mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-26 18:24:18 +00:00
update ctc-decoding for pretrained.py on conformer_ctc
This commit is contained in:
parent
7fd9d291f3
commit
524afc02ba
@ -448,7 +448,7 @@ After downloading, you will have the following files:
|
||||
**File descriptions**:
|
||||
- ``data/lang_bpe/Linv.pt``
|
||||
|
||||
It is the lexicon file.
|
||||
It is the lexicon file, with word IDs as labels and token IDs as aux_labels.
|
||||
|
||||
- ``data/lang_bpe/HLG.pt``
|
||||
|
||||
@ -530,7 +530,7 @@ Usage
|
||||
|
||||
displays the help information.
|
||||
|
||||
It supports three decoding methods:
|
||||
It supports 4 decoding methods:
|
||||
|
||||
- CTC decoding
|
||||
- HLG decoding
|
||||
|
@ -57,16 +57,14 @@ def get_parser():
|
||||
parser.add_argument(
|
||||
"--words-file",
|
||||
type=str,
|
||||
default="./tmp/icefall_asr_librispeech_conformer_ctc/ \
|
||||
data/lang_bpe/words.txt",
|
||||
required=True,
|
||||
help="Path to words.txt",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--HLG",
|
||||
type=str,
|
||||
default="./tmp/icefall_asr_librispeech_conformer_ctc/ \
|
||||
data/lang_bpe/HLG.pt",
|
||||
required=True,
|
||||
help="Path to HLG.pt.",
|
||||
)
|
||||
|
||||
@ -172,8 +170,7 @@ def get_parser():
|
||||
parser.add_argument(
|
||||
"--lang-dir",
|
||||
type=str,
|
||||
default="./tmp/icefall_asr_librispeech_conformer_ctc/ \
|
||||
data/lang_bpe",
|
||||
required=True,
|
||||
help="Path to lang bpe dir.",
|
||||
)
|
||||
|
||||
@ -302,6 +299,7 @@ def main():
|
||||
dtype=torch.int32,
|
||||
)
|
||||
|
||||
try:
|
||||
if params.method == "ctc-decoding":
|
||||
logging.info("Building CTC topology")
|
||||
lexicon = Lexicon(params.lang_dir)
|
||||
@ -335,7 +333,11 @@ def main():
|
||||
hyps = bpe_model.decode(token_ids)
|
||||
hyps = [s.split() for s in hyps]
|
||||
|
||||
else:
|
||||
if params.method in [
|
||||
"1best",
|
||||
"whole-lattice-rescoring",
|
||||
"attention-decoder",
|
||||
]:
|
||||
logging.info(f"Loading HLG from {params.HLG}")
|
||||
HLG = k2.Fsa.from_dict(torch.load(params.HLG, map_location="cpu"))
|
||||
HLG = HLG.to(device)
|
||||
@ -343,7 +345,10 @@ def main():
|
||||
# For whole-lattice-rescoring and attention-decoder
|
||||
HLG.lm_scores = HLG.scores.clone()
|
||||
|
||||
if params.method in ["whole-lattice-rescoring", "attention-decoder"]:
|
||||
if params.method in [
|
||||
"whole-lattice-rescoring",
|
||||
"attention-decoder",
|
||||
]:
|
||||
logging.info(f"Loading G from {params.G}")
|
||||
G = k2.Fsa.from_dict(torch.load(params.G, map_location="cpu"))
|
||||
# Add epsilon self-loops to G as we will compose
|
||||
@ -378,7 +383,9 @@ def main():
|
||||
)
|
||||
best_path = next(iter(best_path_dict.values()))
|
||||
elif params.method == "attention-decoder":
|
||||
logging.info("Use HLG + LM rescoring + attention decoder rescoring")
|
||||
logging.info(
|
||||
"Use HLG + LM rescoring + attention decoder rescoring"
|
||||
)
|
||||
rescored_lattice = rescore_with_whole_lattice(
|
||||
lattice=lattice, G_with_epsilon_loops=G, lm_scale_list=None
|
||||
)
|
||||
@ -408,6 +415,9 @@ def main():
|
||||
|
||||
logging.info("Decoding Done")
|
||||
|
||||
except Exception:
|
||||
raise ValueError("Please use a supported decoding method.")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
formatter = (
|
||||
|
Loading…
x
Reference in New Issue
Block a user