -139,6 +139,14 @@ def get_parser():
help="The seed for random generators intended for reproducibility",
)
parser.add_argument(
"--context-size",
type=int,
default=2,
help="The context size in the decoder. 1 means bigram; "
"2 means tri-gram",
)
return parser
@ -235,15 +243,12 @@ def get_encoder_model(params: AttributeDict):
return encoder
def get_decoder_model(params: AttributeDict):
def get_decoder_model(params: AttributeDict) -> nn.Module:
decoder = Decoder(
vocab_size=params.vocab_size,
embedding_dim=params.decoder_embedding_dim,
embedding_dim=params.encoder_out_dim,
blank_id=params.blank_id,
sos_id=params.sos_id,
num_layers=params.num_decoder_layers,
hidden_dim=params.decoder_hidden_dim,
output_dim=params.encoder_out_dim,
context_size=params.context_size,
)
return decoder
@ -400,9 +405,11 @@ def compute_loss(
info = MetricsTracker()
with warnings.catch_warnings():
warnings.simplefilter("ignore")
info["frames"] = (
(feature_lens // params.subsampling_factor).sum().item()
)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
info["frames"] = (
(feature_lens // params.subsampling_factor).sum().item()
)
# Note: We use reduction=sum while computing the loss.
info["loss"] = loss.detach().cpu().item()
@ -580,9 +587,8 @@ def run(rank, world_size, args):
sp = spm.SentencePieceProcessor()
sp.load(params.bpe_model)
# <blk> and <sos/eos> are defined in local/train_bpe_model.py
# <blk> is defined in local/train_bpe_model.py
params.blank_id = sp.piece_to_id("<blk>")
params.sos_id = sp.piece_to_id("<sos/eos>")
params.vocab_size = sp.get_piece_size()
logging.info(params)