add using averaged model in export.py

This commit is contained in:
yaozengwei 2022-08-10 15:43:50 +08:00
parent 45c7894111
commit 522a45ce75
5 changed files with 102 additions and 290 deletions

View File

@ -356,7 +356,7 @@ def decode_one_batch(
supervisions = batch["supervisions"]
feature_lens = supervisions["num_frames"].to(device)
encoder_out, encoder_out_lens = model.encoder(
encoder_out, encoder_out_lens, _ = model.encoder(
x=feature, x_lens=feature_lens
)

View File

@ -34,25 +34,7 @@ Usage:
It will generates 3 files: `encoder_jit_trace.pt`,
`decoder_jit_trace.pt`, and `joiner_jit_trace.pt`.
(3) Export to ONNX format
./lstm_transducer_stateless/export.py \
--exp-dir ./lstm_transducer_stateless/exp \
--bpe-model data/lang_bpe_500/bpe.model \
--epoch 20 \
--avg 10 \
--onnx 1
It will generate the following three files in the given `exp_dir`.
Check `onnx_check.py` for how to use them.
- encoder.onnx
- decoder.onnx
- joiner.onnx
(4) Export `model.state_dict()`
(2) Export `model.state_dict()`
./lstm_transducer_stateless/export.py \
--exp-dir ./lstm_transducer_stateless/exp \
@ -97,7 +79,6 @@ import argparse
import logging
from pathlib import Path
import onnx
import sentencepiece as spm
import torch
import torch.nn as nn
@ -106,6 +87,7 @@ from train import add_model_arguments, get_params, get_transducer_model
from icefall.checkpoint import (
average_checkpoints,
average_checkpoints_with_averaged_model,
find_checkpoints,
load_checkpoint,
)
@ -145,6 +127,17 @@ def get_parser():
"'--epoch' and '--iter'",
)
parser.add_argument(
"--use-averaged-model",
type=str2bool,
default=True,
help="Whether to load averaged model. Currently it only supports "
"using --epoch. If True, it would decode with the averaged model "
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
"Actually only the models with epoch number of `epoch-avg` and "
"`epoch` are loaded for averaging. ",
)
parser.add_argument(
"--exp-dir",
type=str,
@ -175,21 +168,6 @@ def get_parser():
""",
)
parser.add_argument(
"--onnx",
type=str2bool,
default=False,
help="""If True, --jit is ignored and it exports the model
to onnx format. Three files will be generated:
- encoder.onnx
- decoder.onnx
- joiner.onnx
Check ./onnx_check.py and ./onnx_pretrained.py for how to use them.
""",
)
parser.add_argument(
"--context-size",
type=int,
@ -220,7 +198,6 @@ def export_encoder_model_jit_trace(
x = torch.zeros(1, 100, 80, dtype=torch.float32)
x_lens = torch.tensor([100], dtype=torch.int64)
states = encoder_model.get_init_states()
states = (states[0].unsqueeze(1), states[1].unsqueeze(1))
traced_model = torch.jit.trace(encoder_model, (x, x_lens, states))
traced_model.save(encoder_filename)
@ -276,187 +253,6 @@ def export_joiner_model_jit_trace(
logging.info(f"Saved to {joiner_filename}")
def export_encoder_model_onnx(
encoder_model: nn.Module,
encoder_filename: str,
opset_version: int = 11,
) -> None:
"""Export the given encoder model to ONNX format.
The exported model has two inputs:
- x, a tensor of shape (N, T, C); dtype is torch.float32
- x_lens, a tensor of shape (N,); dtype is torch.int64
and it has two outputs:
- encoder_out, a tensor of shape (N, T, C)
- encoder_out_lens, a tensor of shape (N,)
Note: The warmup argument is fixed to 1.
Args:
encoder_model:
The input encoder model
encoder_filename:
The filename to save the exported ONNX model.
opset_version:
The opset version to use.
"""
x = torch.zeros(1, 100, 80, dtype=torch.float32)
x_lens = torch.tensor([100], dtype=torch.int64)
states = encoder_model.get_init_states()
hidden_states = states[0].unsqueeze(1)
cell_states = states[1].unsqueeze(1)
# encoder_model = torch.jit.script(encoder_model)
# It throws the following error for the above statement
#
# RuntimeError: Exporting the operator __is_ to ONNX opset version
# 11 is not supported. Please feel free to request support or
# submit a pull request on PyTorch GitHub.
#
# I cannot find which statement causes the above error.
# torch.onnx.export() will use torch.jit.trace() internally, which
# works well for the current reworked model
warmup = 1.0
torch.onnx.export(
encoder_model,
(x, x_lens, (hidden_states, cell_states), warmup),
encoder_filename,
verbose=False,
opset_version=opset_version,
input_names=["x", "x_lens", "hidden_states", "cell_states", "warmup"],
output_names=[
"encoder_out",
"encoder_out_lens",
"new_hidden_states",
"new_cell_states",
],
dynamic_axes={
"x": {0: "N", 1: "T"},
"x_lens": {0: "N"},
"hidden_states": {1: "N"},
"cell_states": {1: "N"},
"encoder_out": {0: "N", 1: "T"},
"encoder_out_lens": {0: "N"},
"new_hidden_states": {1: "N"},
"new_cell_states": {1: "N"},
},
)
logging.info(f"Saved to {encoder_filename}")
def export_decoder_model_onnx(
decoder_model: nn.Module,
decoder_filename: str,
opset_version: int = 11,
) -> None:
"""Export the decoder model to ONNX format.
The exported model has one input:
- y: a torch.int64 tensor of shape (N, decoder_model.context_size)
and has one output:
- decoder_out: a torch.float32 tensor of shape (N, 1, C)
Note: The argument need_pad is fixed to False.
Args:
decoder_model:
The decoder model to be exported.
decoder_filename:
Filename to save the exported ONNX model.
opset_version:
The opset version to use.
"""
y = torch.zeros(10, decoder_model.context_size, dtype=torch.int64)
need_pad = False # Always False, so we can use torch.jit.trace() here
# Note(fangjun): torch.jit.trace() is more efficient than torch.jit.script()
# in this case
torch.onnx.export(
decoder_model,
(y, need_pad),
decoder_filename,
verbose=False,
opset_version=opset_version,
input_names=["y", "need_pad"],
output_names=["decoder_out"],
dynamic_axes={
"y": {0: "N"},
"decoder_out": {0: "N"},
},
)
logging.info(f"Saved to {decoder_filename}")
def export_joiner_model_onnx(
joiner_model: nn.Module,
joiner_filename: str,
opset_version: int = 11,
) -> None:
"""Export the joiner model to ONNX format.
The exported model has two inputs:
- encoder_out: a tensor of shape (N, encoder_out_dim)
- decoder_out: a tensor of shape (N, decoder_out_dim)
and has one output:
- joiner_out: a tensor of shape (N, vocab_size)
Note: The argument project_input is fixed to True. A user should not
project the encoder_out/decoder_out by himself/herself. The exported joiner
will do that for the user.
"""
encoder_out_dim = joiner_model.encoder_proj.weight.shape[1]
decoder_out_dim = joiner_model.decoder_proj.weight.shape[1]
encoder_out = torch.rand(1, encoder_out_dim, dtype=torch.float32)
decoder_out = torch.rand(1, decoder_out_dim, dtype=torch.float32)
project_input = True
# Note: It uses torch.jit.trace() internally
torch.onnx.export(
joiner_model,
(encoder_out, decoder_out, project_input),
joiner_filename,
verbose=False,
opset_version=opset_version,
input_names=["encoder_out", "decoder_out", "project_input"],
output_names=["logit"],
dynamic_axes={
"encoder_out": {0: "N"},
"decoder_out": {0: "N"},
"logit": {0: "N"},
},
)
logging.info(f"Saved to {joiner_filename}")
def export_all_in_one_onnx(
encoder_filename: str,
decoder_filename: str,
joiner_filename: str,
all_in_one_filename: str,
):
encoder_onnx = onnx.load(encoder_filename)
decoder_onnx = onnx.load(decoder_filename)
joiner_onnx = onnx.load(joiner_filename)
encoder_onnx = onnx.compose.add_prefix(encoder_onnx, prefix="encoder/")
decoder_onnx = onnx.compose.add_prefix(decoder_onnx, prefix="decoder/")
joiner_onnx = onnx.compose.add_prefix(joiner_onnx, prefix="joiner/")
combined_model = onnx.compose.merge_models(
encoder_onnx, decoder_onnx, io_map={}
)
combined_model = onnx.compose.merge_models(
combined_model, joiner_onnx, io_map={}
)
onnx.save(combined_model, all_in_one_filename)
logging.info(f"Saved to {all_in_one_filename}")
@torch.no_grad()
def main():
args = get_parser().parse_args()
@ -483,77 +279,88 @@ def main():
logging.info("About to create model")
model = get_transducer_model(params)
model.to(device)
if params.iter > 0:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(
average_checkpoints(filenames, device=device), strict=False
)
elif params.avg == 1:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
if not params.use_averaged_model:
if params.iter > 0:
filenames = find_checkpoints(
params.exp_dir, iteration=-params.iter
)[: params.avg]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
elif params.avg == 1:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
else:
start = params.epoch - params.avg + 1
filenames = []
for i in range(start, params.epoch + 1):
if i >= 1:
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
else:
start = params.epoch - params.avg + 1
filenames = []
for i in range(start, params.epoch + 1):
if start >= 0:
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(
average_checkpoints(filenames, device=device), strict=False
)
if params.iter > 0:
filenames = find_checkpoints(
params.exp_dir, iteration=-params.iter
)[: params.avg + 1]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg + 1:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
filename_start = filenames[-1]
filename_end = filenames[0]
logging.info(
"Calculating the averaged model over iteration checkpoints"
f" from {filename_start} (excluded) to {filename_end}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
else:
assert params.avg > 0, params.avg
start = params.epoch - params.avg
assert start >= 1, start
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
logging.info(
f"Calculating the averaged model over epoch range from "
f"{start} (excluded) to {params.epoch}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
model.to("cpu")
model.eval()
convert_scaled_to_non_scaled(model, inplace=True)
if params.onnx is True:
opset_version = 11
logging.info("Exporting to onnx format")
encoder_filename = params.exp_dir / "encoder.onnx"
export_encoder_model_onnx(
model.encoder,
encoder_filename,
opset_version=opset_version,
)
decoder_filename = params.exp_dir / "decoder.onnx"
export_decoder_model_onnx(
model.decoder,
decoder_filename,
opset_version=opset_version,
)
joiner_filename = params.exp_dir / "joiner.onnx"
export_joiner_model_onnx(
model.joiner,
joiner_filename,
opset_version=opset_version,
)
all_in_one_filename = params.exp_dir / "all_in_one.onnx"
export_all_in_one_onnx(
encoder_filename,
decoder_filename,
joiner_filename,
all_in_one_filename,
)
elif params.jit_trace is True:
if params.jit_trace is True:
logging.info("Using torch.jit.trace()")
encoder_filename = params.exp_dir / "encoder_jit_trace.pt"
export_encoder_model_jit_trace(model.encoder, encoder_filename)

View File

@ -289,9 +289,12 @@ def main():
feature_lengths = torch.tensor(feature_lengths, device=device)
states = encoder.get_init_states(batch_size=features.size(0), device=device)
encoder_out, encoder_out_lens, _ = encoder(
x=features,
x_lens=feature_lengths,
states=states,
)
hyps = greedy_search(

View File

@ -179,16 +179,18 @@ class RNN(EncoderInterface):
x = x.permute(1, 0, 2) # (T, N, C) -> (N, T, C)
return x, lengths, new_states
@torch.jit.export
def get_init_states(
self, device: torch.device = torch.device("cpu")
self, batch_size: int = 1, device: torch.device = torch.device("cpu")
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Get model initial states."""
# for rnn hidden states
hidden_states = torch.zeros(
(self.num_encoder_layers, self.d_model), device=device
(self.num_encoder_layers, batch_size, self.d_model), device=device
)
cell_states = torch.zeros(
(self.num_encoder_layers, self.rnn_hidden_size), device=device
(self.num_encoder_layers, batch_size, self.rnn_hidden_size),
device=device,
)
return (hidden_states, cell_states)
@ -235,7 +237,7 @@ class RNNEncoderLayer(nn.Module):
ScaledLinear(d_model, dim_feedforward),
ActivationBalancer(channel_dim=-1),
DoubleSwish(),
nn.Dropout(),
nn.Dropout(dropout),
ScaledLinear(dim_feedforward, d_model, initial_scale=0.25),
)
self.norm_final = BasicNorm(d_model)
@ -763,9 +765,9 @@ if __name__ == "__main__":
m = RNN(
num_features=feature_dim,
d_model=512,
rnn_hidden_size=1536,
rnn_hidden_size=1024,
dim_feedforward=2048,
num_encoder_layers=10,
num_encoder_layers=12,
)
batch_size = 5
seq_len = 20

View File

@ -116,7 +116,7 @@ class Transducer(nn.Module):
assert x.size(0) == x_lens.size(0) == y.dim0
encoder_out, x_lens = self.encoder(x, x_lens, warmup=warmup)
encoder_out, x_lens, _ = self.encoder(x, x_lens, warmup=warmup)
assert torch.all(x_lens > 0)
# Now for the decoder, i.e., the prediction network