mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-09-11 18:14:19 +00:00
update RESULT.md about pruned_transducer_stateless4
This commit is contained in:
parent
fbbc24f941
commit
525c1ea277
@ -193,6 +193,86 @@ You can find a pretrained model, training logs, decoding logs, and decoding
|
|||||||
results at:
|
results at:
|
||||||
<https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless5-narrower-2022-05-13>
|
<https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless5-narrower-2022-05-13>
|
||||||
|
|
||||||
|
|
||||||
|
### LibriSpeech BPE training results (Pruned Transducer 4)
|
||||||
|
|
||||||
|
[pruned_transducer_stateless4](./pruned_transducer_stateless4)
|
||||||
|
This version saves averaged model during training, and decodes with averaged model.
|
||||||
|
See <https://github.com/k2-fsa/icefall/issues/337> for details about the idea of model averaging.
|
||||||
|
|
||||||
|
#### Training on full librispeech
|
||||||
|
|
||||||
|
See <https://github.com/k2-fsa/icefall/pull/344>
|
||||||
|
|
||||||
|
Using commit `ec0b0e92297cc03fdb09f48cd235e84d2c04156b`.
|
||||||
|
|
||||||
|
The WERs are:
|
||||||
|
|
||||||
|
| | test-clean | test-other | comment |
|
||||||
|
|-------------------------------------|------------|------------|-------------------------------------------------------------------------------|
|
||||||
|
| greedy search (max sym per frame 1) | 2.77 | 6.78 | --epoch 30 --avg 5 --use_averaged_model False |
|
||||||
|
| greedy search (max sym per frame 1) | 2.72 | 6.67 | --epoch 30 --avg 5 --use_averaged_model True |
|
||||||
|
| greedy search (max sym per frame 1) | 2.78 | 6.68 | --epoch 30 --avg 10 --use_averaged_model False |
|
||||||
|
| greedy search (max sym per frame 1) | 2.74 | 6.67 | --epoch 30 --avg 10 --use_averaged_model True |
|
||||||
|
| fast beam search | 2.73 | 6.65 | --epoch 30 --avg 5 --use_averaged_model False |
|
||||||
|
| fast beam search | 2.69 | 6.61 | --epoch 30 --avg 5 --use_averaged_model True |
|
||||||
|
| fast beam search | 2.68 | 6.61 | --epoch 30 --avg 10 --use_averaged_model False |
|
||||||
|
| fast beam search | 2.7 | 6.57 | --epoch 30 --avg 10 --use_averaged_model True |
|
||||||
|
| modified beam search | 2.71 | 6.69 | --epoch 30 --avg 5 --use_averaged_model False |
|
||||||
|
| modified beam search | 2.65 | 6.6 | --epoch 30 --avg 5 --use_averaged_model True |
|
||||||
|
| modified beam search | 2.69 | 6.61 | --epoch 30 --avg 10 --use_averaged_model False |
|
||||||
|
| modified beam search | 2.68 | 6.56 | --epoch 30 --avg 10 --use_averaged_model True |
|
||||||
|
|
||||||
|
The training command is:
|
||||||
|
|
||||||
|
./pruned_transducer_stateless4/train.py \
|
||||||
|
--world-size 6 \
|
||||||
|
--num-epochs 30 \
|
||||||
|
--start-epoch 1 \
|
||||||
|
--exp-dir pruned_transducer_stateless4/exp \
|
||||||
|
--full-libri 1 \
|
||||||
|
--max-duration 300 \
|
||||||
|
--save-every-n 8000 \
|
||||||
|
--keep-last-k 20 \
|
||||||
|
--average-period 100
|
||||||
|
|
||||||
|
#### Training on train-clean-100
|
||||||
|
|
||||||
|
See <https://github.com/k2-fsa/icefall/pull/344>
|
||||||
|
|
||||||
|
Using commit `ec0b0e92297cc03fdb09f48cd235e84d2c04156b`.
|
||||||
|
|
||||||
|
The WERs are:
|
||||||
|
|
||||||
|
| | test-clean | test-other | comment |
|
||||||
|
|-------------------------------------|------------|------------|-------------------------------------------------------------------------------|
|
||||||
|
| greedy search (max sym per frame 1) | 7.13 | 19.31 | --epoch 30 --avg 5 --use_averaged_model False |
|
||||||
|
| greedy search (max sym per frame 1) | 7.03 | 18.84 | --epoch 30 --avg 5 --use_averaged_model True |
|
||||||
|
| greedy search (max sym per frame 1) | 7.0 | 18.95 | --epoch 30 --avg 10 --use_averaged_model False |
|
||||||
|
| greedy search (max sym per frame 1) | 6.92 | 18.65 | --epoch 30 --avg 10 --use_averaged_model True |
|
||||||
|
| fast beam search | 6.96 | 18.78 | --epoch 30 --avg 5 --use_averaged_model False |
|
||||||
|
| fast beam search | 6.88 | 18.43 | --epoch 30 --avg 5 --use_averaged_model True |
|
||||||
|
| fast beam search | 6.82 | 18.47 | --epoch 30 --avg 10 --use_averaged_model False |
|
||||||
|
| fast beam search | 6.74 | 18.2 | --epoch 30 --avg 10 --use_averaged_model True |
|
||||||
|
| modified beam search | 6.86 | 18.76 | --epoch 30 --avg 5 --use_averaged_model False |
|
||||||
|
| modified beam search | 6.83 | 18.31 | --epoch 30 --avg 5 --use_averaged_model True |
|
||||||
|
| modified beam search | 6.74 | 18.39 | --epoch 30 --avg 10 --use_averaged_model False |
|
||||||
|
| modified beam search | 6.74 | 18.12 | --epoch 30 --avg 10 --use_averaged_model True |
|
||||||
|
|
||||||
|
The training command is:
|
||||||
|
|
||||||
|
./pruned_transducer_stateless4/train.py \
|
||||||
|
--world-size 3 \
|
||||||
|
--num-epochs 30 \
|
||||||
|
--start-epoch 1 \
|
||||||
|
--exp-dir pruned_transducer_stateless4/exp \
|
||||||
|
--full-libri 0 \
|
||||||
|
--max-duration 300 \
|
||||||
|
--save-every-n 8000 \
|
||||||
|
--keep-last-k 20 \
|
||||||
|
--average-period 100
|
||||||
|
|
||||||
|
|
||||||
### LibriSpeech BPE training results (Pruned Stateless Transducer 3, 2022-04-29)
|
### LibriSpeech BPE training results (Pruned Stateless Transducer 3, 2022-04-29)
|
||||||
|
|
||||||
[pruned_transducer_stateless3](./pruned_transducer_stateless3)
|
[pruned_transducer_stateless3](./pruned_transducer_stateless3)
|
||||||
|
Loading…
x
Reference in New Issue
Block a user