mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 01:52:41 +00:00
Merge 83e2b30a224832d738235743ba88a70a7262e361 into abd9437e6d5419a497707748eb935e50976c3b7b
This commit is contained in:
commit
5222a01dfc
159
egs/fisher_swbd/ASR/local/compile_hlg.py
Executable file
159
egs/fisher_swbd/ASR/local/compile_hlg.py
Executable file
@ -0,0 +1,159 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
This script takes as input lang_dir and generates HLG from
|
||||||
|
|
||||||
|
- H, the ctc topology, built from tokens contained in lang_dir/lexicon.txt
|
||||||
|
- L, the lexicon, built from lang_dir/L_disambig.pt
|
||||||
|
|
||||||
|
Caution: We use a lexicon that contains disambiguation symbols
|
||||||
|
|
||||||
|
- G, the LM, built from data/lm/G_3_gram.fst.txt
|
||||||
|
|
||||||
|
The generated HLG is saved in $lang_dir/HLG.pt
|
||||||
|
"""
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from icefall.lexicon import Lexicon
|
||||||
|
|
||||||
|
|
||||||
|
def get_args():
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument(
|
||||||
|
"--lang-dir",
|
||||||
|
type=str,
|
||||||
|
help="""Input and output directory.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
def compile_HLG(lang_dir: str) -> k2.Fsa:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
lang_dir:
|
||||||
|
The language directory, e.g., data/lang_phone or data/lang_bpe_5000.
|
||||||
|
|
||||||
|
Return:
|
||||||
|
An FSA representing HLG.
|
||||||
|
"""
|
||||||
|
lexicon = Lexicon(lang_dir)
|
||||||
|
max_token_id = max(lexicon.tokens)
|
||||||
|
logging.info(f"Building ctc_topo. max_token_id: {max_token_id}")
|
||||||
|
H = k2.ctc_topo(max_token_id)
|
||||||
|
L = k2.Fsa.from_dict(torch.load(f"{lang_dir}/L_disambig.pt"))
|
||||||
|
|
||||||
|
if Path("data/lm/G_3_gram.pt").is_file():
|
||||||
|
logging.info("Loading pre-compiled G_3_gram")
|
||||||
|
d = torch.load("data/lm/G_3_gram.pt")
|
||||||
|
G = k2.Fsa.from_dict(d)
|
||||||
|
else:
|
||||||
|
logging.info("Loading G_3_gram.fst.txt")
|
||||||
|
with open("data/lm/G_3_gram.fst.txt") as f:
|
||||||
|
G = k2.Fsa.from_openfst(f.read(), acceptor=False)
|
||||||
|
torch.save(G.as_dict(), "data/lm/G_3_gram.pt")
|
||||||
|
|
||||||
|
first_token_disambig_id = lexicon.token_table["#0"]
|
||||||
|
first_word_disambig_id = lexicon.word_table["#0"]
|
||||||
|
|
||||||
|
L = k2.arc_sort(L)
|
||||||
|
G = k2.arc_sort(G)
|
||||||
|
|
||||||
|
logging.info("Intersecting L and G")
|
||||||
|
LG = k2.compose(L, G)
|
||||||
|
logging.info(f"LG shape: {LG.shape}")
|
||||||
|
|
||||||
|
logging.info("Connecting LG")
|
||||||
|
LG = k2.connect(LG)
|
||||||
|
logging.info(f"LG shape after k2.connect: {LG.shape}")
|
||||||
|
|
||||||
|
logging.info(type(LG.aux_labels))
|
||||||
|
logging.info("Determinizing LG")
|
||||||
|
|
||||||
|
LG = k2.determinize(LG)
|
||||||
|
logging.info(type(LG.aux_labels))
|
||||||
|
|
||||||
|
logging.info("Connecting LG after k2.determinize")
|
||||||
|
LG = k2.connect(LG)
|
||||||
|
|
||||||
|
logging.info("Removing disambiguation symbols on LG")
|
||||||
|
|
||||||
|
LG.labels[LG.labels >= first_token_disambig_id] = 0
|
||||||
|
# See https://github.com/k2-fsa/k2/issues/874
|
||||||
|
# for why we need to set LG.properties to None
|
||||||
|
LG.__dict__["_properties"] = None
|
||||||
|
|
||||||
|
assert isinstance(LG.aux_labels, k2.RaggedTensor)
|
||||||
|
LG.aux_labels.values[LG.aux_labels.values >= first_word_disambig_id] = 0
|
||||||
|
|
||||||
|
LG = k2.remove_epsilon(LG)
|
||||||
|
logging.info(f"LG shape after k2.remove_epsilon: {LG.shape}")
|
||||||
|
|
||||||
|
LG = k2.connect(LG)
|
||||||
|
LG.aux_labels = LG.aux_labels.remove_values_eq(0)
|
||||||
|
|
||||||
|
logging.info("Arc sorting LG")
|
||||||
|
LG = k2.arc_sort(LG)
|
||||||
|
|
||||||
|
logging.info("Composing H and LG")
|
||||||
|
# CAUTION: The name of the inner_labels is fixed
|
||||||
|
# to `tokens`. If you want to change it, please
|
||||||
|
# also change other places in icefall that are using
|
||||||
|
# it.
|
||||||
|
HLG = k2.compose(H, LG, inner_labels="tokens")
|
||||||
|
|
||||||
|
logging.info("Connecting LG")
|
||||||
|
HLG = k2.connect(HLG)
|
||||||
|
|
||||||
|
logging.info("Arc sorting LG")
|
||||||
|
HLG = k2.arc_sort(HLG)
|
||||||
|
logging.info(f"HLG.shape: {HLG.shape}")
|
||||||
|
|
||||||
|
return HLG
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
args = get_args()
|
||||||
|
lang_dir = Path(args.lang_dir)
|
||||||
|
|
||||||
|
if (lang_dir / "HLG.pt").is_file():
|
||||||
|
logging.info(f"{lang_dir}/HLG.pt already exists - skipping")
|
||||||
|
return
|
||||||
|
|
||||||
|
logging.info(f"Processing {lang_dir}")
|
||||||
|
|
||||||
|
HLG = compile_HLG(lang_dir)
|
||||||
|
logging.info(f"Saving HLG.pt to {lang_dir}")
|
||||||
|
torch.save(HLG.as_dict(), f"{lang_dir}/HLG.pt")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = (
|
||||||
|
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
|
||||||
|
main()
|
101
egs/fisher_swbd/ASR/local/compute_fbank_fisher_swbd_eval2000.py
Executable file
101
egs/fisher_swbd/ASR/local/compute_fbank_fisher_swbd_eval2000.py
Executable file
@ -0,0 +1,101 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
|
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
This file computes fbank features of the Fisher, Swbd and Eval2000 dataset.
|
||||||
|
It looks for manifests in the directory data/manifests.
|
||||||
|
|
||||||
|
The generated fbank features are saved in data/fbank.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import logging
|
||||||
|
import os
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from lhotse import CutSet, Fbank, FbankConfig
|
||||||
|
from lhotse.recipes.utils import read_manifests_if_cached
|
||||||
|
|
||||||
|
from icefall.utils import get_executor
|
||||||
|
|
||||||
|
# Torch's multithreaded behavior needs to be disabled or
|
||||||
|
# it wastes a lot of CPU and slow things down.
|
||||||
|
# Do this outside of main() in case it needs to take effect
|
||||||
|
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
||||||
|
torch.set_num_threads(1)
|
||||||
|
torch.set_num_interop_threads(1)
|
||||||
|
|
||||||
|
|
||||||
|
def compute_fbank_fisher_swbd_eval2000():
|
||||||
|
src_dir = Path("data/manifests")
|
||||||
|
output_dir = Path("data/fbank")
|
||||||
|
num_jobs = min(25, os.cpu_count())
|
||||||
|
num_mel_bins = 80
|
||||||
|
sampling_rate = 8000
|
||||||
|
dataset_parts = ("eval2000", "fisher", "swbd")
|
||||||
|
test_dataset = ("eval2000",)
|
||||||
|
manifests = read_manifests_if_cached(
|
||||||
|
dataset_parts=dataset_parts,
|
||||||
|
output_dir=src_dir,
|
||||||
|
lazy=True,
|
||||||
|
suffix="jsonl",
|
||||||
|
)
|
||||||
|
assert manifests is not None
|
||||||
|
|
||||||
|
extractor = Fbank(
|
||||||
|
FbankConfig(num_mel_bins=num_mel_bins, sampling_rate=sampling_rate)
|
||||||
|
)
|
||||||
|
|
||||||
|
with get_executor() as ex: # Initialize the executor only once.
|
||||||
|
for partition, m in manifests.items():
|
||||||
|
if (output_dir / f"cuts_{partition}.json.gz").is_file():
|
||||||
|
logging.info(f"{partition} already exists - skipping.")
|
||||||
|
continue
|
||||||
|
logging.info(f"Processing {partition}")
|
||||||
|
cut_set = CutSet.from_manifests(
|
||||||
|
recordings=m["recordings"], supervisions=m["supervisions"]
|
||||||
|
)
|
||||||
|
# if "train" in partition:
|
||||||
|
if partition not in test_dataset:
|
||||||
|
logging.info(f"Adding speed perturbations to : {partition}")
|
||||||
|
cut_set = (
|
||||||
|
cut_set
|
||||||
|
+ cut_set.perturb_speed(0.9)
|
||||||
|
+ cut_set.perturb_speed(1.1)
|
||||||
|
)
|
||||||
|
cut_set = cut_set.trim_to_supervisions(keep_overlapping=False)
|
||||||
|
cut_set = cut_set.filter(lambda c: c.duration > 0.5)
|
||||||
|
cut_set = cut_set.compute_and_store_features(
|
||||||
|
extractor=extractor,
|
||||||
|
storage_path=f"{output_dir}/feats_{partition}",
|
||||||
|
# when an executor is specified, make more partitions
|
||||||
|
num_jobs=num_jobs if ex is None else 80,
|
||||||
|
executor=ex,
|
||||||
|
)
|
||||||
|
cut_set.to_json(output_dir / f"cuts_{partition}.json.gz")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = (
|
||||||
|
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
|
||||||
|
compute_fbank_fisher_swbd_eval2000()
|
105
egs/fisher_swbd/ASR/local/compute_fbank_musan.py
Executable file
105
egs/fisher_swbd/ASR/local/compute_fbank_musan.py
Executable file
@ -0,0 +1,105 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
This file computes fbank features of the musan dataset.
|
||||||
|
It looks for manifests in the directory data/manifests.
|
||||||
|
|
||||||
|
The generated fbank features are saved in data/fbank.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import logging
|
||||||
|
import os
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from lhotse import CutSet, Fbank, FbankConfig, LilcomChunkyWriter, combine
|
||||||
|
from lhotse.recipes.utils import read_manifests_if_cached
|
||||||
|
|
||||||
|
from icefall.utils import get_executor
|
||||||
|
|
||||||
|
# Torch's multithreaded behavior needs to be disabled or
|
||||||
|
# it wastes a lot of CPU and slow things down.
|
||||||
|
# Do this outside of main() in case it needs to take effect
|
||||||
|
# even when we are not invoking the main (e.g. when spawning subprocesses).
|
||||||
|
torch.set_num_threads(1)
|
||||||
|
torch.set_num_interop_threads(1)
|
||||||
|
|
||||||
|
|
||||||
|
def compute_fbank_musan():
|
||||||
|
src_dir = Path("data/manifests")
|
||||||
|
output_dir = Path("data/fbank")
|
||||||
|
num_jobs = min(15, os.cpu_count())
|
||||||
|
num_mel_bins = 80
|
||||||
|
sampling_rate = 8000
|
||||||
|
dataset_parts = ("music", "speech", "noise")
|
||||||
|
prefix = "musan"
|
||||||
|
suffix = "jsonl.gz"
|
||||||
|
manifests = read_manifests_if_cached(
|
||||||
|
dataset_parts=dataset_parts,
|
||||||
|
output_dir=src_dir,
|
||||||
|
prefix=prefix,
|
||||||
|
suffix=suffix,
|
||||||
|
)
|
||||||
|
assert manifests is not None
|
||||||
|
|
||||||
|
assert len(manifests) == len(dataset_parts), (
|
||||||
|
len(manifests),
|
||||||
|
len(dataset_parts),
|
||||||
|
)
|
||||||
|
|
||||||
|
musan_cuts_path = output_dir / "musan_cuts.jsonl.gz"
|
||||||
|
|
||||||
|
if musan_cuts_path.is_file():
|
||||||
|
logging.info(f"{musan_cuts_path} already exists - skipping")
|
||||||
|
return
|
||||||
|
|
||||||
|
logging.info("Extracting features for Musan")
|
||||||
|
|
||||||
|
extractor = Fbank(
|
||||||
|
FbankConfig(num_mel_bins=num_mel_bins, sampling_rate=sampling_rate)
|
||||||
|
)
|
||||||
|
|
||||||
|
with get_executor() as ex: # Initialize the executor only once.
|
||||||
|
# create chunks of Musan with duration 5 - 10 seconds
|
||||||
|
musan_cuts = (
|
||||||
|
CutSet.from_manifests(
|
||||||
|
recordings=combine(
|
||||||
|
part["recordings"] for part in manifests.values()
|
||||||
|
)
|
||||||
|
)
|
||||||
|
.cut_into_windows(10.0)
|
||||||
|
.filter(lambda c: c.duration > 5)
|
||||||
|
.compute_and_store_features(
|
||||||
|
extractor=extractor,
|
||||||
|
storage_path=f"{output_dir}/musan_feats",
|
||||||
|
num_jobs=num_jobs if ex is None else 80,
|
||||||
|
executor=ex,
|
||||||
|
storage_type=LilcomChunkyWriter,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
musan_cuts.to_file(musan_cuts_path)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = (
|
||||||
|
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
compute_fbank_musan()
|
64
egs/fisher_swbd/ASR/local/extract_json_cuts.py
Normal file
64
egs/fisher_swbd/ASR/local/extract_json_cuts.py
Normal file
@ -0,0 +1,64 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# script to extract cutids corresponding to a list of source audio files.
|
||||||
|
# It takes three arguments: list of audio (.sph) , cut jsonl and out jsonl
|
||||||
|
|
||||||
|
|
||||||
|
import sys, json
|
||||||
|
import ntpath
|
||||||
|
|
||||||
|
list_of_sph = sys.argv[1]
|
||||||
|
jsonfile = sys.argv[2]
|
||||||
|
out_partition_json = sys.argv[3]
|
||||||
|
|
||||||
|
|
||||||
|
list_of_sph = [line.rstrip("\n") for line in open(list_of_sph)]
|
||||||
|
|
||||||
|
sph_basename_list = []
|
||||||
|
|
||||||
|
for f in list_of_sph:
|
||||||
|
bsname = ntpath.basename(f)
|
||||||
|
sph_basename_list.append(ntpath.basename(f))
|
||||||
|
|
||||||
|
|
||||||
|
json_str = [line.rstrip("\n") for line in open(jsonfile)]
|
||||||
|
num_json = len(json_str)
|
||||||
|
|
||||||
|
out_partition = open(out_partition_json, "w", encoding="utf-8")
|
||||||
|
|
||||||
|
for i in range(num_json):
|
||||||
|
if json_str[i] != "":
|
||||||
|
# print(json_str[i])
|
||||||
|
cur_json = json.loads(json_str[i])
|
||||||
|
# print(cur_json)
|
||||||
|
cur_cutid = cur_json["id"]
|
||||||
|
cur_rec = cur_json["recording"]
|
||||||
|
cur_sources = cur_rec["sources"]
|
||||||
|
# print(cur_cutid)
|
||||||
|
# print(cur_rec)
|
||||||
|
# print(cur_sources)
|
||||||
|
for s in cur_sources:
|
||||||
|
cur_sph = s["source"]
|
||||||
|
cur_sph_basename = ntpath.basename(cur_sph)
|
||||||
|
# print(cur_sph)
|
||||||
|
# print(cur_sph_basename)
|
||||||
|
if cur_sph_basename in sph_basename_list:
|
||||||
|
out_json_line = json_str[i]
|
||||||
|
out_partition.write(out_json_line)
|
||||||
|
out_partition.write("\n")
|
||||||
|
# for keys in cur_json:
|
||||||
|
# cur_cutid= cur_json['id']
|
||||||
|
# cur_rec = cur_json['recording_id']
|
||||||
|
# print(cur_cutid)
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
for keys in cur_json:
|
||||||
|
#print(keys)
|
||||||
|
cur_cutid= cur_json['id']
|
||||||
|
cur_rec = cur_json['recording_id']
|
||||||
|
print(cur_rec)
|
||||||
|
if cur_sph_basename in sph_basename_list :
|
||||||
|
out_json_line = json_str[i]
|
||||||
|
out_partition.write(out_json_line)
|
||||||
|
out_partition.write("\n")
|
||||||
|
"""
|
35
egs/fisher_swbd/ASR/local/extract_json_supervision.py
Normal file
35
egs/fisher_swbd/ASR/local/extract_json_supervision.py
Normal file
@ -0,0 +1,35 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
#
|
||||||
|
|
||||||
|
|
||||||
|
import sys, json
|
||||||
|
import ntpath
|
||||||
|
|
||||||
|
list_of_sph = sys.argv[1]
|
||||||
|
jsonfile = sys.argv[2]
|
||||||
|
out_partition_json = sys.argv[3]
|
||||||
|
|
||||||
|
|
||||||
|
list_of_sph = [line.rstrip("\n") for line in open(list_of_sph)]
|
||||||
|
|
||||||
|
sph_basename_list = []
|
||||||
|
|
||||||
|
for f in list_of_sph:
|
||||||
|
bsname = ntpath.basename(f)
|
||||||
|
sph_basename_list.append(ntpath.basename(f))
|
||||||
|
|
||||||
|
|
||||||
|
json_str = [line.rstrip("\n") for line in open(jsonfile)]
|
||||||
|
num_json = len(json_str)
|
||||||
|
|
||||||
|
out_partition = open(out_partition_json, "w", encoding="utf-8")
|
||||||
|
|
||||||
|
for i in range(num_json):
|
||||||
|
if json_str[i] != "":
|
||||||
|
cur_json = json.loads(json_str[i])
|
||||||
|
cur_rec = cur_json["recording_id"]
|
||||||
|
cur_sph_basename = cur_rec + ".sph"
|
||||||
|
if cur_sph_basename in sph_basename_list:
|
||||||
|
out_json_line = json_str[i]
|
||||||
|
out_partition.write(out_json_line)
|
||||||
|
out_partition.write("\n")
|
20
egs/fisher_swbd/ASR/local/extract_list_of_sph.py
Normal file
20
egs/fisher_swbd/ASR/local/extract_list_of_sph.py
Normal file
@ -0,0 +1,20 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# extract list of sph from a cut jsonl
|
||||||
|
# python3 extract_list_of_sph.py dev_cuts_swbd.jsonl > data/fbank/dev_swbd_sph.list
|
||||||
|
|
||||||
|
|
||||||
|
import sys, json
|
||||||
|
|
||||||
|
inputfile = sys.argv[1]
|
||||||
|
json_str = [line.rstrip("\n") for line in open(inputfile)]
|
||||||
|
num_json = len(json_str)
|
||||||
|
|
||||||
|
for i in range(num_json):
|
||||||
|
if json_str[i] != "":
|
||||||
|
cur_json = json.loads(json_str[i])
|
||||||
|
for keys in cur_json:
|
||||||
|
cur_rec = cur_json["recording"]
|
||||||
|
cur_sources = cur_rec["sources"]
|
||||||
|
for s in cur_sources:
|
||||||
|
cur_sph = s["source"]
|
||||||
|
print(cur_sph)
|
189
egs/fisher_swbd/ASR/local/normalize_and_filter_supervisions.py
Normal file
189
egs/fisher_swbd/ASR/local/normalize_and_filter_supervisions.py
Normal file
@ -0,0 +1,189 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import re
|
||||||
|
from typing import Tuple
|
||||||
|
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
from lhotse import SupervisionSet, SupervisionSegment
|
||||||
|
from lhotse.serialization import load_manifest_lazy_or_eager
|
||||||
|
|
||||||
|
|
||||||
|
def get_args():
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument("input_sups")
|
||||||
|
parser.add_argument("output_sups")
|
||||||
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
# fmt: off
|
||||||
|
class FisherSwbdNormalizer:
|
||||||
|
"""
|
||||||
|
Note: the functions "normalize" and "keep" implement the logic similar to
|
||||||
|
Kaldi's data prep scripts for Fisher:
|
||||||
|
https://github.com/kaldi-asr/kaldi/blob/master/egs/fisher_swbd/s5/local/fisher_data_prep.sh
|
||||||
|
and for SWBD:
|
||||||
|
https://github.com/kaldi-asr/kaldi/blob/master/egs/fisher_swbd/s5/local/swbd1_data_prep.sh
|
||||||
|
|
||||||
|
One notable difference is that we don't change [cough], [lipsmack], etc. to [noise].
|
||||||
|
We also don't implement all the edge cases of normalization from Kaldi
|
||||||
|
(hopefully won't make too much difference).
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
def __init__(self) -> None:
|
||||||
|
|
||||||
|
self.remove_regexp_before = re.compile(
|
||||||
|
r"|".join([
|
||||||
|
# special symbols
|
||||||
|
r"\[\[SKIP.*\]\]",
|
||||||
|
r"\[SKIP.*\]",
|
||||||
|
r"\[PAUSE.*\]",
|
||||||
|
r"\[SILENCE\]",
|
||||||
|
r"<B_ASIDE>",
|
||||||
|
r"<E_ASIDE>",
|
||||||
|
])
|
||||||
|
)
|
||||||
|
|
||||||
|
# tuples of (pattern, replacement)
|
||||||
|
# note: Kaldi replaces sighs, coughs, etc with [noise].
|
||||||
|
# We don't do that here.
|
||||||
|
# We also uppercase the text as the first operation.
|
||||||
|
self.replace_regexps: Tuple[re.Pattern, str] = [
|
||||||
|
# SWBD:
|
||||||
|
# [LAUGHTER-STORY] -> STORY
|
||||||
|
(re.compile(r"\[LAUGHTER-(.*?)\]"), r"\1"),
|
||||||
|
# [WEA[SONABLE]-/REASONABLE]
|
||||||
|
(re.compile(r"\[\S+/(\S+)\]"), r"\1"),
|
||||||
|
# -[ADV]AN[TAGE]- -> AN
|
||||||
|
(re.compile(r"-?\[.*?\](\w+)\[.*?\]-?"), r"\1-"),
|
||||||
|
# ABSOLUTE[LY]- -> ABSOLUTE-
|
||||||
|
(re.compile(r"(\w+)\[.*?\]-?"), r"\1-"),
|
||||||
|
# [AN]Y- -> Y-
|
||||||
|
# -[AN]Y- -> Y-
|
||||||
|
(re.compile(r"-?\[.*?\](\w+)-?"), r"\1-"),
|
||||||
|
# special tokens
|
||||||
|
(re.compile(r"\[LAUGH.*?\]"), r"[LAUGHTER]"),
|
||||||
|
(re.compile(r"\[SIGH.*?\]"), r"[SIGH]"),
|
||||||
|
(re.compile(r"\[COUGH.*?\]"), r"[COUGH]"),
|
||||||
|
(re.compile(r"\[MN.*?\]"), r"[VOCALIZED-NOISE]"),
|
||||||
|
(re.compile(r"\[BREATH.*?\]"), r"[BREATH]"),
|
||||||
|
(re.compile(r"\[LIPSMACK.*?\]"), r"[LIPSMACK]"),
|
||||||
|
(re.compile(r"\[SNEEZE.*?\]"), r"[SNEEZE]"),
|
||||||
|
# abbreviations
|
||||||
|
(re.compile(r"(\w)\.(\w)\.(\w)",), r"\1 \2 \3"),
|
||||||
|
(re.compile(r"(\w)\.(\w)",), r"\1 \2"),
|
||||||
|
(re.compile(r"\._",), r" "),
|
||||||
|
(re.compile(r"_(\w)",), r"\1"),
|
||||||
|
(re.compile(r"(\w)\.s",), r"\1's"),
|
||||||
|
# words between apostrophes
|
||||||
|
(re.compile(r"'(\S*?)'"), r"\1"),
|
||||||
|
# dangling dashes (2 passes)
|
||||||
|
(re.compile(r"\s-\s"), r" "),
|
||||||
|
(re.compile(r"\s-\s"), r" "),
|
||||||
|
# special symbol with trailing dash
|
||||||
|
(re.compile(r"(\[.*?\])-"), r"\1"),
|
||||||
|
]
|
||||||
|
|
||||||
|
# unwanted symbols in the transcripts
|
||||||
|
self.remove_regexp_after = re.compile(
|
||||||
|
r"|".join([
|
||||||
|
# remaining punctuation
|
||||||
|
r"\.",
|
||||||
|
r",",
|
||||||
|
r"\?",
|
||||||
|
r"{",
|
||||||
|
r"}",
|
||||||
|
r"~",
|
||||||
|
r"_\d",
|
||||||
|
])
|
||||||
|
)
|
||||||
|
|
||||||
|
self.whitespace_regexp = re.compile(r"\s+")
|
||||||
|
|
||||||
|
def normalize(self, text: str) -> str:
|
||||||
|
text = text.upper()
|
||||||
|
|
||||||
|
# first remove
|
||||||
|
text = self.remove_regexp_before.sub("", text)
|
||||||
|
|
||||||
|
# then replace
|
||||||
|
for pattern, sub in self.replace_regexps:
|
||||||
|
text = pattern.sub(sub, text)
|
||||||
|
|
||||||
|
# then remove
|
||||||
|
text = self.remove_regexp_after.sub("", text)
|
||||||
|
|
||||||
|
# then clean up whitespace
|
||||||
|
text = self.whitespace_regexp.sub(" ", text).strip()
|
||||||
|
|
||||||
|
return text
|
||||||
|
# fmt: on
|
||||||
|
|
||||||
|
|
||||||
|
def keep(sup: SupervisionSegment) -> bool:
|
||||||
|
if "((" in sup.text:
|
||||||
|
return False
|
||||||
|
|
||||||
|
if "<german" in sup.text:
|
||||||
|
return False
|
||||||
|
|
||||||
|
return True
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
args = get_args()
|
||||||
|
sups = load_manifest_lazy_or_eager(args.input_sups)
|
||||||
|
assert isinstance(sups, SupervisionSet)
|
||||||
|
|
||||||
|
normalizer = FisherSwbdNormalizer()
|
||||||
|
|
||||||
|
tot, skip = 0, 0
|
||||||
|
with SupervisionSet.open_writer(args.output_sups) as writer:
|
||||||
|
for sup in tqdm(sups, desc="Normalizing supervisions"):
|
||||||
|
tot += 1
|
||||||
|
|
||||||
|
if not keep(sup):
|
||||||
|
skip += 1
|
||||||
|
continue
|
||||||
|
|
||||||
|
sup.text = normalizer.normalize(sup.text)
|
||||||
|
if not sup.text:
|
||||||
|
skip += 1
|
||||||
|
continue
|
||||||
|
|
||||||
|
writer.write(sup)
|
||||||
|
|
||||||
|
|
||||||
|
def test():
|
||||||
|
normalizer = FisherSwbdNormalizer()
|
||||||
|
for text in [
|
||||||
|
"[laughterr]",
|
||||||
|
"[laugh] oh this is great [silence] <B_ASIDE> yes",
|
||||||
|
"[laugh] oh this is [laught] this is great [silence] <B_ASIDE> yes",
|
||||||
|
"i don't kn- - know a.b.c's",
|
||||||
|
"'absolutely yes",
|
||||||
|
"absolutely' yes",
|
||||||
|
"'absolutely' yes",
|
||||||
|
"'absolutely' yes 'aight",
|
||||||
|
"ABSOLUTE[LY]",
|
||||||
|
"ABSOLUTE[LY]-",
|
||||||
|
"[AN]Y",
|
||||||
|
"[AN]Y-",
|
||||||
|
"[ADV]AN[TAGE]",
|
||||||
|
"[ADV]AN[TAGE]-",
|
||||||
|
"-[ADV]AN[TAGE]",
|
||||||
|
"-[ADV]AN[TAGE]-",
|
||||||
|
"[WEA[SONABLE]-/REASONABLE]",
|
||||||
|
"[VOCALIZED-NOISE]-",
|
||||||
|
"~BULL",
|
||||||
|
]:
|
||||||
|
print(text)
|
||||||
|
print(normalizer.normalize(text))
|
||||||
|
print()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
# test()
|
||||||
|
main()
|
215
egs/fisher_swbd/ASR/local/normalize_eval2000.py
Normal file
215
egs/fisher_swbd/ASR/local/normalize_eval2000.py
Normal file
@ -0,0 +1,215 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import re
|
||||||
|
from typing import Tuple
|
||||||
|
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
from lhotse import SupervisionSet, SupervisionSegment
|
||||||
|
from lhotse.serialization import load_manifest_lazy_or_eager
|
||||||
|
|
||||||
|
|
||||||
|
def get_args():
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument("input_sups")
|
||||||
|
parser.add_argument("output_sups")
|
||||||
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
def remove_punctutation_and_other_symbol(text: str) -> str:
|
||||||
|
text = text.replace("--", " ")
|
||||||
|
text = text.replace("//", " ")
|
||||||
|
text = text.replace(".", " ")
|
||||||
|
text = text.replace("?", " ")
|
||||||
|
text = text.replace("~", " ")
|
||||||
|
text = text.replace(",", " ")
|
||||||
|
text = text.replace(";", " ")
|
||||||
|
text = text.replace("(", " ")
|
||||||
|
text = text.replace(")", " ")
|
||||||
|
text = text.replace("&", " ")
|
||||||
|
text = text.replace("%", " ")
|
||||||
|
text = text.replace("*", " ")
|
||||||
|
text = text.replace("{", " ")
|
||||||
|
text = text.replace("}", " ")
|
||||||
|
return text
|
||||||
|
|
||||||
|
|
||||||
|
def eval2000_clean_eform(text: str, eform_count) -> str:
|
||||||
|
string_to_remove = []
|
||||||
|
piece = text.split('">')
|
||||||
|
for i in range(0, len(piece)):
|
||||||
|
s = piece[i] + '">'
|
||||||
|
res = re.search(r"<contraction e_form(.*?)\">", s)
|
||||||
|
if res is not None:
|
||||||
|
res_rm = res.group(1)
|
||||||
|
string_to_remove.append(res_rm)
|
||||||
|
for p in string_to_remove:
|
||||||
|
eform_string = p
|
||||||
|
text = text.replace(eform_string, " ")
|
||||||
|
eform_1 = "<contraction e_form"
|
||||||
|
text = text.replace(eform_1, " ")
|
||||||
|
eform_2 = '">'
|
||||||
|
text = text.replace(eform_2, " ")
|
||||||
|
# print("TEXT final: ", text)
|
||||||
|
return text
|
||||||
|
|
||||||
|
|
||||||
|
def replace_silphone(text: str) -> str:
|
||||||
|
text = text.replace("[/BABY CRYING]", " ")
|
||||||
|
text = text.replace("[/CHILD]", " ")
|
||||||
|
text = text.replace("[[DISTORTED]]", " ")
|
||||||
|
text = text.replace("[/DISTORTION]", " ")
|
||||||
|
text = text.replace("[[DRAWN OUT]]", " ")
|
||||||
|
text = text.replace("[[DRAWN-OUT]]", " ")
|
||||||
|
text = text.replace("[[FAINT]]", " ")
|
||||||
|
text = text.replace("[SMACK]", " ")
|
||||||
|
text = text.replace("[[MUMBLES]]", " ")
|
||||||
|
text = text.replace("[[HIGH PITCHED SQUEAKY VOICE]]", " ")
|
||||||
|
text = text.replace("[[IN THE LAUGH]]", "[LAUGHTER]")
|
||||||
|
text = text.replace("[[LAST WORD SPOKEN WITH A LAUGH]]", "[LAUGHTER]")
|
||||||
|
text = text.replace(
|
||||||
|
"[[PART OF FIRST SYLLABLE OF PREVIOUS WORD CUT OFF]]", " "
|
||||||
|
)
|
||||||
|
text = text.replace("[[PREVIOUS WORD SPOKEN WITH A LAUGH]]", " ")
|
||||||
|
text = text.replace("[[PREVIOUS TWO WORDS SPOKEN WHILE LAUGHING]]", " ")
|
||||||
|
text = text.replace("[[PROLONGED]]", " ")
|
||||||
|
text = text.replace("[/RUNNING WATER]", " ")
|
||||||
|
text = text.replace("[[SAYS LAUGHING]]", "[LAUGHTER]")
|
||||||
|
text = text.replace("[[SINGING]]", " ")
|
||||||
|
text = text.replace("[[SPOKEN WHILE LAUGHING]]", "[LAUGHTER]")
|
||||||
|
text = text.replace("[/STATIC]", " ")
|
||||||
|
text = text.replace("['THIRTIETH' DRAWN OUT]", " ")
|
||||||
|
text = text.replace("[/VOICES]", " ")
|
||||||
|
text = text.replace("[[WHISPERED]]", " ")
|
||||||
|
text = text.replace("[DISTORTION]", " ")
|
||||||
|
text = text.replace("[DISTORTION, HIGH VOLUME ON WAVES]", " ")
|
||||||
|
text = text.replace("[BACKGROUND LAUGHTER]", "[LAUGHTER]")
|
||||||
|
text = text.replace("[CHILD'S VOICE]", " ")
|
||||||
|
text = text.replace("[CHILD SCREAMS]", " ")
|
||||||
|
text = text.replace("[CHILD VOICE]", " ")
|
||||||
|
text = text.replace("[CHILD YELLING]", " ")
|
||||||
|
text = text.replace("[CHILD SCREAMING]", " ")
|
||||||
|
text = text.replace("[CHILD'S VOICE IN BACKGROUND]", " ")
|
||||||
|
text = text.replace("[CHANNEL NOISE]", " ")
|
||||||
|
text = text.replace("[CHANNEL ECHO]", " ")
|
||||||
|
text = text.replace("[ECHO FROM OTHER CHANNEL]", " ")
|
||||||
|
text = text.replace("[ECHO OF OTHER CHANNEL]", " ")
|
||||||
|
text = text.replace("[CLICK]", " ")
|
||||||
|
text = text.replace("[DISTORTED]", " ")
|
||||||
|
text = text.replace("[BABY CRYING]", " ")
|
||||||
|
text = text.replace("[METALLIC KNOCKING SOUND]", " ")
|
||||||
|
text = text.replace("[METALLIC SOUND]", " ")
|
||||||
|
|
||||||
|
text = text.replace("[PHONE JIGGLING]", " ")
|
||||||
|
text = text.replace("[BACKGROUND SOUND]", " ")
|
||||||
|
text = text.replace("[BACKGROUND VOICE]", " ")
|
||||||
|
text = text.replace("[BACKGROUND VOICES]", " ")
|
||||||
|
text = text.replace("[BACKGROUND NOISE]", " ")
|
||||||
|
text = text.replace("[CAR HORNS IN BACKGROUND]", " ")
|
||||||
|
text = text.replace("[CAR HORNS]", " ")
|
||||||
|
text = text.replace("[CARNATING]", " ")
|
||||||
|
text = text.replace("[CRYING CHILD]", " ")
|
||||||
|
text = text.replace("[CHOPPING SOUND]", " ")
|
||||||
|
text = text.replace("[BANGING]", " ")
|
||||||
|
text = text.replace("[CLICKING NOISE]", " ")
|
||||||
|
text = text.replace("[CLATTERING]", " ")
|
||||||
|
text = text.replace("[ECHO]", " ")
|
||||||
|
text = text.replace("[KNOCK]", " ")
|
||||||
|
text = text.replace("[NOISE-GOOD]", "[NOISE]")
|
||||||
|
text = text.replace("[RIGHT]", " ")
|
||||||
|
text = text.replace("[SOUND]", " ")
|
||||||
|
text = text.replace("[SQUEAK]", " ")
|
||||||
|
text = text.replace("[STATIC]", " ")
|
||||||
|
text = text.replace("[[SAYS WITH HIGH-PITCHED SCREAMING LAUGHTER]]", " ")
|
||||||
|
text = text.replace("[UH]", "UH")
|
||||||
|
text = text.replace("[MN]", "[VOCALIZED-NOISE]")
|
||||||
|
text = text.replace("[VOICES]", " ")
|
||||||
|
text = text.replace("[WATER RUNNING]", " ")
|
||||||
|
text = text.replace("[SOUND OF TWISTING PHONE CORD]", " ")
|
||||||
|
text = text.replace("[SOUND OF SOMETHING FALLING]", " ")
|
||||||
|
text = text.replace("[SOUND]", " ")
|
||||||
|
text = text.replace("[NOISE OF MOVING PHONE]", " ")
|
||||||
|
text = text.replace("[SOUND OF RUNNING WATER]", " ")
|
||||||
|
text = text.replace("[CHANNEL]", " ")
|
||||||
|
text = text.replace("-[W]HERE", "WHERE")
|
||||||
|
text = text.replace("Y[OU]I-", "YOU I")
|
||||||
|
text = text.replace("-[A]ND", "AND")
|
||||||
|
text = text.replace("JU[ST]", "JUST")
|
||||||
|
text = text.replace("{BREATH}", " ")
|
||||||
|
text = text.replace("{BREATHY}", " ")
|
||||||
|
text = text.replace("{CHANNEL NOISE}", " ")
|
||||||
|
text = text.replace("{CLEAR THROAT}", " ")
|
||||||
|
|
||||||
|
text = text.replace("{CLEARING THROAT}", " ")
|
||||||
|
text = text.replace("{CLEARS THROAT}", " ")
|
||||||
|
text = text.replace("{COUGH}", " ")
|
||||||
|
text = text.replace("{DRAWN OUT}", " ")
|
||||||
|
text = text.replace("{EXHALATION}", " ")
|
||||||
|
text = text.replace("{EXHALE}", " ")
|
||||||
|
text = text.replace("{GASP}", " ")
|
||||||
|
text = text.replace("{HIGH SQUEAL}", " ")
|
||||||
|
text = text.replace("{INHALE}", " ")
|
||||||
|
text = text.replace("{LAUGH}", "[LAUGHTER]")
|
||||||
|
text = text.replace("{LAUGH}", "[LAUGHTER]")
|
||||||
|
text = text.replace("{LAUGH}", "[LAUGHTER]")
|
||||||
|
text = text.replace("{LIPSMACK}", " ")
|
||||||
|
text = text.replace("{LIPSMACK}", " ")
|
||||||
|
|
||||||
|
text = text.replace("{NOISE OF DISGUST}", " ")
|
||||||
|
text = text.replace("{SIGH}", " ")
|
||||||
|
text = text.replace("{SNIFF}", " ")
|
||||||
|
text = text.replace("{SNORT}", " ")
|
||||||
|
text = text.replace("{SHARP EXHALATION}", " ")
|
||||||
|
text = text.replace("{BREATH LAUGH}", " ")
|
||||||
|
return text
|
||||||
|
|
||||||
|
|
||||||
|
def remove_languagetag(text: str) -> str:
|
||||||
|
langtag = re.findall(r"<(.*?)>", text)
|
||||||
|
for t in langtag:
|
||||||
|
text = text.replace(t, " ")
|
||||||
|
text = text.replace("<", " ")
|
||||||
|
text = text.replace(">", " ")
|
||||||
|
return text
|
||||||
|
|
||||||
|
|
||||||
|
def eval2000_normalizer(text: str) -> str:
|
||||||
|
# print("TEXT original: ",text)
|
||||||
|
eform_count = text.count("contraction e_form")
|
||||||
|
# print("eform corunt:", eform_count)
|
||||||
|
if eform_count > 0:
|
||||||
|
text = eval2000_clean_eform(text, eform_count)
|
||||||
|
text = text.upper()
|
||||||
|
text = remove_languagetag(text)
|
||||||
|
text = replace_silphone(text)
|
||||||
|
text = remove_punctutation_and_other_symbol(text)
|
||||||
|
text = text.replace("IGNORE_TIME_SEGMENT_IN_SCORING", " ")
|
||||||
|
text = text.replace("IGNORE_TIME_SEGMENT_SCORING", " ")
|
||||||
|
spaces = re.findall(r"\s+", text)
|
||||||
|
for sp in spaces:
|
||||||
|
text = text.replace(sp, " ")
|
||||||
|
text = text.strip()
|
||||||
|
# text = self.whitespace_regexp.sub(" ", text).strip()
|
||||||
|
# print(text)
|
||||||
|
return text
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
args = get_args()
|
||||||
|
sups = load_manifest_lazy_or_eager(args.input_sups)
|
||||||
|
assert isinstance(sups, SupervisionSet)
|
||||||
|
|
||||||
|
tot, skip = 0, 0
|
||||||
|
with SupervisionSet.open_writer(args.output_sups) as writer:
|
||||||
|
for sup in tqdm(sups, desc="Normalizing supervisions"):
|
||||||
|
tot += 1
|
||||||
|
sup.text = eval2000_normalizer(sup.text)
|
||||||
|
if not sup.text:
|
||||||
|
skip += 1
|
||||||
|
continue
|
||||||
|
writer.write(sup)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
250
egs/fisher_swbd/ASR/local/prepare_lang_bpe.py
Executable file
250
egs/fisher_swbd/ASR/local/prepare_lang_bpe.py
Executable file
@ -0,0 +1,250 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
# Copyright (c) 2021 Xiaomi Corporation (authors: Fangjun Kuang)
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
This script takes as input `lang_dir`, which should contain::
|
||||||
|
|
||||||
|
- lang_dir/bpe.model,
|
||||||
|
- lang_dir/words.txt
|
||||||
|
|
||||||
|
and generates the following files in the directory `lang_dir`:
|
||||||
|
|
||||||
|
- lexicon.txt
|
||||||
|
- lexicon_disambig.txt
|
||||||
|
- L.pt
|
||||||
|
- L_disambig.pt
|
||||||
|
- tokens.txt
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Dict, List, Tuple
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import sentencepiece as spm
|
||||||
|
import torch
|
||||||
|
from prepare_lang_g2pen import (
|
||||||
|
Lexicon,
|
||||||
|
add_disambig_symbols,
|
||||||
|
add_self_loops,
|
||||||
|
write_lexicon,
|
||||||
|
write_mapping,
|
||||||
|
)
|
||||||
|
|
||||||
|
from icefall.utils import str2bool
|
||||||
|
|
||||||
|
|
||||||
|
def lexicon_to_fst_no_sil(
|
||||||
|
lexicon: Lexicon,
|
||||||
|
token2id: Dict[str, int],
|
||||||
|
word2id: Dict[str, int],
|
||||||
|
need_self_loops: bool = False,
|
||||||
|
) -> k2.Fsa:
|
||||||
|
"""Convert a lexicon to an FST (in k2 format).
|
||||||
|
|
||||||
|
Args:
|
||||||
|
lexicon:
|
||||||
|
The input lexicon. See also :func:`read_lexicon`
|
||||||
|
token2id:
|
||||||
|
A dict mapping tokens to IDs.
|
||||||
|
word2id:
|
||||||
|
A dict mapping words to IDs.
|
||||||
|
need_self_loops:
|
||||||
|
If True, add self-loop to states with non-epsilon output symbols
|
||||||
|
on at least one arc out of the state. The input label for this
|
||||||
|
self loop is `token2id["#0"]` and the output label is `word2id["#0"]`.
|
||||||
|
Returns:
|
||||||
|
Return an instance of `k2.Fsa` representing the given lexicon.
|
||||||
|
"""
|
||||||
|
loop_state = 0 # words enter and leave from here
|
||||||
|
next_state = 1 # the next un-allocated state, will be incremented as we go
|
||||||
|
|
||||||
|
arcs = []
|
||||||
|
|
||||||
|
# The blank symbol <blk> is defined in local/train_bpe_model.py
|
||||||
|
assert token2id["<blk>"] == 0
|
||||||
|
assert word2id["<eps>"] == 0
|
||||||
|
|
||||||
|
eps = 0
|
||||||
|
|
||||||
|
for word, pieces in lexicon:
|
||||||
|
assert len(pieces) > 0, f"{word} has no pronunciations"
|
||||||
|
cur_state = loop_state
|
||||||
|
|
||||||
|
word = word2id[word]
|
||||||
|
pieces = [token2id[i] for i in pieces]
|
||||||
|
|
||||||
|
for i in range(len(pieces) - 1):
|
||||||
|
w = word if i == 0 else eps
|
||||||
|
arcs.append([cur_state, next_state, pieces[i], w, 0])
|
||||||
|
|
||||||
|
cur_state = next_state
|
||||||
|
next_state += 1
|
||||||
|
|
||||||
|
# now for the last piece of this word
|
||||||
|
i = len(pieces) - 1
|
||||||
|
w = word if i == 0 else eps
|
||||||
|
arcs.append([cur_state, loop_state, pieces[i], w, 0])
|
||||||
|
|
||||||
|
if need_self_loops:
|
||||||
|
disambig_token = token2id["#0"]
|
||||||
|
disambig_word = word2id["#0"]
|
||||||
|
arcs = add_self_loops(
|
||||||
|
arcs, disambig_token=disambig_token, disambig_word=disambig_word
|
||||||
|
)
|
||||||
|
|
||||||
|
final_state = next_state
|
||||||
|
arcs.append([loop_state, final_state, -1, -1, 0])
|
||||||
|
arcs.append([final_state])
|
||||||
|
|
||||||
|
arcs = sorted(arcs, key=lambda arc: arc[0])
|
||||||
|
arcs = [[str(i) for i in arc] for arc in arcs]
|
||||||
|
arcs = [" ".join(arc) for arc in arcs]
|
||||||
|
arcs = "\n".join(arcs)
|
||||||
|
|
||||||
|
fsa = k2.Fsa.from_str(arcs, acceptor=False)
|
||||||
|
return fsa
|
||||||
|
|
||||||
|
|
||||||
|
def generate_lexicon(
|
||||||
|
model_file: str, words: List[str]
|
||||||
|
) -> Tuple[Lexicon, Dict[str, int]]:
|
||||||
|
"""Generate a lexicon from a BPE model.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
model_file:
|
||||||
|
Path to a sentencepiece model.
|
||||||
|
words:
|
||||||
|
A list of strings representing words.
|
||||||
|
Returns:
|
||||||
|
Return a tuple with two elements:
|
||||||
|
- A dict whose keys are words and values are the corresponding
|
||||||
|
word pieces.
|
||||||
|
- A dict representing the token symbol, mapping from tokens to IDs.
|
||||||
|
"""
|
||||||
|
sp = spm.SentencePieceProcessor()
|
||||||
|
sp.load(str(model_file))
|
||||||
|
|
||||||
|
words_pieces: List[List[str]] = sp.encode(words, out_type=str)
|
||||||
|
|
||||||
|
lexicon = []
|
||||||
|
for word, pieces in zip(words, words_pieces):
|
||||||
|
lexicon.append((word, pieces))
|
||||||
|
|
||||||
|
# The OOV word is <UNK>
|
||||||
|
lexicon.append(("[UNK]", [sp.id_to_piece(sp.unk_id())]))
|
||||||
|
|
||||||
|
token2id: Dict[str, int] = dict()
|
||||||
|
for i in range(sp.vocab_size()):
|
||||||
|
token2id[sp.id_to_piece(i)] = i
|
||||||
|
|
||||||
|
return lexicon, token2id
|
||||||
|
|
||||||
|
|
||||||
|
def get_args():
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument(
|
||||||
|
"--lang-dir",
|
||||||
|
type=str,
|
||||||
|
help="""Input and output directory.
|
||||||
|
It should contain the bpe.model and words.txt
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--debug",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="""True for debugging, which will generate
|
||||||
|
a visualization of the lexicon FST.
|
||||||
|
|
||||||
|
Caution: If your lexicon contains hundreds of thousands
|
||||||
|
of lines, please set it to False!
|
||||||
|
|
||||||
|
See "test/test_bpe_lexicon.py" for usage.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
args = get_args()
|
||||||
|
lang_dir = Path(args.lang_dir)
|
||||||
|
model_file = lang_dir / "bpe.model"
|
||||||
|
|
||||||
|
word_sym_table = k2.SymbolTable.from_file(lang_dir / "words.txt")
|
||||||
|
|
||||||
|
words = word_sym_table.symbols
|
||||||
|
|
||||||
|
excluded = ["<eps>", "!SIL", "<SPOKEN_NOISE>", "[UNK]", "#0", "<s>", "</s>"]
|
||||||
|
for w in excluded:
|
||||||
|
if w in words:
|
||||||
|
words.remove(w)
|
||||||
|
|
||||||
|
lexicon, token_sym_table = generate_lexicon(model_file, words)
|
||||||
|
|
||||||
|
lexicon_disambig, max_disambig = add_disambig_symbols(lexicon)
|
||||||
|
|
||||||
|
next_token_id = max(token_sym_table.values()) + 1
|
||||||
|
for i in range(max_disambig + 1):
|
||||||
|
disambig = f"#{i}"
|
||||||
|
assert disambig not in token_sym_table
|
||||||
|
token_sym_table[disambig] = next_token_id
|
||||||
|
next_token_id += 1
|
||||||
|
|
||||||
|
word_sym_table.add("#0")
|
||||||
|
word_sym_table.add("<s>")
|
||||||
|
word_sym_table.add("</s>")
|
||||||
|
|
||||||
|
write_mapping(lang_dir / "tokens.txt", token_sym_table)
|
||||||
|
|
||||||
|
write_lexicon(lang_dir / "lexicon.txt", lexicon)
|
||||||
|
write_lexicon(lang_dir / "lexicon_disambig.txt", lexicon_disambig)
|
||||||
|
|
||||||
|
L = lexicon_to_fst_no_sil(
|
||||||
|
lexicon, token2id=token_sym_table, word2id=word_sym_table
|
||||||
|
)
|
||||||
|
|
||||||
|
L_disambig = lexicon_to_fst_no_sil(
|
||||||
|
lexicon_disambig,
|
||||||
|
token2id=token_sym_table,
|
||||||
|
word2id=word_sym_table,
|
||||||
|
need_self_loops=True,
|
||||||
|
)
|
||||||
|
torch.save(L.as_dict(), lang_dir / "L.pt")
|
||||||
|
torch.save(L_disambig.as_dict(), lang_dir / "L_disambig.pt")
|
||||||
|
|
||||||
|
if args.debug:
|
||||||
|
labels_sym = k2.SymbolTable.from_file(lang_dir / "tokens.txt")
|
||||||
|
aux_labels_sym = k2.SymbolTable.from_file(lang_dir / "words.txt")
|
||||||
|
|
||||||
|
L.labels_sym = labels_sym
|
||||||
|
L.aux_labels_sym = aux_labels_sym
|
||||||
|
L.draw(f"{lang_dir / 'L.svg'}", title="L.pt")
|
||||||
|
|
||||||
|
L_disambig.labels_sym = labels_sym
|
||||||
|
L_disambig.aux_labels_sym = aux_labels_sym
|
||||||
|
L_disambig.draw(f"{lang_dir / 'L_disambig.svg'}", title="L_disambig.pt")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
478
egs/fisher_swbd/ASR/local/prepare_lang_g2pen.py
Executable file
478
egs/fisher_swbd/ASR/local/prepare_lang_g2pen.py
Executable file
@ -0,0 +1,478 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
This script takes as input a wors.txt file "data/lang_phone/words.txt"
|
||||||
|
consisting of words and their IDs and creates a lexicon with g2p_en python package
|
||||||
|
(it's CMUdict based). It also creates rest of the files typically expected in a lang
|
||||||
|
dir, including L.pt and Linv.pt.
|
||||||
|
"""
|
||||||
|
import argparse
|
||||||
|
import math
|
||||||
|
from collections import defaultdict
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Any, Dict, List, Tuple
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import torch
|
||||||
|
from g2p_en import G2p
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
from icefall.lexicon import read_lexicon, write_lexicon
|
||||||
|
from icefall.utils import str2bool
|
||||||
|
|
||||||
|
Lexicon = List[Tuple[str, List[str]]]
|
||||||
|
|
||||||
|
|
||||||
|
def get_args():
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument(
|
||||||
|
"--lang-dir",
|
||||||
|
type=str,
|
||||||
|
help="""Input and output directory.
|
||||||
|
It should contain a file words.txt.
|
||||||
|
Generated files by this script are saved into this directory.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--debug",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="""True for debugging, which will generate
|
||||||
|
a visualization of the lexicon FST.
|
||||||
|
|
||||||
|
Caution: If your lexicon contains hundreds of thousands
|
||||||
|
of lines, please set it to False!
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
def get_g2p_sym2int():
|
||||||
|
|
||||||
|
# These symbols are removed from from g2p_en's vocabulary
|
||||||
|
excluded_symbols = ["<pad>", "<s>", "</s>", "<unk>"]
|
||||||
|
|
||||||
|
symbols = [p for p in sorted(G2p().phonemes) if p not in excluded_symbols]
|
||||||
|
# reserve 0 and 1 for blank and sos/eos/pad tokens
|
||||||
|
# symbols start at index 2
|
||||||
|
sym2int = {
|
||||||
|
"<eps>": 0,
|
||||||
|
"SIL": 1,
|
||||||
|
"UNK": 2,
|
||||||
|
"LAUGHTER": 3,
|
||||||
|
"SIGH": 4,
|
||||||
|
"COUGH": 5,
|
||||||
|
"VOCALIZED-NOISE": 6,
|
||||||
|
"BREATH": 7,
|
||||||
|
"LIPSMACK": 8,
|
||||||
|
"SNEEZE": 9,
|
||||||
|
"NOISE": 10,
|
||||||
|
**{sym: idx for idx, sym in enumerate(symbols, start=11)},
|
||||||
|
}
|
||||||
|
return sym2int
|
||||||
|
|
||||||
|
|
||||||
|
def write_mapping(filename: str, sym2id: Dict[str, int]) -> None:
|
||||||
|
"""Write a symbol to ID mapping to a file.
|
||||||
|
|
||||||
|
Note:
|
||||||
|
No need to implement `read_mapping` as it can be done
|
||||||
|
through :func:`k2.SymbolTable.from_file`.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
filename:
|
||||||
|
Filename to save the mapping.
|
||||||
|
sym2id:
|
||||||
|
A dict mapping symbols to IDs.
|
||||||
|
Returns:
|
||||||
|
Return None.
|
||||||
|
"""
|
||||||
|
with open(filename, "w", encoding="utf-8") as f:
|
||||||
|
for sym, i in sym2id.items():
|
||||||
|
f.write(f"{sym} {i}\n")
|
||||||
|
|
||||||
|
|
||||||
|
def get_tokens(lexicon: Lexicon) -> List[str]:
|
||||||
|
"""Get tokens from a lexicon.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
lexicon:
|
||||||
|
It is the return value of :func:`read_lexicon`.
|
||||||
|
Returns:
|
||||||
|
Return a list of unique tokens.
|
||||||
|
"""
|
||||||
|
ans = set()
|
||||||
|
for _, tokens in lexicon:
|
||||||
|
ans.update(tokens)
|
||||||
|
sorted_ans = sorted(list(ans))
|
||||||
|
return sorted_ans
|
||||||
|
|
||||||
|
|
||||||
|
def get_words(lexicon: Lexicon) -> List[str]:
|
||||||
|
"""Get words from a lexicon.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
lexicon:
|
||||||
|
It is the return value of :func:`read_lexicon`.
|
||||||
|
Returns:
|
||||||
|
Return a list of unique words.
|
||||||
|
"""
|
||||||
|
ans = set()
|
||||||
|
for word, _ in lexicon:
|
||||||
|
ans.add(word)
|
||||||
|
sorted_ans = sorted(list(ans))
|
||||||
|
return sorted_ans
|
||||||
|
|
||||||
|
|
||||||
|
def add_disambig_symbols(lexicon: Lexicon) -> Tuple[Lexicon, int]:
|
||||||
|
"""It adds pseudo-token disambiguation symbols #1, #2 and so on
|
||||||
|
at the ends of tokens to ensure that all pronunciations are different,
|
||||||
|
and that none is a prefix of another.
|
||||||
|
|
||||||
|
See also add_lex_disambig.pl from kaldi.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
lexicon:
|
||||||
|
It is returned by :func:`read_lexicon`.
|
||||||
|
Returns:
|
||||||
|
Return a tuple with two elements:
|
||||||
|
|
||||||
|
- The output lexicon with disambiguation symbols
|
||||||
|
- The ID of the max disambiguation symbol that appears
|
||||||
|
in the lexicon
|
||||||
|
"""
|
||||||
|
|
||||||
|
# (1) Work out the count of each token-sequence in the
|
||||||
|
# lexicon.
|
||||||
|
count = defaultdict(int)
|
||||||
|
for _, tokens in lexicon:
|
||||||
|
count[" ".join(tokens)] += 1
|
||||||
|
|
||||||
|
# (2) For each left sub-sequence of each token-sequence, note down
|
||||||
|
# that it exists (for identifying prefixes of longer strings).
|
||||||
|
issubseq = defaultdict(int)
|
||||||
|
for _, tokens in lexicon:
|
||||||
|
tokens = tokens.copy()
|
||||||
|
tokens.pop()
|
||||||
|
while tokens:
|
||||||
|
issubseq[" ".join(tokens)] = 1
|
||||||
|
tokens.pop()
|
||||||
|
|
||||||
|
# (3) For each entry in the lexicon:
|
||||||
|
# if the token sequence is unique and is not a
|
||||||
|
# prefix of another word, no disambig symbol.
|
||||||
|
# Else output #1, or #2, #3, ... if the same token-seq
|
||||||
|
# has already been assigned a disambig symbol.
|
||||||
|
ans = []
|
||||||
|
|
||||||
|
# We start with #1 since #0 has its own purpose
|
||||||
|
first_allowed_disambig = 1
|
||||||
|
max_disambig = first_allowed_disambig - 1
|
||||||
|
last_used_disambig_symbol_of = defaultdict(int)
|
||||||
|
|
||||||
|
for word, tokens in lexicon:
|
||||||
|
tokenseq = " ".join(tokens)
|
||||||
|
assert tokenseq != ""
|
||||||
|
if issubseq[tokenseq] == 0 and count[tokenseq] == 1:
|
||||||
|
ans.append((word, tokens))
|
||||||
|
continue
|
||||||
|
|
||||||
|
cur_disambig = last_used_disambig_symbol_of[tokenseq]
|
||||||
|
if cur_disambig == 0:
|
||||||
|
cur_disambig = first_allowed_disambig
|
||||||
|
else:
|
||||||
|
cur_disambig += 1
|
||||||
|
|
||||||
|
if cur_disambig > max_disambig:
|
||||||
|
max_disambig = cur_disambig
|
||||||
|
last_used_disambig_symbol_of[tokenseq] = cur_disambig
|
||||||
|
tokenseq += f" #{cur_disambig}"
|
||||||
|
ans.append((word, tokenseq.split()))
|
||||||
|
return ans, max_disambig
|
||||||
|
|
||||||
|
|
||||||
|
def generate_id_map(symbols: List[str]) -> Dict[str, int]:
|
||||||
|
"""Generate ID maps, i.e., map a symbol to a unique ID.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
symbols:
|
||||||
|
A list of unique symbols.
|
||||||
|
Returns:
|
||||||
|
A dict containing the mapping between symbols and IDs.
|
||||||
|
"""
|
||||||
|
return {sym: i for i, sym in enumerate(symbols)}
|
||||||
|
|
||||||
|
|
||||||
|
def add_self_loops(
|
||||||
|
arcs: List[List[Any]], disambig_token: int, disambig_word: int
|
||||||
|
) -> List[List[Any]]:
|
||||||
|
"""Adds self-loops to states of an FST to propagate disambiguation symbols
|
||||||
|
through it. They are added on each state with non-epsilon output symbols
|
||||||
|
on at least one arc out of the state.
|
||||||
|
|
||||||
|
See also fstaddselfloops.pl from Kaldi. One difference is that
|
||||||
|
Kaldi uses OpenFst style FSTs and it has multiple final states.
|
||||||
|
This function uses k2 style FSTs and it does not need to add self-loops
|
||||||
|
to the final state.
|
||||||
|
|
||||||
|
The input label of a self-loop is `disambig_token`, while the output
|
||||||
|
label is `disambig_word`.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
arcs:
|
||||||
|
A list-of-list. The sublist contains
|
||||||
|
`[src_state, dest_state, label, aux_label, score]`
|
||||||
|
disambig_token:
|
||||||
|
It is the token ID of the symbol `#0`.
|
||||||
|
disambig_word:
|
||||||
|
It is the word ID of the symbol `#0`.
|
||||||
|
|
||||||
|
Return:
|
||||||
|
Return new `arcs` containing self-loops.
|
||||||
|
"""
|
||||||
|
states_needs_self_loops = set()
|
||||||
|
for arc in arcs:
|
||||||
|
src, dst, ilabel, olabel, score = arc
|
||||||
|
if olabel != 0:
|
||||||
|
states_needs_self_loops.add(src)
|
||||||
|
|
||||||
|
ans = []
|
||||||
|
for s in states_needs_self_loops:
|
||||||
|
ans.append([s, s, disambig_token, disambig_word, 0])
|
||||||
|
|
||||||
|
return arcs + ans
|
||||||
|
|
||||||
|
|
||||||
|
def lexicon_to_fst(
|
||||||
|
lexicon: Lexicon,
|
||||||
|
token2id: Dict[str, int],
|
||||||
|
word2id: Dict[str, int],
|
||||||
|
sil_token: str = "SIL",
|
||||||
|
sil_prob: float = 0.5,
|
||||||
|
need_self_loops: bool = False,
|
||||||
|
) -> k2.Fsa:
|
||||||
|
"""Convert a lexicon to an FST (in k2 format) with optional silence at
|
||||||
|
the beginning and end of each word.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
lexicon:
|
||||||
|
The input lexicon. See also :func:`read_lexicon`
|
||||||
|
token2id:
|
||||||
|
A dict mapping tokens to IDs.
|
||||||
|
word2id:
|
||||||
|
A dict mapping words to IDs.
|
||||||
|
sil_token:
|
||||||
|
The silence token.
|
||||||
|
sil_prob:
|
||||||
|
The probability for adding a silence at the beginning and end
|
||||||
|
of the word.
|
||||||
|
need_self_loops:
|
||||||
|
If True, add self-loop to states with non-epsilon output symbols
|
||||||
|
on at least one arc out of the state. The input label for this
|
||||||
|
self loop is `token2id["#0"]` and the output label is `word2id["#0"]`.
|
||||||
|
Returns:
|
||||||
|
Return an instance of `k2.Fsa` representing the given lexicon.
|
||||||
|
"""
|
||||||
|
assert sil_prob > 0.0 and sil_prob < 1.0
|
||||||
|
# CAUTION: we use score, i.e, negative cost.
|
||||||
|
sil_score = math.log(sil_prob)
|
||||||
|
no_sil_score = math.log(1.0 - sil_prob)
|
||||||
|
|
||||||
|
start_state = 0
|
||||||
|
loop_state = 1 # words enter and leave from here
|
||||||
|
sil_state = 2 # words terminate here when followed by silence; this state
|
||||||
|
# has a silence transition to loop_state.
|
||||||
|
next_state = 3 # the next un-allocated state, will be incremented as we go.
|
||||||
|
arcs = []
|
||||||
|
|
||||||
|
assert token2id["<eps>"] == 0
|
||||||
|
assert word2id["<eps>"] == 0
|
||||||
|
|
||||||
|
eps = 0
|
||||||
|
|
||||||
|
sil_token = token2id[sil_token]
|
||||||
|
|
||||||
|
arcs.append([start_state, loop_state, eps, eps, no_sil_score])
|
||||||
|
arcs.append([start_state, sil_state, eps, eps, sil_score])
|
||||||
|
arcs.append([sil_state, loop_state, sil_token, eps, 0])
|
||||||
|
|
||||||
|
for word, tokens in lexicon:
|
||||||
|
assert len(tokens) > 0, f"{word} has no pronunciations"
|
||||||
|
cur_state = loop_state
|
||||||
|
|
||||||
|
word = word2id[word]
|
||||||
|
tokens = [token2id[i] for i in tokens]
|
||||||
|
|
||||||
|
for i in range(len(tokens) - 1):
|
||||||
|
w = word if i == 0 else eps
|
||||||
|
arcs.append([cur_state, next_state, tokens[i], w, 0])
|
||||||
|
|
||||||
|
cur_state = next_state
|
||||||
|
next_state += 1
|
||||||
|
|
||||||
|
# now for the last token of this word
|
||||||
|
# It has two out-going arcs, one to the loop state,
|
||||||
|
# the other one to the sil_state.
|
||||||
|
i = len(tokens) - 1
|
||||||
|
w = word if i == 0 else eps
|
||||||
|
arcs.append([cur_state, loop_state, tokens[i], w, no_sil_score])
|
||||||
|
arcs.append([cur_state, sil_state, tokens[i], w, sil_score])
|
||||||
|
|
||||||
|
if need_self_loops:
|
||||||
|
disambig_token = token2id["#0"]
|
||||||
|
disambig_word = word2id["#0"]
|
||||||
|
arcs = add_self_loops(
|
||||||
|
arcs, disambig_token=disambig_token, disambig_word=disambig_word
|
||||||
|
)
|
||||||
|
|
||||||
|
final_state = next_state
|
||||||
|
arcs.append([loop_state, final_state, -1, -1, 0])
|
||||||
|
arcs.append([final_state])
|
||||||
|
|
||||||
|
arcs = sorted(arcs, key=lambda arc: arc[0])
|
||||||
|
arcs = [[str(i) for i in arc] for arc in arcs]
|
||||||
|
arcs = [" ".join(arc) for arc in arcs]
|
||||||
|
arcs = "\n".join(arcs)
|
||||||
|
|
||||||
|
fsa = k2.Fsa.from_str(arcs, acceptor=False)
|
||||||
|
return fsa
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
args = get_args()
|
||||||
|
lang_dir = Path(args.lang_dir)
|
||||||
|
vocab_filename = lang_dir / "words.txt"
|
||||||
|
lexicon_filename = lang_dir / "lexicon.txt"
|
||||||
|
sil_token = "SIL"
|
||||||
|
sil_prob = 0.5
|
||||||
|
special_symbols = [
|
||||||
|
"[UNK]",
|
||||||
|
"[BREATH]",
|
||||||
|
"[COUGH]",
|
||||||
|
"[LAUGHTER]",
|
||||||
|
"[LIPSMACK]",
|
||||||
|
"[NOISE]",
|
||||||
|
"[SIGH]",
|
||||||
|
"[SNEEZE]",
|
||||||
|
"[VOCALIZED-NOISE]",
|
||||||
|
]
|
||||||
|
|
||||||
|
g2p = G2p()
|
||||||
|
token2id = get_g2p_sym2int()
|
||||||
|
|
||||||
|
vocab = sorted(
|
||||||
|
[
|
||||||
|
l.split()[0]
|
||||||
|
for l in vocab_filename.read_text().splitlines()
|
||||||
|
if l.strip() and not l.startswith(("!", "[", "<", "#"))
|
||||||
|
]
|
||||||
|
)
|
||||||
|
print("First ten words from the vocabulary:")
|
||||||
|
print(vocab[:10])
|
||||||
|
|
||||||
|
if not lexicon_filename.is_file():
|
||||||
|
lexicon = [("!SIL", [sil_token])]
|
||||||
|
for symbol in special_symbols:
|
||||||
|
lexicon.append((symbol, [symbol[1:-1]]))
|
||||||
|
lexicon += [
|
||||||
|
(
|
||||||
|
word,
|
||||||
|
[
|
||||||
|
phn
|
||||||
|
for phn in g2p(word)
|
||||||
|
if phn
|
||||||
|
not in (
|
||||||
|
"'",
|
||||||
|
" ",
|
||||||
|
"-",
|
||||||
|
",",
|
||||||
|
) # g2p_en has these symbols as phones
|
||||||
|
],
|
||||||
|
)
|
||||||
|
for word in tqdm(vocab, desc="Processing vocab with G2P")
|
||||||
|
]
|
||||||
|
lexicon = [entry for entry in lexicon if entry[1]] # filter empty prons
|
||||||
|
print(lexicon[:10])
|
||||||
|
|
||||||
|
write_lexicon(lexicon_filename, lexicon)
|
||||||
|
else:
|
||||||
|
lexicon = read_lexicon(lexicon_filename)
|
||||||
|
|
||||||
|
tokens = get_tokens(lexicon)
|
||||||
|
|
||||||
|
lexicon_disambig, max_disambig = add_disambig_symbols(lexicon)
|
||||||
|
|
||||||
|
for i in range(max_disambig + 1):
|
||||||
|
disambig = f"#{i}"
|
||||||
|
assert disambig not in tokens
|
||||||
|
tokens.append(disambig)
|
||||||
|
token2id[disambig] = max(token2id.values()) + 1
|
||||||
|
|
||||||
|
print("Tokens in the lexicon:")
|
||||||
|
print(tokens)
|
||||||
|
|
||||||
|
# sort by ID
|
||||||
|
token2id = dict(sorted(token2id.items(), key=lambda tpl: tpl[1]))
|
||||||
|
print(token2id)
|
||||||
|
word2id = {"<eps>": 0}
|
||||||
|
word2id.update(
|
||||||
|
{word: int(id_) for id_, (word, pron) in enumerate(lexicon, start=1)}
|
||||||
|
)
|
||||||
|
for symbol in ["<s>", "</s>", "#0"]:
|
||||||
|
word2id[symbol] = len(word2id)
|
||||||
|
|
||||||
|
write_mapping(lang_dir / "tokens.txt", token2id)
|
||||||
|
write_lexicon(lang_dir / "lexicon_disambig.txt", lexicon_disambig)
|
||||||
|
|
||||||
|
L = lexicon_to_fst(
|
||||||
|
lexicon,
|
||||||
|
token2id=token2id,
|
||||||
|
word2id=word2id,
|
||||||
|
sil_token=sil_token,
|
||||||
|
sil_prob=sil_prob,
|
||||||
|
)
|
||||||
|
|
||||||
|
L_disambig = lexicon_to_fst(
|
||||||
|
lexicon_disambig,
|
||||||
|
token2id=token2id,
|
||||||
|
word2id=word2id,
|
||||||
|
sil_token=sil_token,
|
||||||
|
sil_prob=sil_prob,
|
||||||
|
need_self_loops=True,
|
||||||
|
)
|
||||||
|
torch.save(L.as_dict(), lang_dir / "L.pt")
|
||||||
|
torch.save(L_disambig.as_dict(), lang_dir / "L_disambig.pt")
|
||||||
|
|
||||||
|
if args.debug:
|
||||||
|
labels_sym = k2.SymbolTable.from_file(lang_dir / "tokens.txt")
|
||||||
|
aux_labels_sym = k2.SymbolTable.from_file(lang_dir / "words.txt")
|
||||||
|
|
||||||
|
L.labels_sym = labels_sym
|
||||||
|
L.aux_labels_sym = aux_labels_sym
|
||||||
|
L.draw(f"{lang_dir / 'L.svg'}", title="L.pt")
|
||||||
|
|
||||||
|
L_disambig.labels_sym = labels_sym
|
||||||
|
L_disambig.aux_labels_sym = aux_labels_sym
|
||||||
|
L_disambig.draw(f"{lang_dir / 'L_disambig.svg'}", title="L_disambig.pt")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
92
egs/fisher_swbd/ASR/local/train_bpe_model.py
Executable file
92
egs/fisher_swbd/ASR/local/train_bpe_model.py
Executable file
@ -0,0 +1,92 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
# You can install sentencepiece via:
|
||||||
|
#
|
||||||
|
# pip install sentencepiece
|
||||||
|
#
|
||||||
|
# Due to an issue reported in
|
||||||
|
# https://github.com/google/sentencepiece/pull/642#issuecomment-857972030
|
||||||
|
#
|
||||||
|
# Please install a version >=0.1.96
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import shutil
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import sentencepiece as spm
|
||||||
|
|
||||||
|
|
||||||
|
def get_args():
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument(
|
||||||
|
"--lang-dir",
|
||||||
|
type=str,
|
||||||
|
help="""Input and output directory.
|
||||||
|
It should contain the training corpus: transcript_words.txt.
|
||||||
|
The generated bpe.model is saved to this directory.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument("--transcript", type=str, help="Training transcript.")
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--vocab-size", type=int, help="Vocabulary size for BPE training"
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
args = get_args()
|
||||||
|
vocab_size = args.vocab_size
|
||||||
|
lang_dir = Path(args.lang_dir)
|
||||||
|
|
||||||
|
model_type = "unigram"
|
||||||
|
|
||||||
|
model_prefix = f"{lang_dir}/{model_type}_{vocab_size}"
|
||||||
|
train_text = args.transcript
|
||||||
|
character_coverage = 1.0
|
||||||
|
input_sentence_size = 100000000
|
||||||
|
|
||||||
|
user_defined_symbols = ["<blk>", "<sos/eos>"]
|
||||||
|
unk_id = len(user_defined_symbols)
|
||||||
|
# Note: unk_id is fixed to 2.
|
||||||
|
# If you change it, you should also change other
|
||||||
|
# places that are using it.
|
||||||
|
|
||||||
|
model_file = Path(model_prefix + ".model")
|
||||||
|
if not model_file.is_file():
|
||||||
|
spm.SentencePieceTrainer.train(
|
||||||
|
input=train_text,
|
||||||
|
vocab_size=vocab_size,
|
||||||
|
model_type=model_type,
|
||||||
|
model_prefix=model_prefix,
|
||||||
|
input_sentence_size=input_sentence_size,
|
||||||
|
character_coverage=character_coverage,
|
||||||
|
user_defined_symbols=user_defined_symbols,
|
||||||
|
unk_id=unk_id,
|
||||||
|
bos_id=-1,
|
||||||
|
eos_id=-1,
|
||||||
|
)
|
||||||
|
|
||||||
|
shutil.copyfile(model_file, f"{lang_dir}/bpe.model")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
300
egs/fisher_swbd/ASR/prepare.sh
Executable file
300
egs/fisher_swbd/ASR/prepare.sh
Executable file
@ -0,0 +1,300 @@
|
|||||||
|
#!/usr/bin/env bash
|
||||||
|
. ./path.sh
|
||||||
|
set -eou pipefail
|
||||||
|
|
||||||
|
nj=15
|
||||||
|
stage=0
|
||||||
|
stop_stage=500
|
||||||
|
|
||||||
|
# We assume dl_dir (download dir) contains the following
|
||||||
|
# directories and files. Most of them can't be downloaded automatically
|
||||||
|
# as they are not publically available and require a license purchased
|
||||||
|
# from the LDC.
|
||||||
|
#
|
||||||
|
# - $dl_dir/{LDC2004S13,LDC2004T19,LDC2005S13,LDC2005T19}
|
||||||
|
# Fisher LDC packages.
|
||||||
|
#
|
||||||
|
# - $dl_dir/LDC97S62
|
||||||
|
# Switchboard LDC audio package (transcripts are auto-downloaded)
|
||||||
|
#
|
||||||
|
# - $dl_dir/{LDC2002S09,LDC2002T43}
|
||||||
|
# Eval2000 audio and transcript
|
||||||
|
#
|
||||||
|
# - $dl_dir/musan
|
||||||
|
# This directory contains the following directories downloaded from
|
||||||
|
# http://www.openslr.org/17/
|
||||||
|
#
|
||||||
|
# - music
|
||||||
|
# - noise
|
||||||
|
# - speech
|
||||||
|
|
||||||
|
dl_dir=$PWD/download
|
||||||
|
mkdir -p $dl_dir
|
||||||
|
|
||||||
|
. shared/parse_options.sh || exit 1
|
||||||
|
|
||||||
|
# vocab size for sentence piece models.
|
||||||
|
# It will generate data/lang_bpe_xxx,
|
||||||
|
# data/lang_bpe_yyy if the array contains xxx, yyy
|
||||||
|
vocab_sizes=(
|
||||||
|
500
|
||||||
|
)
|
||||||
|
|
||||||
|
# All files generated by this script are saved in "data".
|
||||||
|
# You can safely remove "data" and rerun this script to regenerate it.
|
||||||
|
mkdir -p data
|
||||||
|
|
||||||
|
log() {
|
||||||
|
# This function is from espnet
|
||||||
|
local fname=${BASH_SOURCE[1]##*/}
|
||||||
|
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
||||||
|
}
|
||||||
|
|
||||||
|
log "dl_dir: $dl_dir"
|
||||||
|
|
||||||
|
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
|
||||||
|
log "Stage 0: Download data"
|
||||||
|
|
||||||
|
# If you have pre-downloaded it to /path/to/fisher and /path/to/swbd,
|
||||||
|
# you can create a symlink
|
||||||
|
#
|
||||||
|
# ln -sfv /path/to/fisher $dl_dir/fisher
|
||||||
|
#
|
||||||
|
|
||||||
|
# TODO: remove
|
||||||
|
LDC_ROOT=/nas/data4/DATA
|
||||||
|
for pkg in LDC2004S13 LDC2004T19 LDC2005S13 LDC2005T19 LDC97S62 LDC2002S09 LDC2002T43; do
|
||||||
|
ln -sfv $LDC_ROOT/$pkg $dl_dir/
|
||||||
|
done
|
||||||
|
|
||||||
|
# If you have pre-downloaded it to /path/to/musan,
|
||||||
|
# you can create a symlink
|
||||||
|
#
|
||||||
|
# ln -sfv /path/to/musan $dl_dir/
|
||||||
|
#
|
||||||
|
if [ ! -d $dl_dir/musan ]; then
|
||||||
|
lhotse download musan $dl_dir
|
||||||
|
fi
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ] ; then
|
||||||
|
log "Stage 1: Prepare Fisher manifests"
|
||||||
|
mkdir -p data/manifests/fisher
|
||||||
|
lhotse prepare fisher-english --absolute-paths 1 $dl_dir data/manifests/fisher
|
||||||
|
local/normalize_and_filter_supervisions.py data/manifests/fisher/supervisions.jsonl.gz data/manifests/supervisions_fisher.jsonl.gz
|
||||||
|
cp data/manifests/fisher/recordings.jsonl.gz data/manifests/recordings_fisher.jsonl.gz
|
||||||
|
gzip -d data/manifests/supervisions_fisher.jsonl.gz
|
||||||
|
gzip -d data/manifests/recordings_fisher.jsonl.gz
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
||||||
|
log "Stage 2: Prepare SWBD manifests"
|
||||||
|
mkdir -p data/manifests/swbd
|
||||||
|
lhotse prepare switchboard --absolute-paths 1 --omit-silence $dl_dir/LDC97S62 data/manifests/swbd
|
||||||
|
python3 local/normalize_and_filter_supervisions.py data/manifests/swbd/swbd_supervisions_all.jsonl.gz data/manifests/supervisions_swbd.jsonl.gz
|
||||||
|
cp data/manifests/swbd/swbd_recordings_all.jsonl.gz data/manifests/recordings_swbd.jsonl.gz
|
||||||
|
gzip -d data/manifests/supervisions_swbd.jsonl.gz
|
||||||
|
gzip -d data/manifests/recordings_swbd.jsonl.gz
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
||||||
|
mkdir -p data/manifests/eval2000
|
||||||
|
lhotse prepare eval2000 --absolute-paths 1 $dl_dir data/manifests/eval2000
|
||||||
|
python3 local/normalize_eval2000.py data/manifests/eval2000/eval2000_supervisions_unnorm.jsonl.gz data/manifests/eval2000/supervisions_eval2000.jsonl.gz
|
||||||
|
lhotse fix data/manifests/eval2000/eval2000_recordings_all.jsonl.gz data/manifests/eval2000/supervisions_eval2000.jsonl.gz data/manifests
|
||||||
|
mv data/manifests/eval2000_recordings_all.jsonl.gz data/manifests/recordings_eval2000.jsonl.gz
|
||||||
|
gzip -d data/manifests/recordings_eval2000.jsonl.gz
|
||||||
|
gzip -d data/manifests/supervisions_eval2000.jsonl.gz
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
||||||
|
mkdir -p data/fbank
|
||||||
|
python3 local/compute_fbank_fisher_swbd_eval2000.py
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
||||||
|
#####################################
|
||||||
|
#fisher
|
||||||
|
#####################################
|
||||||
|
|
||||||
|
gzip -d data/fbank/cuts_fisher.json.gz
|
||||||
|
jq -c '.[]' data/fbank/cuts_fisher.json > data/fbank/cuts_fisher.jsonl
|
||||||
|
gzip -c data/fbank/cuts_fisher.jsonl > data/fbank/cuts_fisher.jsonl.gz
|
||||||
|
|
||||||
|
# extract list of sph
|
||||||
|
python3 local/extract_list_of_sph.py data/fbank/cuts_fisher.jsonl | sort | uniq > data/fbank/cuts_fisher_sph.list
|
||||||
|
|
||||||
|
num_fisher_total_session=$(wc -l <data/fbank/cuts_fisher_sph.list)
|
||||||
|
num_fisher_dev_session=10
|
||||||
|
num_fisher_train_session=$(($num_fisher_total_session - $num_fisher_dev_session))
|
||||||
|
head -n $num_fisher_dev_session data/fbank/cuts_fisher_sph.list >data/fbank/cuts_fisher_sph_dev.list
|
||||||
|
tail -n $num_fisher_train_session data/fbank/cuts_fisher_sph.list >data/fbank/cuts_fisher_sph_train.list
|
||||||
|
|
||||||
|
# extarct dev json
|
||||||
|
python3 local/extract_json_cuts.py data/fbank/cuts_fisher_sph_dev.list data/fbank/cuts_fisher.jsonl data/fbank/dev_cuts_fisher.jsonl
|
||||||
|
gzip -c data/fbank/dev_cuts_fisher.jsonl > data/fbank/dev_cuts_fisher.jsonl.gz
|
||||||
|
|
||||||
|
# extract train json
|
||||||
|
python3 local/extract_json_cuts.py data/fbank/cuts_fisher_sph_train.list data/fbank/cuts_fisher.jsonl data/fbank/train_cuts_fisher.jsonl
|
||||||
|
gzip -c data/fbank/train_cuts_fisher.jsonl > data/fbank/train_cuts_fisher.jsonl.gz
|
||||||
|
|
||||||
|
# describe cut
|
||||||
|
lhotse cut describe data/fbank/train_cuts_fisher.jsonl.gz
|
||||||
|
lhotse cut describe data/fbank/dev_cuts_fisher.jsonl.gz
|
||||||
|
|
||||||
|
# extract dev supervision
|
||||||
|
python local/extract_json_supervision.py data/fbank/cuts_fisher_sph_dev.list data/manifests/supervisions_fisher.jsonl data/manifests/dev_supervisions_fisher.jsonl
|
||||||
|
python local/extract_json_supervision.py data/fbank/cuts_fisher_sph_train.list data/manifests/supervisions_fisher.jsonl data/manifests/train_supervisions_fisher.jsonl
|
||||||
|
|
||||||
|
######################################
|
||||||
|
#swbd
|
||||||
|
######################################
|
||||||
|
|
||||||
|
gzip -d data/fbank/cuts_swbd.json.gz
|
||||||
|
jq -c '.[]' data/fbank/cuts_swbd.json > data/fbank/cuts_swbd.jsonl
|
||||||
|
gzip -c data/fbank/cuts_swbd.jsonl > data/fbank/cuts_swbd.jsonl.gz
|
||||||
|
|
||||||
|
python3 local/extract_list_of_sph.py data/fbank/cuts_swbd.jsonl| sort | uniq > data/fbank/cuts_swbd_sph.list
|
||||||
|
num_swbd_total_session=$(wc -l <data/fbank/cuts_swbd_sph.list)
|
||||||
|
num_swbd_dev_session=10
|
||||||
|
num_swbd_train_session=$(($num_swbd_total_session - $num_swbd_dev_session))
|
||||||
|
|
||||||
|
head -n $num_swbd_dev_session data/fbank/cuts_swbd_sph.list >data/fbank/cuts_swbd_sph_dev.list
|
||||||
|
tail -n $num_swbd_train_session data/fbank/cuts_swbd_sph.list >data/fbank/cuts_swbd_sph_train.list
|
||||||
|
|
||||||
|
# extarct dev json
|
||||||
|
python3 local/extract_json_cuts.py data/fbank/cuts_swbd_sph_dev.list data/fbank/cuts_swbd.jsonl data/fbank/dev_cuts_swbd.jsonl
|
||||||
|
gzip -c data/fbank/dev_cuts_swbd.jsonl > data/fbank/dev_cuts_swbd.jsonl.gz
|
||||||
|
|
||||||
|
python3 local/extract_json_cuts.py data/fbank/cuts_swbd_sph_train.list data/fbank/cuts_swbd.jsonl data/fbank/train_cuts_swbd.jsonl
|
||||||
|
gzip -c data/fbank/train_cuts_swbd.jsonl > data/fbank/train_cuts_swbd.jsonl.gz
|
||||||
|
|
||||||
|
# describe cut
|
||||||
|
lhotse cut describe data/fbank/train_cuts_swbd.jsonl.gz
|
||||||
|
lhotse cut describe data/fbank/dev_cuts_swbd.jsonl.gz
|
||||||
|
|
||||||
|
# extract dev supervision
|
||||||
|
python local/extract_json_supervision.py data/fbank/cuts_swbd_sph_dev.list data/manifests/supervisions_swbd.jsonl data/manifests/dev_supervisions_swbd.jsonl
|
||||||
|
python local/extract_json_supervision.py data/fbank/cuts_swbd_sph_train.list data/manifests/supervisions_swbd.jsonl data/manifests/train_supervisions_swbd.jsonl
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
|
||||||
|
log "Stage 3: Prepare musan manifest"
|
||||||
|
# We assume that you have downloaded the musan corpus
|
||||||
|
# to data/musan
|
||||||
|
mkdir -p data/manifests/musan
|
||||||
|
lhotse prepare musan $dl_dir/musan data/manifests/musan
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
|
||||||
|
python3 local/compute_fbank_musan.py
|
||||||
|
fi
|
||||||
|
|
||||||
|
|
||||||
|
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
|
||||||
|
log "Stage 6: Dump transcripts for LM training"
|
||||||
|
mkdir -p data/lm
|
||||||
|
cat data/manifests/supervisions_fisher.jsonl data/manifests/supervisions_swbd.jsonl \
|
||||||
|
| jq '.text' \
|
||||||
|
| sed 's:"::g' \
|
||||||
|
> data/lm/transcript_words.txt
|
||||||
|
|
||||||
|
cat data/manifests/train_supervisions_fisher.jsonl data/manifests/train_supervisions_swbd.jsonl \
|
||||||
|
| jq '.text' \
|
||||||
|
| sed 's:"::g' \
|
||||||
|
> data/lm/train_transcript_words.txt
|
||||||
|
|
||||||
|
cat data/manifests/dev_supervisions_fisher.jsonl data/manifests/dev_supervisions_swbd.jsonl \
|
||||||
|
| jq '.text' \
|
||||||
|
| sed 's:"::g' \
|
||||||
|
> data/lm/dev_transcript_words.txt
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
|
||||||
|
log "Stage 7: Prepare lexicon using g2p_en"
|
||||||
|
lang_dir=data/lang_phone
|
||||||
|
mkdir -p $lang_dir
|
||||||
|
|
||||||
|
# Add special words to words.txt
|
||||||
|
echo "<eps> 0" > $lang_dir/words.txt
|
||||||
|
echo "!SIL 1" >> $lang_dir/words.txt
|
||||||
|
echo "[UNK] 2" >> $lang_dir/words.txt
|
||||||
|
|
||||||
|
# Add regular words to words.txt
|
||||||
|
#gunzip -c data/manifests/fisher-swbd_supervisions_norm.jsonl.gz \
|
||||||
|
cat data/manifests/supervisions_fisher.jsonl data/manifests/supervisions_swbd.jsonl \
|
||||||
|
| jq '.text' \
|
||||||
|
| sed 's:"::g' \
|
||||||
|
| sed 's: :\n:g' \
|
||||||
|
| sort \
|
||||||
|
| uniq \
|
||||||
|
| awk '{print $0,NR+2}' \
|
||||||
|
>> $lang_dir/words.txt
|
||||||
|
|
||||||
|
# Add remaining special word symbols expected by LM scripts.
|
||||||
|
num_words=$(cat $lang_dir/words.txt | wc -l)
|
||||||
|
echo "<s> ${num_words}" >> $lang_dir/words.txt
|
||||||
|
num_words=$(cat $lang_dir/words.txt | wc -l)
|
||||||
|
echo "</s> ${num_words}" >> $lang_dir/words.txt
|
||||||
|
num_words=$(cat $lang_dir/words.txt | wc -l)
|
||||||
|
echo "#0 ${num_words}" >> $lang_dir/words.txt
|
||||||
|
|
||||||
|
if [ ! -f $lang_dir/L_disambig.pt ]; then
|
||||||
|
# We discard SWBD's lexicon and just use g2p_en
|
||||||
|
# It was trained on CMUdict and looks it up before
|
||||||
|
# resorting to an LSTM G2P model.
|
||||||
|
pip install g2p_en
|
||||||
|
./local/prepare_lang_g2pen.py --lang-dir $lang_dir
|
||||||
|
fi
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then
|
||||||
|
log "Stage 8: Prepare BPE based lang"
|
||||||
|
|
||||||
|
for vocab_size in ${vocab_sizes[@]}; do
|
||||||
|
lang_dir=data/lang_bpe_${vocab_size}
|
||||||
|
mkdir -p $lang_dir
|
||||||
|
# We reuse words.txt from phone based lexicon
|
||||||
|
# so that the two can share G.pt later.
|
||||||
|
cp data/lang_phone/words.txt $lang_dir
|
||||||
|
|
||||||
|
./local/train_bpe_model.py \
|
||||||
|
--lang-dir $lang_dir \
|
||||||
|
--vocab-size $vocab_size \
|
||||||
|
--transcript data/lm/transcript_words.txt
|
||||||
|
|
||||||
|
if [ ! -f $lang_dir/L_disambig.pt ]; then
|
||||||
|
./local/prepare_lang_bpe.py --lang-dir $lang_dir
|
||||||
|
fi
|
||||||
|
done
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 11 ] && [ $stop_stage -ge 11 ]; then
|
||||||
|
log "Stage 9: Train LM"
|
||||||
|
lm_dir=data/lm
|
||||||
|
|
||||||
|
if [ ! -f $lm_dir/G.arpa ]; then
|
||||||
|
./shared/make_kn_lm.py \
|
||||||
|
-ngram-order 3 \
|
||||||
|
-text $lm_dir/transcript_words.txt \
|
||||||
|
-lm $lm_dir/G.arpa
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ! -f $lm_dir/G_3_gram.fst.txt ]; then
|
||||||
|
python3 -m kaldilm \
|
||||||
|
--read-symbol-table="data/lang_phone/words.txt" \
|
||||||
|
--disambig-symbol='#0' \
|
||||||
|
--max-order=3 \
|
||||||
|
$lm_dir/G.arpa > $lm_dir/G_3_gram.fst.txt
|
||||||
|
fi
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ $stage -le 12 ] && [ $stop_stage -ge 12 ]; then
|
||||||
|
log "Stage 10: Compile HLG"
|
||||||
|
./local/compile_hlg.py --lang-dir data/lang_phone
|
||||||
|
|
||||||
|
for vocab_size in ${vocab_sizes[@]}; do
|
||||||
|
lang_dir=data/lang_bpe_${vocab_size}
|
||||||
|
./local/compile_hlg.py --lang-dir $lang_dir
|
||||||
|
done
|
||||||
|
fi
|
@ -0,0 +1,442 @@
|
|||||||
|
# Copyright 2021 Piotr Żelasko
|
||||||
|
# Copyright 2022 Xiaomi Corporation (Author: Mingshuang Luo)
|
||||||
|
#
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import inspect
|
||||||
|
import logging
|
||||||
|
from functools import lru_cache
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Any, Dict, Optional
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from lhotse import CutSet, Fbank, FbankConfig, load_manifest, load_manifest_lazy
|
||||||
|
from lhotse.dataset import ( # noqa F401 for PrecomputedFeatures
|
||||||
|
CutConcatenate,
|
||||||
|
CutMix,
|
||||||
|
DynamicBucketingSampler,
|
||||||
|
K2SpeechRecognitionDataset,
|
||||||
|
PrecomputedFeatures,
|
||||||
|
SingleCutSampler,
|
||||||
|
SpecAugment,
|
||||||
|
)
|
||||||
|
from lhotse.dataset.input_strategies import ( # noqa F401 For AudioSamples
|
||||||
|
AudioSamples,
|
||||||
|
OnTheFlyFeatures,
|
||||||
|
)
|
||||||
|
from lhotse.utils import fix_random_seed
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
|
|
||||||
|
from icefall.utils import str2bool
|
||||||
|
|
||||||
|
|
||||||
|
class _SeedWorkers:
|
||||||
|
def __init__(self, seed: int):
|
||||||
|
self.seed = seed
|
||||||
|
|
||||||
|
def __call__(self, worker_id: int):
|
||||||
|
fix_random_seed(self.seed + worker_id)
|
||||||
|
|
||||||
|
|
||||||
|
class FisherSwbdSpeechAsrDataModule:
|
||||||
|
"""
|
||||||
|
DataModule for k2 ASR experiments.
|
||||||
|
It assumes there is always one train and valid dataloader for fisher and swbd,
|
||||||
|
but there are eval2000, eval2000 swbd and eval2000 callhome partition.
|
||||||
|
|
||||||
|
It contains all the common data pipeline modules used in ASR
|
||||||
|
experiments, e.g.:
|
||||||
|
- dynamic batch size,
|
||||||
|
- bucketing samplers,
|
||||||
|
- cut concatenation,
|
||||||
|
- augmentation,
|
||||||
|
- on-the-fly feature extraction
|
||||||
|
|
||||||
|
This class should be derived for specific corpora used in ASR tasks.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, args: argparse.Namespace):
|
||||||
|
self.args = args
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def add_arguments(cls, parser: argparse.ArgumentParser):
|
||||||
|
group = parser.add_argument_group(
|
||||||
|
title="ASR data related options",
|
||||||
|
description="These options are used for the preparation of "
|
||||||
|
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
||||||
|
"effective batch sizes, sampling strategies, applied data "
|
||||||
|
"augmentations, etc.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--manifest-dir",
|
||||||
|
type=Path,
|
||||||
|
default=Path("data/fbank"),
|
||||||
|
help="Path to directory with train/valid/test cuts.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--max-duration",
|
||||||
|
type=int,
|
||||||
|
default=200.0,
|
||||||
|
help="Maximum pooled recordings duration (seconds) in a "
|
||||||
|
"single batch. You can reduce it if it causes CUDA OOM.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--bucketing-sampler",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled, the batches will come from buckets of "
|
||||||
|
"similar duration (saves padding frames).",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--num-buckets",
|
||||||
|
type=int,
|
||||||
|
default=30,
|
||||||
|
help="The number of buckets for the DynamicBucketingSampler"
|
||||||
|
"(you might want to increase it for larger datasets).",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--concatenate-cuts",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="When enabled, utterances (cuts) will be concatenated "
|
||||||
|
"to minimize the amount of padding.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--duration-factor",
|
||||||
|
type=float,
|
||||||
|
default=1.0,
|
||||||
|
help="Determines the maximum duration of a concatenated cut "
|
||||||
|
"relative to the duration of the longest cut in a batch.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--gap",
|
||||||
|
type=float,
|
||||||
|
default=1.0,
|
||||||
|
help="The amount of padding (in seconds) inserted between "
|
||||||
|
"concatenated cuts. This padding is filled with noise when "
|
||||||
|
"noise augmentation is used.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--on-the-fly-feats",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="When enabled, use on-the-fly cut mixing and feature "
|
||||||
|
"extraction. Will drop existing precomputed feature manifests "
|
||||||
|
"if available.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--shuffle",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled (=default), the examples will be "
|
||||||
|
"shuffled for each epoch.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--drop-last",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Whether to drop last batch. Used by sampler.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--return-cuts",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled, each batch will have the "
|
||||||
|
"field: batch['supervisions']['cut'] with the cuts that "
|
||||||
|
"were used to construct it.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--num-workers",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The number of training dataloader workers that "
|
||||||
|
"collect the batches.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--enable-spec-aug",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled, use SpecAugment for training dataset.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--spec-aug-time-warp-factor",
|
||||||
|
type=int,
|
||||||
|
default=80,
|
||||||
|
help="Used only when --enable-spec-aug is True. "
|
||||||
|
"It specifies the factor for time warping in SpecAugment. "
|
||||||
|
"Larger values mean more warping. "
|
||||||
|
"A value less than 1 means to disable time warp.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--enable-musan",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled, select noise from MUSAN and mix it"
|
||||||
|
"with training dataset. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--input-strategy",
|
||||||
|
type=str,
|
||||||
|
default="PrecomputedFeatures",
|
||||||
|
help="AudioSamples or PrecomputedFeatures",
|
||||||
|
)
|
||||||
|
|
||||||
|
def train_dataloaders(
|
||||||
|
self,
|
||||||
|
cuts_train: CutSet,
|
||||||
|
sampler_state_dict: Optional[Dict[str, Any]] = None,
|
||||||
|
) -> DataLoader:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
cuts_train:
|
||||||
|
CutSet for training.
|
||||||
|
sampler_state_dict:
|
||||||
|
The state dict for the training sampler.
|
||||||
|
"""
|
||||||
|
transforms = []
|
||||||
|
if self.args.enable_musan:
|
||||||
|
logging.info("Enable MUSAN")
|
||||||
|
logging.info("About to get Musan cuts")
|
||||||
|
cuts_musan = load_manifest(
|
||||||
|
self.args.manifest_dir / "musan_cuts.jsonl.gz"
|
||||||
|
)
|
||||||
|
transforms.append(
|
||||||
|
CutMix(
|
||||||
|
cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True
|
||||||
|
)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
logging.info("Disable MUSAN")
|
||||||
|
|
||||||
|
if self.args.concatenate_cuts:
|
||||||
|
logging.info(
|
||||||
|
f"Using cut concatenation with duration factor "
|
||||||
|
f"{self.args.duration_factor} and gap {self.args.gap}."
|
||||||
|
)
|
||||||
|
# Cut concatenation should be the first transform in the list,
|
||||||
|
# so that if we e.g. mix noise in, it will fill the gaps between
|
||||||
|
# different utterances.
|
||||||
|
transforms = [
|
||||||
|
CutConcatenate(
|
||||||
|
duration_factor=self.args.duration_factor, gap=self.args.gap
|
||||||
|
)
|
||||||
|
] + transforms
|
||||||
|
|
||||||
|
input_transforms = []
|
||||||
|
if self.args.enable_spec_aug:
|
||||||
|
logging.info("Enable SpecAugment")
|
||||||
|
logging.info(
|
||||||
|
f"Time warp factor: {self.args.spec_aug_time_warp_factor}"
|
||||||
|
)
|
||||||
|
# Set the value of num_frame_masks according to Lhotse's version.
|
||||||
|
# In different Lhotse's versions, the default of num_frame_masks is
|
||||||
|
# different.
|
||||||
|
num_frame_masks = 10
|
||||||
|
num_frame_masks_parameter = inspect.signature(
|
||||||
|
SpecAugment.__init__
|
||||||
|
).parameters["num_frame_masks"]
|
||||||
|
if num_frame_masks_parameter.default == 1:
|
||||||
|
num_frame_masks = 2
|
||||||
|
logging.info(f"Num frame mask: {num_frame_masks}")
|
||||||
|
input_transforms.append(
|
||||||
|
SpecAugment(
|
||||||
|
time_warp_factor=self.args.spec_aug_time_warp_factor,
|
||||||
|
num_frame_masks=num_frame_masks,
|
||||||
|
features_mask_size=27,
|
||||||
|
num_feature_masks=2,
|
||||||
|
frames_mask_size=100,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
logging.info("Disable SpecAugment")
|
||||||
|
|
||||||
|
logging.info("About to create train dataset")
|
||||||
|
train = K2SpeechRecognitionDataset(
|
||||||
|
input_strategy=eval(self.args.input_strategy)(),
|
||||||
|
cut_transforms=transforms,
|
||||||
|
input_transforms=input_transforms,
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
|
||||||
|
if self.args.on_the_fly_feats:
|
||||||
|
# NOTE: the PerturbSpeed transform should be added only if we
|
||||||
|
# remove it from data prep stage.
|
||||||
|
# Add on-the-fly speed perturbation; since originally it would
|
||||||
|
# have increased epoch size by 3, we will apply prob 2/3 and use
|
||||||
|
# 3x more epochs.
|
||||||
|
# Speed perturbation probably should come first before
|
||||||
|
# concatenation, but in principle the transforms order doesn't have
|
||||||
|
# to be strict (e.g. could be randomized)
|
||||||
|
# transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa
|
||||||
|
# Drop feats to be on the safe side.
|
||||||
|
train = K2SpeechRecognitionDataset(
|
||||||
|
cut_transforms=transforms,
|
||||||
|
input_strategy=OnTheFlyFeatures(
|
||||||
|
Fbank(FbankConfig(num_mel_bins=80))
|
||||||
|
),
|
||||||
|
input_transforms=input_transforms,
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
|
||||||
|
if self.args.bucketing_sampler:
|
||||||
|
logging.info("Using DynamicBucketingSampler.")
|
||||||
|
train_sampler = DynamicBucketingSampler(
|
||||||
|
cuts_train,
|
||||||
|
max_duration=self.args.max_duration,
|
||||||
|
shuffle=self.args.shuffle,
|
||||||
|
num_buckets=self.args.num_buckets,
|
||||||
|
drop_last=self.args.drop_last,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
logging.info("Using SingleCutSampler.")
|
||||||
|
train_sampler = SingleCutSampler(
|
||||||
|
cuts_train,
|
||||||
|
max_duration=self.args.max_duration,
|
||||||
|
shuffle=self.args.shuffle,
|
||||||
|
)
|
||||||
|
logging.info("About to create train dataloader")
|
||||||
|
|
||||||
|
if sampler_state_dict is not None:
|
||||||
|
logging.info("Loading sampler state dict")
|
||||||
|
train_sampler.load_state_dict(sampler_state_dict)
|
||||||
|
|
||||||
|
# 'seed' is derived from the current random state, which will have
|
||||||
|
# previously been set in the main process.
|
||||||
|
seed = torch.randint(0, 100000, ()).item()
|
||||||
|
worker_init_fn = _SeedWorkers(seed)
|
||||||
|
|
||||||
|
train_dl = DataLoader(
|
||||||
|
train,
|
||||||
|
sampler=train_sampler,
|
||||||
|
batch_size=None,
|
||||||
|
num_workers=self.args.num_workers,
|
||||||
|
persistent_workers=False,
|
||||||
|
worker_init_fn=worker_init_fn,
|
||||||
|
)
|
||||||
|
|
||||||
|
return train_dl
|
||||||
|
|
||||||
|
def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader:
|
||||||
|
transforms = []
|
||||||
|
if self.args.concatenate_cuts:
|
||||||
|
transforms = [
|
||||||
|
CutConcatenate(
|
||||||
|
duration_factor=self.args.duration_factor, gap=self.args.gap
|
||||||
|
)
|
||||||
|
] + transforms
|
||||||
|
|
||||||
|
logging.info("About to create dev dataset")
|
||||||
|
if self.args.on_the_fly_feats:
|
||||||
|
validate = K2SpeechRecognitionDataset(
|
||||||
|
cut_transforms=transforms,
|
||||||
|
input_strategy=OnTheFlyFeatures(
|
||||||
|
Fbank(FbankConfig(num_mel_bins=80))
|
||||||
|
),
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
validate = K2SpeechRecognitionDataset(
|
||||||
|
cut_transforms=transforms, return_cuts=self.args.return_cuts
|
||||||
|
)
|
||||||
|
valid_sampler = DynamicBucketingSampler(
|
||||||
|
cuts_valid, max_duration=self.args.max_duration, shuffle=False
|
||||||
|
)
|
||||||
|
logging.info("About to create dev dataloader")
|
||||||
|
valid_dl = DataLoader(
|
||||||
|
validate,
|
||||||
|
sampler=valid_sampler,
|
||||||
|
batch_size=None,
|
||||||
|
num_workers=2,
|
||||||
|
persistent_workers=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
return valid_dl
|
||||||
|
|
||||||
|
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
|
||||||
|
logging.debug("About to create test dataset")
|
||||||
|
test = K2SpeechRecognitionDataset(
|
||||||
|
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
|
||||||
|
if self.args.on_the_fly_feats
|
||||||
|
else eval(self.args.input_strategy)(),
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
sampler = DynamicBucketingSampler(
|
||||||
|
cuts, max_duration=self.args.max_duration, shuffle=False
|
||||||
|
)
|
||||||
|
logging.debug("About to create test dataloader")
|
||||||
|
test_dl = DataLoader(
|
||||||
|
test,
|
||||||
|
batch_size=None,
|
||||||
|
sampler=sampler,
|
||||||
|
num_workers=self.args.num_workers,
|
||||||
|
)
|
||||||
|
return test_dl
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def train_fisher_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get fisher cuts")
|
||||||
|
return load_manifest_lazy(
|
||||||
|
self.args.manifest_dir / "train_cuts_fisher.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def train_swbd_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get train swbd cuts")
|
||||||
|
return load_manifest_lazy(
|
||||||
|
self.args.manifest_dir / "train_cuts_swbd.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def dev_fisher_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get dev fisher cuts")
|
||||||
|
return load_manifest_lazy(
|
||||||
|
self.args.manifest_dir / "dev_cuts_fisher.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def dev_swbd_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get dev swbd cuts")
|
||||||
|
return load_manifest_lazy(
|
||||||
|
self.args.manifest_dir / "dev_cuts_swbd.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def test_eval2000_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get test eval2000 cuts")
|
||||||
|
return load_manifest_lazy(
|
||||||
|
self.args.manifest_dir / "cuts_eval2000.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def test_swbd_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get test eval2000 swbd cuts")
|
||||||
|
return load_manifest_lazy(
|
||||||
|
self.args.manifest_dir / "cuts_eval2000_swbd.jsonl.gz"
|
||||||
|
)
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def test_callhome_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get test eval2000 callhome cuts")
|
||||||
|
return load_manifest_lazy(
|
||||||
|
self.args.manifest_dir / "cuts_eval2000_callhome.jsonl.gz"
|
||||||
|
)
|
1335
egs/fisher_swbd/ASR/pruned_transducer_stateless2/beam_search.py
Normal file
1335
egs/fisher_swbd/ASR/pruned_transducer_stateless2/beam_search.py
Normal file
File diff suppressed because it is too large
Load Diff
1578
egs/fisher_swbd/ASR/pruned_transducer_stateless2/conformer.py
Normal file
1578
egs/fisher_swbd/ASR/pruned_transducer_stateless2/conformer.py
Normal file
File diff suppressed because it is too large
Load Diff
811
egs/fisher_swbd/ASR/pruned_transducer_stateless2/decode.py
Executable file
811
egs/fisher_swbd/ASR/pruned_transducer_stateless2/decode.py
Executable file
@ -0,0 +1,811 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
#
|
||||||
|
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""
|
||||||
|
Usage:
|
||||||
|
(1) greedy search
|
||||||
|
./pruned_transducer_stateless2/decode.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./pruned_transducer_stateless2/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method greedy_search
|
||||||
|
|
||||||
|
(2) beam search (not recommended)
|
||||||
|
./pruned_transducer_stateless2/decode.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./pruned_transducer_stateless2/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method beam_search \
|
||||||
|
--beam-size 4
|
||||||
|
|
||||||
|
(3) modified beam search
|
||||||
|
./pruned_transducer_stateless2/decode.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./pruned_transducer_stateless2/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method modified_beam_search \
|
||||||
|
--beam-size 4
|
||||||
|
|
||||||
|
(4) fast beam search (one best)
|
||||||
|
./pruned_transducer_stateless2/decode.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./pruned_transducer_stateless2/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method fast_beam_search \
|
||||||
|
--beam 20.0 \
|
||||||
|
--max-contexts 8 \
|
||||||
|
--max-states 64
|
||||||
|
|
||||||
|
(5) fast beam search (nbest)
|
||||||
|
./pruned_transducer_stateless2/decode.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./pruned_transducer_stateless2/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method fast_beam_search_nbest \
|
||||||
|
--beam 20.0 \
|
||||||
|
--max-contexts 8 \
|
||||||
|
--max-states 64 \
|
||||||
|
--num-paths 200 \
|
||||||
|
--nbest-scale 0.5
|
||||||
|
|
||||||
|
(6) fast beam search (nbest oracle WER)
|
||||||
|
./pruned_transducer_stateless2/decode.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./pruned_transducer_stateless2/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method fast_beam_search_nbest_oracle \
|
||||||
|
--beam 20.0 \
|
||||||
|
--max-contexts 8 \
|
||||||
|
--max-states 64 \
|
||||||
|
--num-paths 200 \
|
||||||
|
--nbest-scale 0.5
|
||||||
|
|
||||||
|
(7) fast beam search (with LG)
|
||||||
|
./pruned_transducer_stateless2/decode.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./pruned_transducer_stateless2/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method fast_beam_search_nbest_LG \
|
||||||
|
--beam 20.0 \
|
||||||
|
--max-contexts 8 \
|
||||||
|
--max-states 64
|
||||||
|
|
||||||
|
(8) decode in streaming mode (take greedy search as an example)
|
||||||
|
./pruned_transducer_stateless2/decode.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--simulate-streaming 1 \
|
||||||
|
--causal-convolution 1 \
|
||||||
|
--decode-chunk-size 16 \
|
||||||
|
--left-context 64 \
|
||||||
|
--exp-dir ./pruned_transducer_stateless2/exp \
|
||||||
|
--max-duration 600 \
|
||||||
|
--decoding-method greedy_search
|
||||||
|
--beam 20.0 \
|
||||||
|
--max-contexts 8 \
|
||||||
|
--max-states 64
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import math
|
||||||
|
from collections import defaultdict
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Dict, List, Optional, Tuple
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import sentencepiece as spm
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from asr_datamodule import FisherSwbdSpeechAsrDataModule
|
||||||
|
|
||||||
|
|
||||||
|
from beam_search import (
|
||||||
|
beam_search,
|
||||||
|
fast_beam_search_nbest,
|
||||||
|
fast_beam_search_nbest_LG,
|
||||||
|
fast_beam_search_nbest_oracle,
|
||||||
|
fast_beam_search_one_best,
|
||||||
|
greedy_search,
|
||||||
|
greedy_search_batch,
|
||||||
|
modified_beam_search,
|
||||||
|
)
|
||||||
|
from train import add_model_arguments, get_params, get_transducer_model
|
||||||
|
|
||||||
|
from icefall.checkpoint import (
|
||||||
|
average_checkpoints,
|
||||||
|
find_checkpoints,
|
||||||
|
load_checkpoint,
|
||||||
|
)
|
||||||
|
from icefall.lexicon import Lexicon
|
||||||
|
from icefall.utils import (
|
||||||
|
AttributeDict,
|
||||||
|
setup_logger,
|
||||||
|
store_transcripts,
|
||||||
|
str2bool,
|
||||||
|
write_error_stats,
|
||||||
|
)
|
||||||
|
|
||||||
|
LOG_EPS = math.log(1e-10)
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--epoch",
|
||||||
|
type=int,
|
||||||
|
default=28,
|
||||||
|
help="""It specifies the checkpoint to use for decoding.
|
||||||
|
Note: Epoch counts from 0.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--iter",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="""If positive, --epoch is ignored and it
|
||||||
|
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--avg",
|
||||||
|
type=int,
|
||||||
|
default=15,
|
||||||
|
help="Number of checkpoints to average. Automatically select "
|
||||||
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
|
"'--epoch' and '--iter'",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=str,
|
||||||
|
default="pruned_transducer_stateless2/exp",
|
||||||
|
help="The experiment dir",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--bpe-model",
|
||||||
|
type=str,
|
||||||
|
default="data/lang_bpe_500/bpe.model",
|
||||||
|
help="Path to the BPE model",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--lang-dir",
|
||||||
|
type=Path,
|
||||||
|
default="data/lang_bpe_500",
|
||||||
|
help="The lang dir containing word table and LG graph",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--decoding-method",
|
||||||
|
type=str,
|
||||||
|
default="greedy_search",
|
||||||
|
help="""Possible values are:
|
||||||
|
- greedy_search
|
||||||
|
- beam_search
|
||||||
|
- modified_beam_search
|
||||||
|
- fast_beam_search
|
||||||
|
- fast_beam_search_nbest
|
||||||
|
- fast_beam_search_nbest_oracle
|
||||||
|
- fast_beam_search_nbest_LG
|
||||||
|
If you use fast_beam_search_nbest_LG, you have to specify
|
||||||
|
`--lang-dir`, which should contain `LG.pt`.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--beam-size",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="""An integer indicating how many candidates we will keep for each
|
||||||
|
frame. Used only when --decoding-method is beam_search or
|
||||||
|
modified_beam_search.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--beam",
|
||||||
|
type=float,
|
||||||
|
default=20.0,
|
||||||
|
help="""A floating point value to calculate the cutoff score during beam
|
||||||
|
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||||
|
`beam` in Kaldi.
|
||||||
|
Used only when --decoding-method is fast_beam_search,
|
||||||
|
fast_beam_search_nbest, fast_beam_search_nbest_LG,
|
||||||
|
and fast_beam_search_nbest_oracle
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--ngram-lm-scale",
|
||||||
|
type=float,
|
||||||
|
default=0.01,
|
||||||
|
help="""
|
||||||
|
Used only when --decoding_method is fast_beam_search_nbest_LG.
|
||||||
|
It specifies the scale for n-gram LM scores.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-contexts",
|
||||||
|
type=int,
|
||||||
|
default=8,
|
||||||
|
help="""Used only when --decoding-method is
|
||||||
|
fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG,
|
||||||
|
and fast_beam_search_nbest_oracle""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-states",
|
||||||
|
type=int,
|
||||||
|
default=64,
|
||||||
|
help="""Used only when --decoding-method is
|
||||||
|
fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG,
|
||||||
|
and fast_beam_search_nbest_oracle""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--context-size",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The context size in the decoder. 1 means bigram; "
|
||||||
|
"2 means tri-gram",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-sym-per-frame",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help="""Maximum number of symbols per frame.
|
||||||
|
Used only when --decoding_method is greedy_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--simulate-streaming",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="""Whether to simulate streaming in decoding, this is a good way to
|
||||||
|
test a streaming model.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--decode-chunk-size",
|
||||||
|
type=int,
|
||||||
|
default=16,
|
||||||
|
help="The chunk size for decoding (in frames after subsampling)",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--left-context",
|
||||||
|
type=int,
|
||||||
|
default=64,
|
||||||
|
help="left context can be seen during decoding (in frames after subsampling)",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-paths",
|
||||||
|
type=int,
|
||||||
|
default=200,
|
||||||
|
help="""Number of paths for nbest decoding.
|
||||||
|
Used only when the decoding method is fast_beam_search_nbest,
|
||||||
|
fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--nbest-scale",
|
||||||
|
type=float,
|
||||||
|
default=0.5,
|
||||||
|
help="""Scale applied to lattice scores when computing nbest paths.
|
||||||
|
Used only when the decoding method is fast_beam_search_nbest,
|
||||||
|
fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""",
|
||||||
|
)
|
||||||
|
|
||||||
|
add_model_arguments(parser)
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def decode_one_batch(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
sp: spm.SentencePieceProcessor,
|
||||||
|
batch: dict,
|
||||||
|
word_table: Optional[k2.SymbolTable] = None,
|
||||||
|
decoding_graph: Optional[k2.Fsa] = None,
|
||||||
|
) -> Dict[str, List[List[str]]]:
|
||||||
|
"""Decode one batch and return the result in a dict. The dict has the
|
||||||
|
following format:
|
||||||
|
|
||||||
|
- key: It indicates the setting used for decoding. For example,
|
||||||
|
if greedy_search is used, it would be "greedy_search"
|
||||||
|
If beam search with a beam size of 7 is used, it would be
|
||||||
|
"beam_7"
|
||||||
|
- value: It contains the decoding result. `len(value)` equals to
|
||||||
|
batch size. `value[i]` is the decoding result for the i-th
|
||||||
|
utterance in the given batch.
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It's the return value of :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
sp:
|
||||||
|
The BPE model.
|
||||||
|
batch:
|
||||||
|
It is the return value from iterating
|
||||||
|
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||||
|
for the format of the `batch`.
|
||||||
|
word_table:
|
||||||
|
The word symbol table.
|
||||||
|
decoding_graph:
|
||||||
|
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||||
|
only when --decoding_method is fast_beam_search, fast_beam_search_nbest,
|
||||||
|
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
|
||||||
|
Returns:
|
||||||
|
Return the decoding result. See above description for the format of
|
||||||
|
the returned dict.
|
||||||
|
"""
|
||||||
|
device = model.device
|
||||||
|
feature = batch["inputs"]
|
||||||
|
assert feature.ndim == 3
|
||||||
|
|
||||||
|
feature = feature.to(device)
|
||||||
|
# at entry, feature is (N, T, C)
|
||||||
|
|
||||||
|
supervisions = batch["supervisions"]
|
||||||
|
feature_lens = supervisions["num_frames"].to(device)
|
||||||
|
|
||||||
|
feature_lens += params.left_context
|
||||||
|
feature = torch.nn.functional.pad(
|
||||||
|
feature, pad=(0, 0, 0, params.left_context), value=LOG_EPS
|
||||||
|
)
|
||||||
|
|
||||||
|
if params.simulate_streaming:
|
||||||
|
encoder_out, encoder_out_lens, _ = model.encoder.streaming_forward(
|
||||||
|
x=feature,
|
||||||
|
x_lens=feature_lens,
|
||||||
|
chunk_size=params.decode_chunk_size,
|
||||||
|
left_context=params.left_context,
|
||||||
|
simulate_streaming=True,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
encoder_out, encoder_out_lens = model.encoder(
|
||||||
|
x=feature, x_lens=feature_lens
|
||||||
|
)
|
||||||
|
|
||||||
|
hyps = []
|
||||||
|
|
||||||
|
if params.decoding_method == "fast_beam_search":
|
||||||
|
hyp_tokens = fast_beam_search_one_best(
|
||||||
|
model=model,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
beam=params.beam,
|
||||||
|
max_contexts=params.max_contexts,
|
||||||
|
max_states=params.max_states,
|
||||||
|
)
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(hyp.split())
|
||||||
|
elif params.decoding_method == "fast_beam_search_nbest_LG":
|
||||||
|
hyp_tokens = fast_beam_search_nbest_LG(
|
||||||
|
model=model,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
beam=params.beam,
|
||||||
|
max_contexts=params.max_contexts,
|
||||||
|
max_states=params.max_states,
|
||||||
|
num_paths=params.num_paths,
|
||||||
|
nbest_scale=params.nbest_scale,
|
||||||
|
)
|
||||||
|
for hyp in hyp_tokens:
|
||||||
|
hyps.append([word_table[i] for i in hyp])
|
||||||
|
elif params.decoding_method == "fast_beam_search_nbest":
|
||||||
|
hyp_tokens = fast_beam_search_nbest(
|
||||||
|
model=model,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
beam=params.beam,
|
||||||
|
max_contexts=params.max_contexts,
|
||||||
|
max_states=params.max_states,
|
||||||
|
num_paths=params.num_paths,
|
||||||
|
nbest_scale=params.nbest_scale,
|
||||||
|
)
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(hyp.split())
|
||||||
|
elif params.decoding_method == "fast_beam_search_nbest_oracle":
|
||||||
|
hyp_tokens = fast_beam_search_nbest_oracle(
|
||||||
|
model=model,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
beam=params.beam,
|
||||||
|
max_contexts=params.max_contexts,
|
||||||
|
max_states=params.max_states,
|
||||||
|
num_paths=params.num_paths,
|
||||||
|
ref_texts=sp.encode(supervisions["text"]),
|
||||||
|
nbest_scale=params.nbest_scale,
|
||||||
|
)
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(hyp.split())
|
||||||
|
elif (
|
||||||
|
params.decoding_method == "greedy_search"
|
||||||
|
and params.max_sym_per_frame == 1
|
||||||
|
):
|
||||||
|
hyp_tokens = greedy_search_batch(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
)
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(hyp.split())
|
||||||
|
elif params.decoding_method == "modified_beam_search":
|
||||||
|
hyp_tokens = modified_beam_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
beam=params.beam_size,
|
||||||
|
)
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(hyp.split())
|
||||||
|
else:
|
||||||
|
batch_size = encoder_out.size(0)
|
||||||
|
|
||||||
|
for i in range(batch_size):
|
||||||
|
# fmt: off
|
||||||
|
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
||||||
|
# fmt: on
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
hyp = greedy_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out_i,
|
||||||
|
max_sym_per_frame=params.max_sym_per_frame,
|
||||||
|
)
|
||||||
|
elif params.decoding_method == "beam_search":
|
||||||
|
hyp = beam_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out_i,
|
||||||
|
beam=params.beam_size,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
raise ValueError(
|
||||||
|
f"Unsupported decoding method: {params.decoding_method}"
|
||||||
|
)
|
||||||
|
hyps.append(sp.decode(hyp).split())
|
||||||
|
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
return {"greedy_search": hyps}
|
||||||
|
elif params.decoding_method == "fast_beam_search":
|
||||||
|
return {
|
||||||
|
(
|
||||||
|
f"beam_{params.beam}_"
|
||||||
|
f"max_contexts_{params.max_contexts}_"
|
||||||
|
f"max_states_{params.max_states}"
|
||||||
|
): hyps
|
||||||
|
}
|
||||||
|
elif "fast_beam_search" in params.decoding_method:
|
||||||
|
key = f"beam_{params.beam}_"
|
||||||
|
key += f"max_contexts_{params.max_contexts}_"
|
||||||
|
key += f"max_states_{params.max_states}"
|
||||||
|
if "nbest" in params.decoding_method:
|
||||||
|
key += f"_num_paths_{params.num_paths}_"
|
||||||
|
key += f"nbest_scale_{params.nbest_scale}"
|
||||||
|
if "LG" in params.decoding_method:
|
||||||
|
key += f"_ngram_lm_scale_{params.ngram_lm_scale}"
|
||||||
|
|
||||||
|
return {key: hyps}
|
||||||
|
else:
|
||||||
|
return {f"beam_size_{params.beam_size}": hyps}
|
||||||
|
|
||||||
|
|
||||||
|
def decode_dataset(
|
||||||
|
dl: torch.utils.data.DataLoader,
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
sp: spm.SentencePieceProcessor,
|
||||||
|
word_table: Optional[k2.SymbolTable] = None,
|
||||||
|
decoding_graph: Optional[k2.Fsa] = None,
|
||||||
|
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
||||||
|
"""Decode dataset.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
dl:
|
||||||
|
PyTorch's dataloader containing the dataset to decode.
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
sp:
|
||||||
|
The BPE model.
|
||||||
|
word_table:
|
||||||
|
The word symbol table.
|
||||||
|
decoding_graph:
|
||||||
|
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||||
|
only when --decoding_method is fast_beam_search, fast_beam_search_nbest,
|
||||||
|
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
|
||||||
|
Returns:
|
||||||
|
Return a dict, whose key may be "greedy_search" if greedy search
|
||||||
|
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||||
|
Its value is a list of tuples. Each tuple contains two elements:
|
||||||
|
The first is the reference transcript, and the second is the
|
||||||
|
predicted result.
|
||||||
|
"""
|
||||||
|
num_cuts = 0
|
||||||
|
|
||||||
|
try:
|
||||||
|
num_batches = len(dl)
|
||||||
|
except TypeError:
|
||||||
|
num_batches = "?"
|
||||||
|
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
log_interval = 50
|
||||||
|
else:
|
||||||
|
log_interval = 20
|
||||||
|
|
||||||
|
results = defaultdict(list)
|
||||||
|
for batch_idx, batch in enumerate(dl):
|
||||||
|
texts = batch["supervisions"]["text"]
|
||||||
|
|
||||||
|
hyps_dict = decode_one_batch(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
sp=sp,
|
||||||
|
word_table=word_table,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
batch=batch,
|
||||||
|
)
|
||||||
|
|
||||||
|
for name, hyps in hyps_dict.items():
|
||||||
|
this_batch = []
|
||||||
|
assert len(hyps) == len(texts)
|
||||||
|
for hyp_words, ref_text in zip(hyps, texts):
|
||||||
|
ref_words = ref_text.split()
|
||||||
|
this_batch.append((ref_words, hyp_words))
|
||||||
|
|
||||||
|
results[name].extend(this_batch)
|
||||||
|
|
||||||
|
num_cuts += len(texts)
|
||||||
|
|
||||||
|
if batch_idx % log_interval == 0:
|
||||||
|
batch_str = f"{batch_idx}/{num_batches}"
|
||||||
|
|
||||||
|
logging.info(
|
||||||
|
f"batch {batch_str}, cuts processed until now is {num_cuts}"
|
||||||
|
)
|
||||||
|
return results
|
||||||
|
|
||||||
|
|
||||||
|
def save_results(
|
||||||
|
params: AttributeDict,
|
||||||
|
test_set_name: str,
|
||||||
|
results_dict: Dict[str, List[Tuple[List[int], List[int]]]],
|
||||||
|
):
|
||||||
|
test_set_wers = dict()
|
||||||
|
for key, results in results_dict.items():
|
||||||
|
recog_path = (
|
||||||
|
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
store_transcripts(filename=recog_path, texts=results)
|
||||||
|
logging.info(f"The transcripts are stored in {recog_path}")
|
||||||
|
|
||||||
|
# The following prints out WERs, per-word error statistics and aligned
|
||||||
|
# ref/hyp pairs.
|
||||||
|
errs_filename = (
|
||||||
|
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
with open(errs_filename, "w") as f:
|
||||||
|
wer = write_error_stats(
|
||||||
|
f, f"{test_set_name}-{key}", results, enable_log=True
|
||||||
|
)
|
||||||
|
test_set_wers[key] = wer
|
||||||
|
|
||||||
|
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||||
|
|
||||||
|
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||||
|
errs_info = (
|
||||||
|
params.res_dir
|
||||||
|
/ f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
with open(errs_info, "w") as f:
|
||||||
|
print("settings\tWER", file=f)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
print("{}\t{}".format(key, val), file=f)
|
||||||
|
|
||||||
|
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||||
|
note = "\tbest for {}".format(test_set_name)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
s += "{}\t{}{}\n".format(key, val, note)
|
||||||
|
note = ""
|
||||||
|
logging.info(s)
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
FisherSwbdSpeechAsrDataModule.add_arguments(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
args.exp_dir = Path(args.exp_dir)
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
assert params.decoding_method in (
|
||||||
|
"greedy_search",
|
||||||
|
"beam_search",
|
||||||
|
"fast_beam_search",
|
||||||
|
"fast_beam_search_nbest",
|
||||||
|
"fast_beam_search_nbest_LG",
|
||||||
|
"fast_beam_search_nbest_oracle",
|
||||||
|
"modified_beam_search",
|
||||||
|
)
|
||||||
|
params.res_dir = params.exp_dir / params.decoding_method
|
||||||
|
|
||||||
|
if params.iter > 0:
|
||||||
|
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
||||||
|
else:
|
||||||
|
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||||
|
|
||||||
|
if params.simulate_streaming:
|
||||||
|
params.suffix += f"-streaming-chunk-size-{params.decode_chunk_size}"
|
||||||
|
params.suffix += f"-left-context-{params.left_context}"
|
||||||
|
|
||||||
|
if "fast_beam_search" in params.decoding_method:
|
||||||
|
params.suffix += f"-beam-{params.beam}"
|
||||||
|
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||||
|
params.suffix += f"-max-states-{params.max_states}"
|
||||||
|
if "nbest" in params.decoding_method:
|
||||||
|
params.suffix += f"-nbest-scale-{params.nbest_scale}"
|
||||||
|
params.suffix += f"-num-paths-{params.num_paths}"
|
||||||
|
if "LG" in params.decoding_method:
|
||||||
|
params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}"
|
||||||
|
elif "beam_search" in params.decoding_method:
|
||||||
|
params.suffix += (
|
||||||
|
f"-{params.decoding_method}-beam-size-{params.beam_size}"
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
params.suffix += f"-context-{params.context_size}"
|
||||||
|
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
||||||
|
|
||||||
|
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
||||||
|
logging.info("Decoding started")
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"Device: {device}")
|
||||||
|
|
||||||
|
sp = spm.SentencePieceProcessor()
|
||||||
|
sp.load(params.bpe_model)
|
||||||
|
|
||||||
|
# <blk> and <unk> are defined in local/train_bpe_model.py
|
||||||
|
params.blank_id = sp.piece_to_id("<blk>")
|
||||||
|
params.unk_id = sp.piece_to_id("<unk>")
|
||||||
|
params.vocab_size = sp.get_piece_size()
|
||||||
|
|
||||||
|
if params.simulate_streaming:
|
||||||
|
assert (
|
||||||
|
params.causal_convolution
|
||||||
|
), "Decoding in streaming requires causal convolution"
|
||||||
|
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
logging.info("About to create model")
|
||||||
|
model = get_transducer_model(params)
|
||||||
|
|
||||||
|
if params.iter > 0:
|
||||||
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
|
: params.avg
|
||||||
|
]
|
||||||
|
if len(filenames) == 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"No checkpoints found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
elif len(filenames) < params.avg:
|
||||||
|
raise ValueError(
|
||||||
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
elif params.avg == 1:
|
||||||
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||||
|
else:
|
||||||
|
start = params.epoch - params.avg + 1
|
||||||
|
filenames = []
|
||||||
|
for i in range(start, params.epoch + 1):
|
||||||
|
if start >= 0:
|
||||||
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
|
||||||
|
model.to(device)
|
||||||
|
model.eval()
|
||||||
|
model.device = device
|
||||||
|
|
||||||
|
if "fast_beam_search" in params.decoding_method:
|
||||||
|
if params.decoding_method == "fast_beam_search_nbest_LG":
|
||||||
|
lexicon = Lexicon(params.lang_dir)
|
||||||
|
word_table = lexicon.word_table
|
||||||
|
lg_filename = params.lang_dir / "LG.pt"
|
||||||
|
logging.info(f"Loading {lg_filename}")
|
||||||
|
decoding_graph = k2.Fsa.from_dict(
|
||||||
|
torch.load(lg_filename, map_location=device)
|
||||||
|
)
|
||||||
|
decoding_graph.scores *= params.ngram_lm_scale
|
||||||
|
else:
|
||||||
|
word_table = None
|
||||||
|
decoding_graph = k2.trivial_graph(
|
||||||
|
params.vocab_size - 1, device=device
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
decoding_graph = None
|
||||||
|
word_table = None
|
||||||
|
|
||||||
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
|
logging.info(f"Number of model parameters: {num_param}")
|
||||||
|
|
||||||
|
fisherswbd = FisherSwbdSpeechAsrDataModule(args)
|
||||||
|
|
||||||
|
test_eval2000_cuts = fisherswbd.test_eval2000_cuts()
|
||||||
|
test_swbd_cuts = fisherswbd.test_swbd_cuts()
|
||||||
|
test_callhome_cuts = fisherswbd.test_callhome_cuts()
|
||||||
|
|
||||||
|
test_eval2000_dl = fisherswbd.test_dataloaders(test_eval2000_cuts)
|
||||||
|
test_swbd_dl = fisherswbd.test_dataloaders(test_swbd_cuts)
|
||||||
|
test_callhome_dl = fisherswbd.test_dataloaders(test_callhome_cuts)
|
||||||
|
|
||||||
|
test_sets = ["eval2000", "swbd", "callhome"]
|
||||||
|
test_dl = [test_eval2000_dl, test_swbd_dl, test_callhome_dl]
|
||||||
|
|
||||||
|
for test_set, test_dl in zip(test_sets, test_dl):
|
||||||
|
results_dict = decode_dataset(
|
||||||
|
dl=test_dl,
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
sp=sp,
|
||||||
|
word_table=word_table,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
)
|
||||||
|
|
||||||
|
save_results(
|
||||||
|
params=params, test_set_name=test_set, results_dict=results_dict
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Done!")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
@ -0,0 +1,123 @@
|
|||||||
|
# Copyright 2022 Xiaomi Corp. (authors: Wei Kang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import math
|
||||||
|
from typing import List, Optional, Tuple
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from icefall.utils import AttributeDict
|
||||||
|
|
||||||
|
|
||||||
|
class DecodeStream(object):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
params: AttributeDict,
|
||||||
|
initial_states: List[torch.Tensor],
|
||||||
|
decoding_graph: Optional[k2.Fsa] = None,
|
||||||
|
device: torch.device = torch.device("cpu"),
|
||||||
|
) -> None:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
initial_states:
|
||||||
|
Initial decode states of the model, e.g. the return value of
|
||||||
|
`get_init_state` in conformer.py
|
||||||
|
decoding_graph:
|
||||||
|
Decoding graph used for decoding, may be a TrivialGraph or a HLG.
|
||||||
|
Used only when decoding_method is fast_beam_search.
|
||||||
|
device:
|
||||||
|
The device to run this stream.
|
||||||
|
"""
|
||||||
|
if decoding_graph is not None:
|
||||||
|
assert device == decoding_graph.device
|
||||||
|
|
||||||
|
self.params = params
|
||||||
|
self.LOG_EPS = math.log(1e-10)
|
||||||
|
|
||||||
|
self.states = initial_states
|
||||||
|
|
||||||
|
# It contains a 2-D tensors representing the feature frames.
|
||||||
|
self.features: torch.Tensor = None
|
||||||
|
|
||||||
|
self.num_frames: int = 0
|
||||||
|
# how many frames have been processed. (before subsampling).
|
||||||
|
# we only modify this value in `func:get_feature_frames`.
|
||||||
|
self.num_processed_frames: int = 0
|
||||||
|
|
||||||
|
self._done: bool = False
|
||||||
|
|
||||||
|
# The transcript of current utterance.
|
||||||
|
self.ground_truth: str = ""
|
||||||
|
|
||||||
|
# The decoding result (partial or final) of current utterance.
|
||||||
|
self.hyp: List = []
|
||||||
|
|
||||||
|
# how many frames have been processed, after subsampling (i.e. a
|
||||||
|
# cumulative sum of the second return value of
|
||||||
|
# encoder.streaming_forward
|
||||||
|
self.done_frames: int = 0
|
||||||
|
|
||||||
|
self.pad_length = (
|
||||||
|
params.right_context + 2
|
||||||
|
) * params.subsampling_factor + 3
|
||||||
|
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
self.hyp = [params.blank_id] * params.context_size
|
||||||
|
elif params.decoding_method == "fast_beam_search":
|
||||||
|
# The rnnt_decoding_stream for fast_beam_search.
|
||||||
|
self.rnnt_decoding_stream: k2.RnntDecodingStream = (
|
||||||
|
k2.RnntDecodingStream(decoding_graph)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
assert (
|
||||||
|
False
|
||||||
|
), f"Decoding method :{params.decoding_method} do not support."
|
||||||
|
|
||||||
|
@property
|
||||||
|
def done(self) -> bool:
|
||||||
|
"""Return True if all the features are processed."""
|
||||||
|
return self._done
|
||||||
|
|
||||||
|
def set_features(self, features: torch.Tensor) -> None:
|
||||||
|
"""Set features tensor of current utterance."""
|
||||||
|
assert features.dim() == 2, features.dim()
|
||||||
|
self.features = torch.nn.functional.pad(
|
||||||
|
features,
|
||||||
|
(0, 0, 0, self.pad_length),
|
||||||
|
mode="constant",
|
||||||
|
value=self.LOG_EPS,
|
||||||
|
)
|
||||||
|
self.num_frames = self.features.size(0)
|
||||||
|
|
||||||
|
def get_feature_frames(self, chunk_size: int) -> Tuple[torch.Tensor, int]:
|
||||||
|
"""Consume chunk_size frames of features"""
|
||||||
|
chunk_length = chunk_size + self.pad_length
|
||||||
|
|
||||||
|
ret_length = min(
|
||||||
|
self.num_frames - self.num_processed_frames, chunk_length
|
||||||
|
)
|
||||||
|
|
||||||
|
ret_features = self.features[
|
||||||
|
self.num_processed_frames : self.num_processed_frames # noqa
|
||||||
|
+ ret_length
|
||||||
|
]
|
||||||
|
|
||||||
|
self.num_processed_frames += chunk_size
|
||||||
|
if self.num_processed_frames >= self.num_frames:
|
||||||
|
self._done = True
|
||||||
|
|
||||||
|
return ret_features, ret_length
|
106
egs/fisher_swbd/ASR/pruned_transducer_stateless2/decoder.py
Normal file
106
egs/fisher_swbd/ASR/pruned_transducer_stateless2/decoder.py
Normal file
@ -0,0 +1,106 @@
|
|||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
from scaling import ScaledConv1d, ScaledEmbedding
|
||||||
|
|
||||||
|
|
||||||
|
class Decoder(nn.Module):
|
||||||
|
"""This class modifies the stateless decoder from the following paper:
|
||||||
|
|
||||||
|
RNN-transducer with stateless prediction network
|
||||||
|
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9054419
|
||||||
|
|
||||||
|
It removes the recurrent connection from the decoder, i.e., the prediction
|
||||||
|
network. Different from the above paper, it adds an extra Conv1d
|
||||||
|
right after the embedding layer.
|
||||||
|
|
||||||
|
TODO: Implement https://arxiv.org/pdf/2109.07513.pdf
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
vocab_size: int,
|
||||||
|
decoder_dim: int,
|
||||||
|
blank_id: int,
|
||||||
|
context_size: int,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
vocab_size:
|
||||||
|
Number of tokens of the modeling unit including blank.
|
||||||
|
decoder_dim:
|
||||||
|
Dimension of the input embedding, and of the decoder output.
|
||||||
|
blank_id:
|
||||||
|
The ID of the blank symbol.
|
||||||
|
context_size:
|
||||||
|
Number of previous words to use to predict the next word.
|
||||||
|
1 means bigram; 2 means trigram. n means (n+1)-gram.
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.embedding = ScaledEmbedding(
|
||||||
|
num_embeddings=vocab_size,
|
||||||
|
embedding_dim=decoder_dim,
|
||||||
|
padding_idx=blank_id,
|
||||||
|
)
|
||||||
|
self.blank_id = blank_id
|
||||||
|
|
||||||
|
assert context_size >= 1, context_size
|
||||||
|
self.context_size = context_size
|
||||||
|
self.vocab_size = vocab_size
|
||||||
|
if context_size > 1:
|
||||||
|
self.conv = ScaledConv1d(
|
||||||
|
in_channels=decoder_dim,
|
||||||
|
out_channels=decoder_dim,
|
||||||
|
kernel_size=context_size,
|
||||||
|
padding=0,
|
||||||
|
groups=decoder_dim,
|
||||||
|
bias=False,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
# It is to support torch script
|
||||||
|
self.conv = nn.Identity()
|
||||||
|
|
||||||
|
def forward(self, y: torch.Tensor, need_pad: bool = True) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
y:
|
||||||
|
A 2-D tensor of shape (N, U).
|
||||||
|
need_pad:
|
||||||
|
True to left pad the input. Should be True during training.
|
||||||
|
False to not pad the input. Should be False during inference.
|
||||||
|
Returns:
|
||||||
|
Return a tensor of shape (N, U, decoder_dim).
|
||||||
|
"""
|
||||||
|
y = y.to(torch.int64)
|
||||||
|
embedding_out = self.embedding(y)
|
||||||
|
if self.context_size > 1:
|
||||||
|
embedding_out = embedding_out.permute(0, 2, 1)
|
||||||
|
if need_pad is True:
|
||||||
|
embedding_out = F.pad(
|
||||||
|
embedding_out, pad=(self.context_size - 1, 0)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
# During inference time, there is no need to do extra padding
|
||||||
|
# as we only need one output
|
||||||
|
assert embedding_out.size(-1) == self.context_size
|
||||||
|
embedding_out = self.conv(embedding_out)
|
||||||
|
embedding_out = embedding_out.permute(0, 2, 1)
|
||||||
|
embedding_out = F.relu(embedding_out)
|
||||||
|
return embedding_out
|
@ -0,0 +1,43 @@
|
|||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from typing import Tuple
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
|
||||||
|
|
||||||
|
class EncoderInterface(nn.Module):
|
||||||
|
def forward(
|
||||||
|
self, x: torch.Tensor, x_lens: torch.Tensor
|
||||||
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
x:
|
||||||
|
A tensor of shape (batch_size, input_seq_len, num_features)
|
||||||
|
containing the input features.
|
||||||
|
x_lens:
|
||||||
|
A tensor of shape (batch_size,) containing the number of frames
|
||||||
|
in `x` before padding.
|
||||||
|
Returns:
|
||||||
|
Return a tuple containing two tensors:
|
||||||
|
- encoder_out, a tensor of (batch_size, out_seq_len, output_dim)
|
||||||
|
containing unnormalized probabilities, i.e., the output of a
|
||||||
|
linear layer.
|
||||||
|
- encoder_out_lens, a tensor of shape (batch_size,) containing
|
||||||
|
the number of frames in `encoder_out` before padding.
|
||||||
|
"""
|
||||||
|
raise NotImplementedError("Please implement it in a subclass")
|
230
egs/fisher_swbd/ASR/pruned_transducer_stateless2/export.py
Executable file
230
egs/fisher_swbd/ASR/pruned_transducer_stateless2/export.py
Executable file
@ -0,0 +1,230 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
#
|
||||||
|
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
# This script converts several saved checkpoints
|
||||||
|
# to a single one using model averaging.
|
||||||
|
"""
|
||||||
|
Usage:
|
||||||
|
./pruned_transducer_stateless2/export.py \
|
||||||
|
--exp-dir ./pruned_transducer_stateless2/exp \
|
||||||
|
--bpe-model data/lang_bpe_500/bpe.model \
|
||||||
|
--epoch 20 \
|
||||||
|
--avg 10
|
||||||
|
|
||||||
|
It will generate a file exp_dir/pretrained.pt
|
||||||
|
|
||||||
|
To use the generated file with `pruned_transducer_stateless2/decode.py`,
|
||||||
|
you can do:
|
||||||
|
|
||||||
|
cd /path/to/exp_dir
|
||||||
|
ln -s pretrained.pt epoch-9999.pt
|
||||||
|
|
||||||
|
cd /path/to/egs/librispeech/ASR
|
||||||
|
./pruned_transducer_stateless2/decode.py \
|
||||||
|
--exp-dir ./pruned_transducer_stateless2/exp \
|
||||||
|
--epoch 9999 \
|
||||||
|
--avg 1 \
|
||||||
|
--max-duration 100 \
|
||||||
|
--bpe-model data/lang_bpe_500/bpe.model
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import sentencepiece as spm
|
||||||
|
import torch
|
||||||
|
from train import add_model_arguments, get_params, get_transducer_model
|
||||||
|
|
||||||
|
from icefall.checkpoint import (
|
||||||
|
average_checkpoints,
|
||||||
|
find_checkpoints,
|
||||||
|
load_checkpoint,
|
||||||
|
)
|
||||||
|
from icefall.utils import str2bool
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--epoch",
|
||||||
|
type=int,
|
||||||
|
default=28,
|
||||||
|
help="""It specifies the checkpoint to use for averaging.
|
||||||
|
Note: Epoch counts from 0.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--iter",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="""If positive, --epoch is ignored and it
|
||||||
|
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--avg",
|
||||||
|
type=int,
|
||||||
|
default=15,
|
||||||
|
help="Number of checkpoints to average. Automatically select "
|
||||||
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
|
"'--epoch' and '--iter'",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=str,
|
||||||
|
default="pruned_transducer_stateless2/exp",
|
||||||
|
help="""It specifies the directory where all training related
|
||||||
|
files, e.g., checkpoints, log, etc, are saved
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--bpe-model",
|
||||||
|
type=str,
|
||||||
|
default="data/lang_bpe_500/bpe.model",
|
||||||
|
help="Path to the BPE model",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--jit",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="""True to save a model after applying torch.jit.script.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--context-size",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The context size in the decoder. 1 means bigram; "
|
||||||
|
"2 means tri-gram",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--streaming-model",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="""Whether to export a streaming model, if the models in exp-dir
|
||||||
|
are streaming model, this should be True.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
add_model_arguments(parser)
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
args = get_parser().parse_args()
|
||||||
|
args.exp_dir = Path(args.exp_dir)
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"device: {device}")
|
||||||
|
|
||||||
|
sp = spm.SentencePieceProcessor()
|
||||||
|
sp.load(params.bpe_model)
|
||||||
|
|
||||||
|
# <blk> is defined in local/train_bpe_model.py
|
||||||
|
params.blank_id = sp.piece_to_id("<blk>")
|
||||||
|
params.vocab_size = sp.get_piece_size()
|
||||||
|
|
||||||
|
if params.streaming_model:
|
||||||
|
assert params.causal_convolution
|
||||||
|
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
logging.info("About to create model")
|
||||||
|
model = get_transducer_model(params)
|
||||||
|
|
||||||
|
model.to(device)
|
||||||
|
|
||||||
|
if params.iter > 0:
|
||||||
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
|
: params.avg
|
||||||
|
]
|
||||||
|
if len(filenames) == 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"No checkpoints found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
elif len(filenames) < params.avg:
|
||||||
|
raise ValueError(
|
||||||
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
elif params.avg == 1:
|
||||||
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||||
|
else:
|
||||||
|
start = params.epoch - params.avg + 1
|
||||||
|
filenames = []
|
||||||
|
for i in range(start, params.epoch + 1):
|
||||||
|
if start >= 0:
|
||||||
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
model.to("cpu")
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
if params.jit:
|
||||||
|
# We won't use the forward() method of the model in C++, so just ignore
|
||||||
|
# it here.
|
||||||
|
# Otherwise, one of its arguments is a ragged tensor and is not
|
||||||
|
# torch scriptabe.
|
||||||
|
model.__class__.forward = torch.jit.ignore(model.__class__.forward)
|
||||||
|
logging.info("Using torch.jit.script")
|
||||||
|
model = torch.jit.script(model)
|
||||||
|
filename = params.exp_dir / "cpu_jit.pt"
|
||||||
|
model.save(str(filename))
|
||||||
|
logging.info(f"Saved to {filename}")
|
||||||
|
else:
|
||||||
|
logging.info("Not using torch.jit.script")
|
||||||
|
# Save it using a format so that it can be loaded
|
||||||
|
# by :func:`load_checkpoint`
|
||||||
|
filename = params.exp_dir / "pretrained.pt"
|
||||||
|
torch.save({"model": model.state_dict()}, str(filename))
|
||||||
|
logging.info(f"Saved to {filename}")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = (
|
||||||
|
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
main()
|
69
egs/fisher_swbd/ASR/pruned_transducer_stateless2/joiner.py
Normal file
69
egs/fisher_swbd/ASR/pruned_transducer_stateless2/joiner.py
Normal file
@ -0,0 +1,69 @@
|
|||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from scaling import ScaledLinear
|
||||||
|
|
||||||
|
|
||||||
|
class Joiner(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
encoder_dim: int,
|
||||||
|
decoder_dim: int,
|
||||||
|
joiner_dim: int,
|
||||||
|
vocab_size: int,
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.encoder_proj = ScaledLinear(encoder_dim, joiner_dim)
|
||||||
|
self.decoder_proj = ScaledLinear(decoder_dim, joiner_dim)
|
||||||
|
self.output_linear = ScaledLinear(joiner_dim, vocab_size)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
encoder_out: torch.Tensor,
|
||||||
|
decoder_out: torch.Tensor,
|
||||||
|
project_input: bool = True,
|
||||||
|
) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
encoder_out:
|
||||||
|
Output from the encoder. Its shape is (N, T, s_range, C).
|
||||||
|
decoder_out:
|
||||||
|
Output from the decoder. Its shape is (N, T, s_range, C).
|
||||||
|
project_input:
|
||||||
|
If true, apply input projections encoder_proj and decoder_proj.
|
||||||
|
If this is false, it is the user's responsibility to do this
|
||||||
|
manually.
|
||||||
|
Returns:
|
||||||
|
Return a tensor of shape (N, T, s_range, C).
|
||||||
|
"""
|
||||||
|
|
||||||
|
assert encoder_out.ndim == decoder_out.ndim
|
||||||
|
assert encoder_out.ndim in (2, 4)
|
||||||
|
assert encoder_out.shape == decoder_out.shape
|
||||||
|
|
||||||
|
if project_input:
|
||||||
|
logit = self.encoder_proj(encoder_out) + self.decoder_proj(
|
||||||
|
decoder_out
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
logit = encoder_out + decoder_out
|
||||||
|
|
||||||
|
logit = self.output_linear(torch.tanh(logit))
|
||||||
|
|
||||||
|
return logit
|
194
egs/fisher_swbd/ASR/pruned_transducer_stateless2/model.py
Normal file
194
egs/fisher_swbd/ASR/pruned_transducer_stateless2/model.py
Normal file
@ -0,0 +1,194 @@
|
|||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang, Wei Kang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from encoder_interface import EncoderInterface
|
||||||
|
from scaling import ScaledLinear
|
||||||
|
|
||||||
|
from icefall.utils import add_sos
|
||||||
|
|
||||||
|
|
||||||
|
class Transducer(nn.Module):
|
||||||
|
"""It implements https://arxiv.org/pdf/1211.3711.pdf
|
||||||
|
"Sequence Transduction with Recurrent Neural Networks"
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
encoder: EncoderInterface,
|
||||||
|
decoder: nn.Module,
|
||||||
|
joiner: nn.Module,
|
||||||
|
encoder_dim: int,
|
||||||
|
decoder_dim: int,
|
||||||
|
joiner_dim: int,
|
||||||
|
vocab_size: int,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
encoder:
|
||||||
|
It is the transcription network in the paper. Its accepts
|
||||||
|
two inputs: `x` of (N, T, encoder_dim) and `x_lens` of shape (N,).
|
||||||
|
It returns two tensors: `logits` of shape (N, T, encoder_dm) and
|
||||||
|
`logit_lens` of shape (N,).
|
||||||
|
decoder:
|
||||||
|
It is the prediction network in the paper. Its input shape
|
||||||
|
is (N, U) and its output shape is (N, U, decoder_dim).
|
||||||
|
It should contain one attribute: `blank_id`.
|
||||||
|
joiner:
|
||||||
|
It has two inputs with shapes: (N, T, encoder_dim) and
|
||||||
|
(N, U, decoder_dim).
|
||||||
|
Its output shape is (N, T, U, vocab_size). Note that its output
|
||||||
|
contains unnormalized probs, i.e., not processed by log-softmax.
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
assert isinstance(encoder, EncoderInterface), type(encoder)
|
||||||
|
assert hasattr(decoder, "blank_id")
|
||||||
|
|
||||||
|
self.encoder = encoder
|
||||||
|
self.decoder = decoder
|
||||||
|
self.joiner = joiner
|
||||||
|
|
||||||
|
self.simple_am_proj = ScaledLinear(
|
||||||
|
encoder_dim, vocab_size, initial_speed=0.5
|
||||||
|
)
|
||||||
|
self.simple_lm_proj = ScaledLinear(decoder_dim, vocab_size)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
x: torch.Tensor,
|
||||||
|
x_lens: torch.Tensor,
|
||||||
|
y: k2.RaggedTensor,
|
||||||
|
prune_range: int = 5,
|
||||||
|
am_scale: float = 0.0,
|
||||||
|
lm_scale: float = 0.0,
|
||||||
|
warmup: float = 1.0,
|
||||||
|
) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
x:
|
||||||
|
A 3-D tensor of shape (N, T, C).
|
||||||
|
x_lens:
|
||||||
|
A 1-D tensor of shape (N,). It contains the number of frames in `x`
|
||||||
|
before padding.
|
||||||
|
y:
|
||||||
|
A ragged tensor with 2 axes [utt][label]. It contains labels of each
|
||||||
|
utterance.
|
||||||
|
prune_range:
|
||||||
|
The prune range for rnnt loss, it means how many symbols(context)
|
||||||
|
we are considering for each frame to compute the loss.
|
||||||
|
am_scale:
|
||||||
|
The scale to smooth the loss with am (output of encoder network)
|
||||||
|
part
|
||||||
|
lm_scale:
|
||||||
|
The scale to smooth the loss with lm (output of predictor network)
|
||||||
|
part
|
||||||
|
warmup:
|
||||||
|
A value warmup >= 0 that determines which modules are active, values
|
||||||
|
warmup > 1 "are fully warmed up" and all modules will be active.
|
||||||
|
Returns:
|
||||||
|
Return the transducer loss.
|
||||||
|
|
||||||
|
Note:
|
||||||
|
Regarding am_scale & lm_scale, it will make the loss-function one of
|
||||||
|
the form:
|
||||||
|
lm_scale * lm_probs + am_scale * am_probs +
|
||||||
|
(1-lm_scale-am_scale) * combined_probs
|
||||||
|
"""
|
||||||
|
assert x.ndim == 3, x.shape
|
||||||
|
assert x_lens.ndim == 1, x_lens.shape
|
||||||
|
assert y.num_axes == 2, y.num_axes
|
||||||
|
|
||||||
|
assert x.size(0) == x_lens.size(0) == y.dim0
|
||||||
|
|
||||||
|
encoder_out, x_lens = self.encoder(x, x_lens, warmup=warmup)
|
||||||
|
assert torch.all(x_lens > 0)
|
||||||
|
|
||||||
|
# Now for the decoder, i.e., the prediction network
|
||||||
|
row_splits = y.shape.row_splits(1)
|
||||||
|
y_lens = row_splits[1:] - row_splits[:-1]
|
||||||
|
|
||||||
|
blank_id = self.decoder.blank_id
|
||||||
|
sos_y = add_sos(y, sos_id=blank_id)
|
||||||
|
|
||||||
|
# sos_y_padded: [B, S + 1], start with SOS.
|
||||||
|
sos_y_padded = sos_y.pad(mode="constant", padding_value=blank_id)
|
||||||
|
|
||||||
|
# decoder_out: [B, S + 1, decoder_dim]
|
||||||
|
decoder_out = self.decoder(sos_y_padded)
|
||||||
|
|
||||||
|
# Note: y does not start with SOS
|
||||||
|
# y_padded : [B, S]
|
||||||
|
y_padded = y.pad(mode="constant", padding_value=0)
|
||||||
|
|
||||||
|
y_padded = y_padded.to(torch.int64)
|
||||||
|
boundary = torch.zeros(
|
||||||
|
(x.size(0), 4), dtype=torch.int64, device=x.device
|
||||||
|
)
|
||||||
|
boundary[:, 2] = y_lens
|
||||||
|
boundary[:, 3] = x_lens
|
||||||
|
|
||||||
|
lm = self.simple_lm_proj(decoder_out)
|
||||||
|
am = self.simple_am_proj(encoder_out)
|
||||||
|
|
||||||
|
with torch.cuda.amp.autocast(enabled=False):
|
||||||
|
simple_loss, (px_grad, py_grad) = k2.rnnt_loss_smoothed(
|
||||||
|
lm=lm.float(),
|
||||||
|
am=am.float(),
|
||||||
|
symbols=y_padded,
|
||||||
|
termination_symbol=blank_id,
|
||||||
|
lm_only_scale=lm_scale,
|
||||||
|
am_only_scale=am_scale,
|
||||||
|
boundary=boundary,
|
||||||
|
reduction="sum",
|
||||||
|
return_grad=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
# ranges : [B, T, prune_range]
|
||||||
|
ranges = k2.get_rnnt_prune_ranges(
|
||||||
|
px_grad=px_grad,
|
||||||
|
py_grad=py_grad,
|
||||||
|
boundary=boundary,
|
||||||
|
s_range=prune_range,
|
||||||
|
)
|
||||||
|
|
||||||
|
# am_pruned : [B, T, prune_range, encoder_dim]
|
||||||
|
# lm_pruned : [B, T, prune_range, decoder_dim]
|
||||||
|
am_pruned, lm_pruned = k2.do_rnnt_pruning(
|
||||||
|
am=self.joiner.encoder_proj(encoder_out),
|
||||||
|
lm=self.joiner.decoder_proj(decoder_out),
|
||||||
|
ranges=ranges,
|
||||||
|
)
|
||||||
|
|
||||||
|
# logits : [B, T, prune_range, vocab_size]
|
||||||
|
|
||||||
|
# project_input=False since we applied the decoder's input projections
|
||||||
|
# prior to do_rnnt_pruning (this is an optimization for speed).
|
||||||
|
logits = self.joiner(am_pruned, lm_pruned, project_input=False)
|
||||||
|
|
||||||
|
with torch.cuda.amp.autocast(enabled=False):
|
||||||
|
pruned_loss = k2.rnnt_loss_pruned(
|
||||||
|
logits=logits.float(),
|
||||||
|
symbols=y_padded,
|
||||||
|
ranges=ranges,
|
||||||
|
termination_symbol=blank_id,
|
||||||
|
boundary=boundary,
|
||||||
|
reduction="sum",
|
||||||
|
)
|
||||||
|
|
||||||
|
return (simple_loss, pruned_loss)
|
331
egs/fisher_swbd/ASR/pruned_transducer_stateless2/optim.py
Normal file
331
egs/fisher_swbd/ASR/pruned_transducer_stateless2/optim.py
Normal file
@ -0,0 +1,331 @@
|
|||||||
|
# Copyright 2022 Xiaomi Corp. (authors: Daniel Povey)
|
||||||
|
#
|
||||||
|
# See ../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
from typing import List, Optional, Union
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from torch.optim import Optimizer
|
||||||
|
|
||||||
|
|
||||||
|
class Eve(Optimizer):
|
||||||
|
r"""
|
||||||
|
Implements Eve algorithm. This is a modified version of AdamW with a special
|
||||||
|
way of setting the weight-decay / shrinkage-factor, which is designed to make the
|
||||||
|
rms of the parameters approach a particular target_rms (default: 0.1). This is
|
||||||
|
for use with networks with 'scaled' versions of modules (see scaling.py), which
|
||||||
|
will be close to invariant to the absolute scale on the parameter matrix.
|
||||||
|
|
||||||
|
The original Adam algorithm was proposed in `Adam: A Method for Stochastic Optimization`_.
|
||||||
|
The AdamW variant was proposed in `Decoupled Weight Decay Regularization`_.
|
||||||
|
Eve is unpublished so far.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
params (iterable): iterable of parameters to optimize or dicts defining
|
||||||
|
parameter groups
|
||||||
|
lr (float, optional): learning rate (default: 1e-3)
|
||||||
|
betas (Tuple[float, float], optional): coefficients used for computing
|
||||||
|
running averages of gradient and its square (default: (0.9, 0.999))
|
||||||
|
eps (float, optional): term added to the denominator to improve
|
||||||
|
numerical stability (default: 1e-8)
|
||||||
|
weight_decay (float, optional): weight decay coefficient (default: 3e-4;
|
||||||
|
this value means that the weight would decay significantly after
|
||||||
|
about 3k minibatches. Is not multiplied by learning rate, but
|
||||||
|
is conditional on RMS-value of parameter being > target_rms.
|
||||||
|
target_rms (float, optional): target root-mean-square value of
|
||||||
|
parameters, if they fall below this we will stop applying weight decay.
|
||||||
|
|
||||||
|
|
||||||
|
.. _Adam\: A Method for Stochastic Optimization:
|
||||||
|
https://arxiv.org/abs/1412.6980
|
||||||
|
.. _Decoupled Weight Decay Regularization:
|
||||||
|
https://arxiv.org/abs/1711.05101
|
||||||
|
.. _On the Convergence of Adam and Beyond:
|
||||||
|
https://openreview.net/forum?id=ryQu7f-RZ
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
params,
|
||||||
|
lr=1e-3,
|
||||||
|
betas=(0.9, 0.98),
|
||||||
|
eps=1e-8,
|
||||||
|
weight_decay=1e-3,
|
||||||
|
target_rms=0.1,
|
||||||
|
):
|
||||||
|
|
||||||
|
if not 0.0 <= lr:
|
||||||
|
raise ValueError("Invalid learning rate: {}".format(lr))
|
||||||
|
if not 0.0 <= eps:
|
||||||
|
raise ValueError("Invalid epsilon value: {}".format(eps))
|
||||||
|
if not 0.0 <= betas[0] < 1.0:
|
||||||
|
raise ValueError(
|
||||||
|
"Invalid beta parameter at index 0: {}".format(betas[0])
|
||||||
|
)
|
||||||
|
if not 0.0 <= betas[1] < 1.0:
|
||||||
|
raise ValueError(
|
||||||
|
"Invalid beta parameter at index 1: {}".format(betas[1])
|
||||||
|
)
|
||||||
|
if not 0 <= weight_decay <= 0.1:
|
||||||
|
raise ValueError(
|
||||||
|
"Invalid weight_decay value: {}".format(weight_decay)
|
||||||
|
)
|
||||||
|
if not 0 < target_rms <= 10.0:
|
||||||
|
raise ValueError("Invalid target_rms value: {}".format(target_rms))
|
||||||
|
defaults = dict(
|
||||||
|
lr=lr,
|
||||||
|
betas=betas,
|
||||||
|
eps=eps,
|
||||||
|
weight_decay=weight_decay,
|
||||||
|
target_rms=target_rms,
|
||||||
|
)
|
||||||
|
super(Eve, self).__init__(params, defaults)
|
||||||
|
|
||||||
|
def __setstate__(self, state):
|
||||||
|
super(Eve, self).__setstate__(state)
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def step(self, closure=None):
|
||||||
|
"""Performs a single optimization step.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
closure (callable, optional): A closure that reevaluates the model
|
||||||
|
and returns the loss.
|
||||||
|
"""
|
||||||
|
loss = None
|
||||||
|
if closure is not None:
|
||||||
|
with torch.enable_grad():
|
||||||
|
loss = closure()
|
||||||
|
|
||||||
|
for group in self.param_groups:
|
||||||
|
for p in group["params"]:
|
||||||
|
if p.grad is None:
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Perform optimization step
|
||||||
|
grad = p.grad
|
||||||
|
if grad.is_sparse:
|
||||||
|
raise RuntimeError(
|
||||||
|
"AdamW does not support sparse gradients"
|
||||||
|
)
|
||||||
|
|
||||||
|
state = self.state[p]
|
||||||
|
|
||||||
|
# State initialization
|
||||||
|
if len(state) == 0:
|
||||||
|
state["step"] = 0
|
||||||
|
# Exponential moving average of gradient values
|
||||||
|
state["exp_avg"] = torch.zeros_like(
|
||||||
|
p, memory_format=torch.preserve_format
|
||||||
|
)
|
||||||
|
# Exponential moving average of squared gradient values
|
||||||
|
state["exp_avg_sq"] = torch.zeros_like(
|
||||||
|
p, memory_format=torch.preserve_format
|
||||||
|
)
|
||||||
|
|
||||||
|
exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"]
|
||||||
|
|
||||||
|
beta1, beta2 = group["betas"]
|
||||||
|
|
||||||
|
state["step"] += 1
|
||||||
|
bias_correction1 = 1 - beta1 ** state["step"]
|
||||||
|
bias_correction2 = 1 - beta2 ** state["step"]
|
||||||
|
|
||||||
|
# Decay the first and second moment running average coefficient
|
||||||
|
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
|
||||||
|
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
|
||||||
|
denom = (exp_avg_sq.sqrt() * (bias_correction2 ** -0.5)).add_(
|
||||||
|
group["eps"]
|
||||||
|
)
|
||||||
|
|
||||||
|
step_size = group["lr"] / bias_correction1
|
||||||
|
target_rms = group["target_rms"]
|
||||||
|
weight_decay = group["weight_decay"]
|
||||||
|
|
||||||
|
if p.numel() > 1:
|
||||||
|
# avoid applying this weight-decay on "scaling factors"
|
||||||
|
# (which are scalar).
|
||||||
|
is_above_target_rms = p.norm() > (
|
||||||
|
target_rms * (p.numel() ** 0.5)
|
||||||
|
)
|
||||||
|
p.mul_(1 - (weight_decay * is_above_target_rms))
|
||||||
|
p.addcdiv_(exp_avg, denom, value=-step_size)
|
||||||
|
|
||||||
|
return loss
|
||||||
|
|
||||||
|
|
||||||
|
class LRScheduler(object):
|
||||||
|
"""
|
||||||
|
Base-class for learning rate schedulers where the learning-rate depends on both the
|
||||||
|
batch and the epoch.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, optimizer: Optimizer, verbose: bool = False):
|
||||||
|
# Attach optimizer
|
||||||
|
if not isinstance(optimizer, Optimizer):
|
||||||
|
raise TypeError(
|
||||||
|
"{} is not an Optimizer".format(type(optimizer).__name__)
|
||||||
|
)
|
||||||
|
self.optimizer = optimizer
|
||||||
|
self.verbose = verbose
|
||||||
|
|
||||||
|
for group in optimizer.param_groups:
|
||||||
|
group.setdefault("initial_lr", group["lr"])
|
||||||
|
|
||||||
|
self.base_lrs = [
|
||||||
|
group["initial_lr"] for group in optimizer.param_groups
|
||||||
|
]
|
||||||
|
|
||||||
|
self.epoch = 0
|
||||||
|
self.batch = 0
|
||||||
|
|
||||||
|
def state_dict(self):
|
||||||
|
"""Returns the state of the scheduler as a :class:`dict`.
|
||||||
|
|
||||||
|
It contains an entry for every variable in self.__dict__ which
|
||||||
|
is not the optimizer.
|
||||||
|
"""
|
||||||
|
return {
|
||||||
|
"base_lrs": self.base_lrs,
|
||||||
|
"epoch": self.epoch,
|
||||||
|
"batch": self.batch,
|
||||||
|
}
|
||||||
|
|
||||||
|
def load_state_dict(self, state_dict):
|
||||||
|
"""Loads the schedulers state.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
state_dict (dict): scheduler state. Should be an object returned
|
||||||
|
from a call to :meth:`state_dict`.
|
||||||
|
"""
|
||||||
|
self.__dict__.update(state_dict)
|
||||||
|
|
||||||
|
def get_last_lr(self) -> List[float]:
|
||||||
|
"""Return last computed learning rate by current scheduler. Will be a list of float."""
|
||||||
|
return self._last_lr
|
||||||
|
|
||||||
|
def get_lr(self):
|
||||||
|
# Compute list of learning rates from self.epoch and self.batch and
|
||||||
|
# self.base_lrs; this must be overloaded by the user.
|
||||||
|
# e.g. return [some_formula(self.batch, self.epoch, base_lr) for base_lr in self.base_lrs ]
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
def step_batch(self, batch: Optional[int] = None) -> None:
|
||||||
|
# Step the batch index, or just set it. If `batch` is specified, it
|
||||||
|
# must be the batch index from the start of training, i.e. summed over
|
||||||
|
# all epochs.
|
||||||
|
# You can call this in any order; if you don't provide 'batch', it should
|
||||||
|
# of course be called once per batch.
|
||||||
|
if batch is not None:
|
||||||
|
self.batch = batch
|
||||||
|
else:
|
||||||
|
self.batch = self.batch + 1
|
||||||
|
self._set_lrs()
|
||||||
|
|
||||||
|
def step_epoch(self, epoch: Optional[int] = None):
|
||||||
|
# Step the epoch index, or just set it. If you provide the 'epoch' arg,
|
||||||
|
# you should call this at the start of the epoch; if you don't provide the 'epoch'
|
||||||
|
# arg, you should call it at the end of the epoch.
|
||||||
|
if epoch is not None:
|
||||||
|
self.epoch = epoch
|
||||||
|
else:
|
||||||
|
self.epoch = self.epoch + 1
|
||||||
|
self._set_lrs()
|
||||||
|
|
||||||
|
def _set_lrs(self):
|
||||||
|
values = self.get_lr()
|
||||||
|
assert len(values) == len(self.optimizer.param_groups)
|
||||||
|
|
||||||
|
for i, data in enumerate(zip(self.optimizer.param_groups, values)):
|
||||||
|
param_group, lr = data
|
||||||
|
param_group["lr"] = lr
|
||||||
|
self.print_lr(self.verbose, i, lr)
|
||||||
|
self._last_lr = [group["lr"] for group in self.optimizer.param_groups]
|
||||||
|
|
||||||
|
def print_lr(self, is_verbose, group, lr):
|
||||||
|
"""Display the current learning rate."""
|
||||||
|
if is_verbose:
|
||||||
|
print(
|
||||||
|
f"Epoch={self.epoch}, batch={self.batch}: adjusting learning rate"
|
||||||
|
f" of group {group} to {lr:.4e}."
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class Eden(LRScheduler):
|
||||||
|
"""
|
||||||
|
Eden scheduler.
|
||||||
|
lr = initial_lr * (((batch**2 + lr_batches**2) / lr_batches**2) ** -0.25 *
|
||||||
|
(((epoch**2 + lr_epochs**2) / lr_epochs**2) ** -0.25))
|
||||||
|
|
||||||
|
E.g. suggest initial-lr = 0.003 (passed to optimizer).
|
||||||
|
|
||||||
|
Args:
|
||||||
|
optimizer: the optimizer to change the learning rates on
|
||||||
|
lr_batches: the number of batches after which we start significantly
|
||||||
|
decreasing the learning rate, suggest 5000.
|
||||||
|
lr_epochs: the number of epochs after which we start significantly
|
||||||
|
decreasing the learning rate, suggest 6 if you plan to do e.g.
|
||||||
|
20 to 40 epochs, but may need smaller number if dataset is huge
|
||||||
|
and you will do few epochs.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
optimizer: Optimizer,
|
||||||
|
lr_batches: Union[int, float],
|
||||||
|
lr_epochs: Union[int, float],
|
||||||
|
verbose: bool = False,
|
||||||
|
):
|
||||||
|
super(Eden, self).__init__(optimizer, verbose)
|
||||||
|
self.lr_batches = lr_batches
|
||||||
|
self.lr_epochs = lr_epochs
|
||||||
|
|
||||||
|
def get_lr(self):
|
||||||
|
factor = (
|
||||||
|
(self.batch ** 2 + self.lr_batches ** 2) / self.lr_batches ** 2
|
||||||
|
) ** -0.25 * (
|
||||||
|
((self.epoch ** 2 + self.lr_epochs ** 2) / self.lr_epochs ** 2)
|
||||||
|
** -0.25
|
||||||
|
)
|
||||||
|
return [x * factor for x in self.base_lrs]
|
||||||
|
|
||||||
|
|
||||||
|
def _test_eden():
|
||||||
|
m = torch.nn.Linear(100, 100)
|
||||||
|
optim = Eve(m.parameters(), lr=0.003)
|
||||||
|
|
||||||
|
scheduler = Eden(optim, lr_batches=30, lr_epochs=2, verbose=True)
|
||||||
|
|
||||||
|
for epoch in range(10):
|
||||||
|
scheduler.step_epoch(epoch) # sets epoch to `epoch`
|
||||||
|
|
||||||
|
for step in range(20):
|
||||||
|
x = torch.randn(200, 100).detach()
|
||||||
|
x.requires_grad = True
|
||||||
|
y = m(x)
|
||||||
|
dy = torch.randn(200, 100).detach()
|
||||||
|
f = (y * dy).sum()
|
||||||
|
f.backward()
|
||||||
|
|
||||||
|
optim.step()
|
||||||
|
scheduler.step_batch()
|
||||||
|
optim.zero_grad()
|
||||||
|
print("last lr = ", scheduler.get_last_lr())
|
||||||
|
print("state dict = ", scheduler.state_dict())
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
_test_eden()
|
386
egs/fisher_swbd/ASR/pruned_transducer_stateless2/pretrained.py
Executable file
386
egs/fisher_swbd/ASR/pruned_transducer_stateless2/pretrained.py
Executable file
@ -0,0 +1,386 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""
|
||||||
|
Usage:
|
||||||
|
|
||||||
|
(1) greedy search
|
||||||
|
./pruned_transducer_stateless2/pretrained.py \
|
||||||
|
--checkpoint ./pruned_transducer_stateless2/exp/pretrained.pt \
|
||||||
|
--bpe-model ./data/lang_bpe_500/bpe.model \
|
||||||
|
--method greedy_search \
|
||||||
|
/path/to/foo.wav \
|
||||||
|
/path/to/bar.wav
|
||||||
|
|
||||||
|
(2) beam search
|
||||||
|
./pruned_transducer_stateless2/pretrained.py \
|
||||||
|
--checkpoint ./pruned_transducer_stateless2/exp/pretrained.pt \
|
||||||
|
--bpe-model ./data/lang_bpe_500/bpe.model \
|
||||||
|
--method beam_search \
|
||||||
|
--beam-size 4 \
|
||||||
|
/path/to/foo.wav \
|
||||||
|
/path/to/bar.wav
|
||||||
|
|
||||||
|
(3) modified beam search
|
||||||
|
./pruned_transducer_stateless2/pretrained.py \
|
||||||
|
--checkpoint ./pruned_transducer_stateless2/exp/pretrained.pt \
|
||||||
|
--bpe-model ./data/lang_bpe_500/bpe.model \
|
||||||
|
--method modified_beam_search \
|
||||||
|
--beam-size 4 \
|
||||||
|
/path/to/foo.wav \
|
||||||
|
/path/to/bar.wav
|
||||||
|
|
||||||
|
(4) fast beam search
|
||||||
|
./pruned_transducer_stateless2/pretrained.py \
|
||||||
|
--checkpoint ./pruned_transducer_stateless2/exp/pretrained.pt \
|
||||||
|
--bpe-model ./data/lang_bpe_500/bpe.model \
|
||||||
|
--method fast_beam_search \
|
||||||
|
--beam-size 4 \
|
||||||
|
/path/to/foo.wav \
|
||||||
|
/path/to/bar.wav
|
||||||
|
|
||||||
|
You can also use `./pruned_transducer_stateless2/exp/epoch-xx.pt`.
|
||||||
|
|
||||||
|
Note: ./pruned_transducer_stateless2/exp/pretrained.pt is generated by
|
||||||
|
./pruned_transducer_stateless2/export.py
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import math
|
||||||
|
from typing import List
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import kaldifeat
|
||||||
|
import sentencepiece as spm
|
||||||
|
import torch
|
||||||
|
import torchaudio
|
||||||
|
from beam_search import (
|
||||||
|
beam_search,
|
||||||
|
fast_beam_search_one_best,
|
||||||
|
greedy_search,
|
||||||
|
greedy_search_batch,
|
||||||
|
modified_beam_search,
|
||||||
|
)
|
||||||
|
from torch.nn.utils.rnn import pad_sequence
|
||||||
|
from train import add_model_arguments, get_params, get_transducer_model
|
||||||
|
|
||||||
|
from icefall.utils import str2bool
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--checkpoint",
|
||||||
|
type=str,
|
||||||
|
required=True,
|
||||||
|
help="Path to the checkpoint. "
|
||||||
|
"The checkpoint is assumed to be saved by "
|
||||||
|
"icefall.checkpoint.save_checkpoint().",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument("--bpe-model", type=str, help="""Path to bpe.model.""")
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--method",
|
||||||
|
type=str,
|
||||||
|
default="greedy_search",
|
||||||
|
help="""Possible values are:
|
||||||
|
- greedy_search
|
||||||
|
- beam_search
|
||||||
|
- modified_beam_search
|
||||||
|
- fast_beam_search
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"sound_files",
|
||||||
|
type=str,
|
||||||
|
nargs="+",
|
||||||
|
help="The input sound file(s) to transcribe. "
|
||||||
|
"Supported formats are those supported by torchaudio.load(). "
|
||||||
|
"For example, wav and flac are supported. "
|
||||||
|
"The sample rate has to be 16kHz.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--sample-rate",
|
||||||
|
type=int,
|
||||||
|
default=16000,
|
||||||
|
help="The sample rate of the input sound file",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--beam-size",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="""An integer indicating how many candidates we will keep for each
|
||||||
|
frame. Used only when --method is beam_search or
|
||||||
|
modified_beam_search.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--beam",
|
||||||
|
type=float,
|
||||||
|
default=4,
|
||||||
|
help="""A floating point value to calculate the cutoff score during beam
|
||||||
|
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||||
|
`beam` in Kaldi.
|
||||||
|
Used only when --method is fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-contexts",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="""Used only when --method is fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-states",
|
||||||
|
type=int,
|
||||||
|
default=8,
|
||||||
|
help="""Used only when --method is fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--context-size",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The context size in the decoder. 1 means bigram; "
|
||||||
|
"2 means tri-gram",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-sym-per-frame",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help="""Maximum number of symbols per frame. Used only when
|
||||||
|
--method is greedy_search.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--simulate-streaming",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="""Whether to simulate streaming in decoding, this is a good way to
|
||||||
|
test a streaming model.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--decode-chunk-size",
|
||||||
|
type=int,
|
||||||
|
default=16,
|
||||||
|
help="The chunk size for decoding (in frames after subsampling)",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--left-context",
|
||||||
|
type=int,
|
||||||
|
default=64,
|
||||||
|
help="left context can be seen during decoding (in frames after subsampling)",
|
||||||
|
)
|
||||||
|
|
||||||
|
add_model_arguments(parser)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def read_sound_files(
|
||||||
|
filenames: List[str], expected_sample_rate: float
|
||||||
|
) -> List[torch.Tensor]:
|
||||||
|
"""Read a list of sound files into a list 1-D float32 torch tensors.
|
||||||
|
Args:
|
||||||
|
filenames:
|
||||||
|
A list of sound filenames.
|
||||||
|
expected_sample_rate:
|
||||||
|
The expected sample rate of the sound files.
|
||||||
|
Returns:
|
||||||
|
Return a list of 1-D float32 torch tensors.
|
||||||
|
"""
|
||||||
|
ans = []
|
||||||
|
for f in filenames:
|
||||||
|
wave, sample_rate = torchaudio.load(f)
|
||||||
|
assert sample_rate == expected_sample_rate, (
|
||||||
|
f"expected sample rate: {expected_sample_rate}. "
|
||||||
|
f"Given: {sample_rate}"
|
||||||
|
)
|
||||||
|
# We use only the first channel
|
||||||
|
ans.append(wave[0])
|
||||||
|
return ans
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
sp = spm.SentencePieceProcessor()
|
||||||
|
sp.load(params.bpe_model)
|
||||||
|
|
||||||
|
# <blk> is defined in local/train_bpe_model.py
|
||||||
|
params.blank_id = sp.piece_to_id("<blk>")
|
||||||
|
params.unk_id = sp.piece_to_id("<unk>")
|
||||||
|
params.vocab_size = sp.get_piece_size()
|
||||||
|
|
||||||
|
if params.simulate_streaming:
|
||||||
|
assert (
|
||||||
|
params.causal_convolution
|
||||||
|
), "Decoding in streaming requires causal convolution"
|
||||||
|
|
||||||
|
logging.info(f"{params}")
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"device: {device}")
|
||||||
|
|
||||||
|
logging.info("Creating model")
|
||||||
|
model = get_transducer_model(params)
|
||||||
|
|
||||||
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
|
logging.info(f"Number of model parameters: {num_param}")
|
||||||
|
|
||||||
|
checkpoint = torch.load(args.checkpoint, map_location="cpu")
|
||||||
|
model.load_state_dict(checkpoint["model"], strict=False)
|
||||||
|
model.to(device)
|
||||||
|
model.eval()
|
||||||
|
model.device = device
|
||||||
|
|
||||||
|
logging.info("Constructing Fbank computer")
|
||||||
|
opts = kaldifeat.FbankOptions()
|
||||||
|
opts.device = device
|
||||||
|
opts.frame_opts.dither = 0
|
||||||
|
opts.frame_opts.snip_edges = False
|
||||||
|
opts.frame_opts.samp_freq = params.sample_rate
|
||||||
|
opts.mel_opts.num_bins = params.feature_dim
|
||||||
|
|
||||||
|
fbank = kaldifeat.Fbank(opts)
|
||||||
|
|
||||||
|
logging.info(f"Reading sound files: {params.sound_files}")
|
||||||
|
waves = read_sound_files(
|
||||||
|
filenames=params.sound_files, expected_sample_rate=params.sample_rate
|
||||||
|
)
|
||||||
|
waves = [w.to(device) for w in waves]
|
||||||
|
|
||||||
|
logging.info("Decoding started")
|
||||||
|
features = fbank(waves)
|
||||||
|
feature_lengths = [f.size(0) for f in features]
|
||||||
|
|
||||||
|
features = pad_sequence(
|
||||||
|
features, batch_first=True, padding_value=math.log(1e-10)
|
||||||
|
)
|
||||||
|
|
||||||
|
feature_lengths = torch.tensor(feature_lengths, device=device)
|
||||||
|
|
||||||
|
if params.simulate_streaming:
|
||||||
|
encoder_out, encoder_out_lens, _ = model.encoder.streaming_forward(
|
||||||
|
x=features,
|
||||||
|
x_lens=feature_lengths,
|
||||||
|
chunk_size=params.decode_chunk_size,
|
||||||
|
left_context=params.left_context,
|
||||||
|
simulate_streaming=True,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
encoder_out, encoder_out_lens = model.encoder(
|
||||||
|
x=features, x_lens=feature_lengths
|
||||||
|
)
|
||||||
|
|
||||||
|
num_waves = encoder_out.size(0)
|
||||||
|
hyps = []
|
||||||
|
msg = f"Using {params.method}"
|
||||||
|
if params.method == "beam_search":
|
||||||
|
msg += f" with beam size {params.beam_size}"
|
||||||
|
logging.info(msg)
|
||||||
|
|
||||||
|
if params.method == "fast_beam_search":
|
||||||
|
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||||
|
hyp_tokens = fast_beam_search_one_best(
|
||||||
|
model=model,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
beam=params.beam,
|
||||||
|
max_contexts=params.max_contexts,
|
||||||
|
max_states=params.max_states,
|
||||||
|
)
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(hyp.split())
|
||||||
|
elif params.method == "modified_beam_search":
|
||||||
|
hyp_tokens = modified_beam_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
beam=params.beam_size,
|
||||||
|
)
|
||||||
|
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(hyp.split())
|
||||||
|
elif params.method == "greedy_search" and params.max_sym_per_frame == 1:
|
||||||
|
hyp_tokens = greedy_search_batch(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
)
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(hyp.split())
|
||||||
|
else:
|
||||||
|
for i in range(num_waves):
|
||||||
|
# fmt: off
|
||||||
|
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
||||||
|
# fmt: on
|
||||||
|
if params.method == "greedy_search":
|
||||||
|
hyp = greedy_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out_i,
|
||||||
|
max_sym_per_frame=params.max_sym_per_frame,
|
||||||
|
)
|
||||||
|
elif params.method == "beam_search":
|
||||||
|
hyp = beam_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out_i,
|
||||||
|
beam=params.beam_size,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Unsupported method: {params.method}")
|
||||||
|
|
||||||
|
hyps.append(sp.decode(hyp).split())
|
||||||
|
|
||||||
|
s = "\n"
|
||||||
|
for filename, hyp in zip(params.sound_files, hyps):
|
||||||
|
words = " ".join(hyp)
|
||||||
|
s += f"{filename}:\n{words}\n\n"
|
||||||
|
logging.info(s)
|
||||||
|
|
||||||
|
logging.info("Decoding Done")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = (
|
||||||
|
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
main()
|
733
egs/fisher_swbd/ASR/pruned_transducer_stateless2/scaling.py
Normal file
733
egs/fisher_swbd/ASR/pruned_transducer_stateless2/scaling.py
Normal file
@ -0,0 +1,733 @@
|
|||||||
|
# Copyright 2022 Xiaomi Corp. (authors: Daniel Povey)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
import collections
|
||||||
|
from itertools import repeat
|
||||||
|
from typing import Optional, Tuple
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from torch import Tensor
|
||||||
|
|
||||||
|
|
||||||
|
def _ntuple(n):
|
||||||
|
def parse(x):
|
||||||
|
if isinstance(x, collections.Iterable):
|
||||||
|
return x
|
||||||
|
return tuple(repeat(x, n))
|
||||||
|
|
||||||
|
return parse
|
||||||
|
|
||||||
|
|
||||||
|
_single = _ntuple(1)
|
||||||
|
_pair = _ntuple(2)
|
||||||
|
|
||||||
|
|
||||||
|
class ActivationBalancerFunction(torch.autograd.Function):
|
||||||
|
@staticmethod
|
||||||
|
def forward(
|
||||||
|
ctx,
|
||||||
|
x: Tensor,
|
||||||
|
channel_dim: int,
|
||||||
|
min_positive: float, # e.g. 0.05
|
||||||
|
max_positive: float, # e.g. 0.95
|
||||||
|
max_factor: float, # e.g. 0.01
|
||||||
|
min_abs: float, # e.g. 0.2
|
||||||
|
max_abs: float, # e.g. 100.0
|
||||||
|
) -> Tensor:
|
||||||
|
if x.requires_grad:
|
||||||
|
if channel_dim < 0:
|
||||||
|
channel_dim += x.ndim
|
||||||
|
|
||||||
|
# sum_dims = [d for d in range(x.ndim) if d != channel_dim]
|
||||||
|
# The above line is not torch scriptable for torch 1.6.0
|
||||||
|
# torch.jit.frontend.NotSupportedError: comprehension ifs not supported yet: # noqa
|
||||||
|
sum_dims = []
|
||||||
|
for d in range(x.ndim):
|
||||||
|
if d != channel_dim:
|
||||||
|
sum_dims.append(d)
|
||||||
|
|
||||||
|
xgt0 = x > 0
|
||||||
|
proportion_positive = torch.mean(
|
||||||
|
xgt0.to(x.dtype), dim=sum_dims, keepdim=True
|
||||||
|
)
|
||||||
|
factor1 = (
|
||||||
|
(min_positive - proportion_positive).relu()
|
||||||
|
* (max_factor / min_positive)
|
||||||
|
if min_positive != 0.0
|
||||||
|
else 0.0
|
||||||
|
)
|
||||||
|
factor2 = (
|
||||||
|
(proportion_positive - max_positive).relu()
|
||||||
|
* (max_factor / (max_positive - 1.0))
|
||||||
|
if max_positive != 1.0
|
||||||
|
else 0.0
|
||||||
|
)
|
||||||
|
factor = factor1 + factor2
|
||||||
|
if isinstance(factor, float):
|
||||||
|
factor = torch.zeros_like(proportion_positive)
|
||||||
|
|
||||||
|
mean_abs = torch.mean(x.abs(), dim=sum_dims, keepdim=True)
|
||||||
|
below_threshold = mean_abs < min_abs
|
||||||
|
above_threshold = mean_abs > max_abs
|
||||||
|
|
||||||
|
ctx.save_for_backward(
|
||||||
|
factor, xgt0, below_threshold, above_threshold
|
||||||
|
)
|
||||||
|
ctx.max_factor = max_factor
|
||||||
|
ctx.sum_dims = sum_dims
|
||||||
|
return x
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def backward(
|
||||||
|
ctx, x_grad: Tensor
|
||||||
|
) -> Tuple[Tensor, None, None, None, None, None, None]:
|
||||||
|
factor, xgt0, below_threshold, above_threshold = ctx.saved_tensors
|
||||||
|
dtype = x_grad.dtype
|
||||||
|
scale_factor = (
|
||||||
|
(below_threshold.to(dtype) - above_threshold.to(dtype))
|
||||||
|
* (xgt0.to(dtype) - 0.5)
|
||||||
|
* (ctx.max_factor * 2.0)
|
||||||
|
)
|
||||||
|
|
||||||
|
neg_delta_grad = x_grad.abs() * (factor + scale_factor)
|
||||||
|
return x_grad - neg_delta_grad, None, None, None, None, None, None
|
||||||
|
|
||||||
|
|
||||||
|
class BasicNorm(torch.nn.Module):
|
||||||
|
"""
|
||||||
|
This is intended to be a simpler, and hopefully cheaper, replacement for
|
||||||
|
LayerNorm. The observation this is based on, is that Transformer-type
|
||||||
|
networks, especially with pre-norm, sometimes seem to set one of the
|
||||||
|
feature dimensions to a large constant value (e.g. 50), which "defeats"
|
||||||
|
the LayerNorm because the output magnitude is then not strongly dependent
|
||||||
|
on the other (useful) features. Presumably the weight and bias of the
|
||||||
|
LayerNorm are required to allow it to do this.
|
||||||
|
|
||||||
|
So the idea is to introduce this large constant value as an explicit
|
||||||
|
parameter, that takes the role of the "eps" in LayerNorm, so the network
|
||||||
|
doesn't have to do this trick. We make the "eps" learnable.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
num_channels: the number of channels, e.g. 512.
|
||||||
|
channel_dim: the axis/dimension corresponding to the channel,
|
||||||
|
interprted as an offset from the input's ndim if negative.
|
||||||
|
shis is NOT the num_channels; it should typically be one of
|
||||||
|
{-2, -1, 0, 1, 2, 3}.
|
||||||
|
eps: the initial "epsilon" that we add as ballast in:
|
||||||
|
scale = ((input_vec**2).mean() + epsilon)**-0.5
|
||||||
|
Note: our epsilon is actually large, but we keep the name
|
||||||
|
to indicate the connection with conventional LayerNorm.
|
||||||
|
learn_eps: if true, we learn epsilon; if false, we keep it
|
||||||
|
at the initial value.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
num_channels: int,
|
||||||
|
channel_dim: int = -1, # CAUTION: see documentation.
|
||||||
|
eps: float = 0.25,
|
||||||
|
learn_eps: bool = True,
|
||||||
|
) -> None:
|
||||||
|
super(BasicNorm, self).__init__()
|
||||||
|
self.num_channels = num_channels
|
||||||
|
self.channel_dim = channel_dim
|
||||||
|
if learn_eps:
|
||||||
|
self.eps = nn.Parameter(torch.tensor(eps).log().detach())
|
||||||
|
else:
|
||||||
|
self.register_buffer("eps", torch.tensor(eps).log().detach())
|
||||||
|
|
||||||
|
def forward(self, x: Tensor) -> Tensor:
|
||||||
|
assert x.shape[self.channel_dim] == self.num_channels
|
||||||
|
scales = (
|
||||||
|
torch.mean(x ** 2, dim=self.channel_dim, keepdim=True)
|
||||||
|
+ self.eps.exp()
|
||||||
|
) ** -0.5
|
||||||
|
return x * scales
|
||||||
|
|
||||||
|
|
||||||
|
class ScaledLinear(nn.Linear):
|
||||||
|
"""
|
||||||
|
A modified version of nn.Linear where the parameters are scaled before
|
||||||
|
use, via:
|
||||||
|
weight = self.weight * self.weight_scale.exp()
|
||||||
|
bias = self.bias * self.bias_scale.exp()
|
||||||
|
|
||||||
|
Args:
|
||||||
|
Accepts the standard args and kwargs that nn.Linear accepts
|
||||||
|
e.g. in_features, out_features, bias=False.
|
||||||
|
|
||||||
|
initial_scale: you can override this if you want to increase
|
||||||
|
or decrease the initial magnitude of the module's output
|
||||||
|
(affects the initialization of weight_scale and bias_scale).
|
||||||
|
Another option, if you want to do something like this, is
|
||||||
|
to re-initialize the parameters.
|
||||||
|
initial_speed: this affects how fast the parameter will
|
||||||
|
learn near the start of training; you can set it to a
|
||||||
|
value less than one if you suspect that a module
|
||||||
|
is contributing to instability near the start of training.
|
||||||
|
Nnote: regardless of the use of this option, it's best to
|
||||||
|
use schedulers like Noam that have a warm-up period.
|
||||||
|
Alternatively you can set it to more than 1 if you want it to
|
||||||
|
initially train faster. Must be greater than 0.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
*args,
|
||||||
|
initial_scale: float = 1.0,
|
||||||
|
initial_speed: float = 1.0,
|
||||||
|
**kwargs
|
||||||
|
):
|
||||||
|
super(ScaledLinear, self).__init__(*args, **kwargs)
|
||||||
|
initial_scale = torch.tensor(initial_scale).log()
|
||||||
|
self.weight_scale = nn.Parameter(initial_scale.clone().detach())
|
||||||
|
if self.bias is not None:
|
||||||
|
self.bias_scale = nn.Parameter(initial_scale.clone().detach())
|
||||||
|
else:
|
||||||
|
self.register_parameter("bias_scale", None)
|
||||||
|
|
||||||
|
self._reset_parameters(
|
||||||
|
initial_speed
|
||||||
|
) # Overrides the reset_parameters in nn.Linear
|
||||||
|
|
||||||
|
def _reset_parameters(self, initial_speed: float):
|
||||||
|
std = 0.1 / initial_speed
|
||||||
|
a = (3 ** 0.5) * std
|
||||||
|
nn.init.uniform_(self.weight, -a, a)
|
||||||
|
if self.bias is not None:
|
||||||
|
nn.init.constant_(self.bias, 0.0)
|
||||||
|
fan_in = self.weight.shape[1] * self.weight[0][0].numel()
|
||||||
|
scale = fan_in ** -0.5 # 1/sqrt(fan_in)
|
||||||
|
with torch.no_grad():
|
||||||
|
self.weight_scale += torch.tensor(scale / std).log()
|
||||||
|
|
||||||
|
def get_weight(self):
|
||||||
|
return self.weight * self.weight_scale.exp()
|
||||||
|
|
||||||
|
def get_bias(self):
|
||||||
|
if self.bias is None or self.bias_scale is None:
|
||||||
|
return None
|
||||||
|
else:
|
||||||
|
return self.bias * self.bias_scale.exp()
|
||||||
|
|
||||||
|
def forward(self, input: Tensor) -> Tensor:
|
||||||
|
return torch.nn.functional.linear(
|
||||||
|
input, self.get_weight(), self.get_bias()
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class ScaledConv1d(nn.Conv1d):
|
||||||
|
# See docs for ScaledLinear
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
*args,
|
||||||
|
initial_scale: float = 1.0,
|
||||||
|
initial_speed: float = 1.0,
|
||||||
|
**kwargs
|
||||||
|
):
|
||||||
|
super(ScaledConv1d, self).__init__(*args, **kwargs)
|
||||||
|
initial_scale = torch.tensor(initial_scale).log()
|
||||||
|
|
||||||
|
self.bias_scale: Optional[nn.Parameter] # for torchscript
|
||||||
|
|
||||||
|
self.weight_scale = nn.Parameter(initial_scale.clone().detach())
|
||||||
|
if self.bias is not None:
|
||||||
|
self.bias_scale = nn.Parameter(initial_scale.clone().detach())
|
||||||
|
else:
|
||||||
|
self.register_parameter("bias_scale", None)
|
||||||
|
self._reset_parameters(
|
||||||
|
initial_speed
|
||||||
|
) # Overrides the reset_parameters in base class
|
||||||
|
|
||||||
|
def _reset_parameters(self, initial_speed: float):
|
||||||
|
std = 0.1 / initial_speed
|
||||||
|
a = (3 ** 0.5) * std
|
||||||
|
nn.init.uniform_(self.weight, -a, a)
|
||||||
|
if self.bias is not None:
|
||||||
|
nn.init.constant_(self.bias, 0.0)
|
||||||
|
fan_in = self.weight.shape[1] * self.weight[0][0].numel()
|
||||||
|
scale = fan_in ** -0.5 # 1/sqrt(fan_in)
|
||||||
|
with torch.no_grad():
|
||||||
|
self.weight_scale += torch.tensor(scale / std).log()
|
||||||
|
|
||||||
|
def get_weight(self):
|
||||||
|
return self.weight * self.weight_scale.exp()
|
||||||
|
|
||||||
|
def get_bias(self):
|
||||||
|
bias = self.bias
|
||||||
|
bias_scale = self.bias_scale
|
||||||
|
if bias is None or bias_scale is None:
|
||||||
|
return None
|
||||||
|
else:
|
||||||
|
return bias * bias_scale.exp()
|
||||||
|
|
||||||
|
def forward(self, input: Tensor) -> Tensor:
|
||||||
|
F = torch.nn.functional
|
||||||
|
if self.padding_mode != "zeros":
|
||||||
|
return F.conv1d(
|
||||||
|
F.pad(
|
||||||
|
input,
|
||||||
|
self._reversed_padding_repeated_twice,
|
||||||
|
mode=self.padding_mode,
|
||||||
|
),
|
||||||
|
self.get_weight(),
|
||||||
|
self.get_bias(),
|
||||||
|
self.stride,
|
||||||
|
(0,),
|
||||||
|
self.dilation,
|
||||||
|
self.groups,
|
||||||
|
)
|
||||||
|
return F.conv1d(
|
||||||
|
input,
|
||||||
|
self.get_weight(),
|
||||||
|
self.get_bias(),
|
||||||
|
self.stride,
|
||||||
|
self.padding,
|
||||||
|
self.dilation,
|
||||||
|
self.groups,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class ScaledConv2d(nn.Conv2d):
|
||||||
|
# See docs for ScaledLinear
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
*args,
|
||||||
|
initial_scale: float = 1.0,
|
||||||
|
initial_speed: float = 1.0,
|
||||||
|
**kwargs
|
||||||
|
):
|
||||||
|
super(ScaledConv2d, self).__init__(*args, **kwargs)
|
||||||
|
initial_scale = torch.tensor(initial_scale).log()
|
||||||
|
self.weight_scale = nn.Parameter(initial_scale.clone().detach())
|
||||||
|
if self.bias is not None:
|
||||||
|
self.bias_scale = nn.Parameter(initial_scale.clone().detach())
|
||||||
|
else:
|
||||||
|
self.register_parameter("bias_scale", None)
|
||||||
|
self._reset_parameters(
|
||||||
|
initial_speed
|
||||||
|
) # Overrides the reset_parameters in base class
|
||||||
|
|
||||||
|
def _reset_parameters(self, initial_speed: float):
|
||||||
|
std = 0.1 / initial_speed
|
||||||
|
a = (3 ** 0.5) * std
|
||||||
|
nn.init.uniform_(self.weight, -a, a)
|
||||||
|
if self.bias is not None:
|
||||||
|
nn.init.constant_(self.bias, 0.0)
|
||||||
|
fan_in = self.weight.shape[1] * self.weight[0][0].numel()
|
||||||
|
scale = fan_in ** -0.5 # 1/sqrt(fan_in)
|
||||||
|
with torch.no_grad():
|
||||||
|
self.weight_scale += torch.tensor(scale / std).log()
|
||||||
|
|
||||||
|
def get_weight(self):
|
||||||
|
return self.weight * self.weight_scale.exp()
|
||||||
|
|
||||||
|
def get_bias(self):
|
||||||
|
# see https://github.com/pytorch/pytorch/issues/24135
|
||||||
|
bias = self.bias
|
||||||
|
bias_scale = self.bias_scale
|
||||||
|
if bias is None or bias_scale is None:
|
||||||
|
return None
|
||||||
|
else:
|
||||||
|
return bias * bias_scale.exp()
|
||||||
|
|
||||||
|
def _conv_forward(self, input, weight):
|
||||||
|
F = torch.nn.functional
|
||||||
|
if self.padding_mode != "zeros":
|
||||||
|
return F.conv2d(
|
||||||
|
F.pad(
|
||||||
|
input,
|
||||||
|
self._reversed_padding_repeated_twice,
|
||||||
|
mode=self.padding_mode,
|
||||||
|
),
|
||||||
|
weight,
|
||||||
|
self.get_bias(),
|
||||||
|
self.stride,
|
||||||
|
(0, 0),
|
||||||
|
self.dilation,
|
||||||
|
self.groups,
|
||||||
|
)
|
||||||
|
return F.conv2d(
|
||||||
|
input,
|
||||||
|
weight,
|
||||||
|
self.get_bias(),
|
||||||
|
self.stride,
|
||||||
|
self.padding,
|
||||||
|
self.dilation,
|
||||||
|
self.groups,
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, input: Tensor) -> Tensor:
|
||||||
|
return self._conv_forward(input, self.get_weight())
|
||||||
|
|
||||||
|
|
||||||
|
class ActivationBalancer(torch.nn.Module):
|
||||||
|
"""
|
||||||
|
Modifies the backpropped derivatives of a function to try to encourage, for
|
||||||
|
each channel, that it is positive at least a proportion `threshold` of the
|
||||||
|
time. It does this by multiplying negative derivative values by up to
|
||||||
|
(1+max_factor), and positive derivative values by up to (1-max_factor),
|
||||||
|
interpolated from 1 at the threshold to those extremal values when none
|
||||||
|
of the inputs are positive.
|
||||||
|
|
||||||
|
|
||||||
|
Args:
|
||||||
|
channel_dim: the dimension/axis corresponding to the channel, e.g.
|
||||||
|
-1, 0, 1, 2; will be interpreted as an offset from x.ndim if negative.
|
||||||
|
min_positive: the minimum, per channel, of the proportion of the time
|
||||||
|
that (x > 0), below which we start to modify the derivatives.
|
||||||
|
max_positive: the maximum, per channel, of the proportion of the time
|
||||||
|
that (x > 0), above which we start to modify the derivatives.
|
||||||
|
max_factor: the maximum factor by which we modify the derivatives for
|
||||||
|
either the sign constraint or the magnitude constraint;
|
||||||
|
e.g. with max_factor=0.02, the the derivatives would be multiplied by
|
||||||
|
values in the range [0.98..1.02].
|
||||||
|
min_abs: the minimum average-absolute-value per channel, which
|
||||||
|
we allow, before we start to modify the derivatives to prevent
|
||||||
|
this.
|
||||||
|
max_abs: the maximum average-absolute-value per channel, which
|
||||||
|
we allow, before we start to modify the derivatives to prevent
|
||||||
|
this.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
channel_dim: int,
|
||||||
|
min_positive: float = 0.05,
|
||||||
|
max_positive: float = 0.95,
|
||||||
|
max_factor: float = 0.01,
|
||||||
|
min_abs: float = 0.2,
|
||||||
|
max_abs: float = 100.0,
|
||||||
|
):
|
||||||
|
super(ActivationBalancer, self).__init__()
|
||||||
|
self.channel_dim = channel_dim
|
||||||
|
self.min_positive = min_positive
|
||||||
|
self.max_positive = max_positive
|
||||||
|
self.max_factor = max_factor
|
||||||
|
self.min_abs = min_abs
|
||||||
|
self.max_abs = max_abs
|
||||||
|
|
||||||
|
def forward(self, x: Tensor) -> Tensor:
|
||||||
|
if torch.jit.is_scripting():
|
||||||
|
return x
|
||||||
|
else:
|
||||||
|
return ActivationBalancerFunction.apply(
|
||||||
|
x,
|
||||||
|
self.channel_dim,
|
||||||
|
self.min_positive,
|
||||||
|
self.max_positive,
|
||||||
|
self.max_factor,
|
||||||
|
self.min_abs,
|
||||||
|
self.max_abs,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class DoubleSwishFunction(torch.autograd.Function):
|
||||||
|
"""
|
||||||
|
double_swish(x) = x * torch.sigmoid(x-1)
|
||||||
|
This is a definition, originally motivated by its close numerical
|
||||||
|
similarity to swish(swish(x)), where swish(x) = x * sigmoid(x).
|
||||||
|
|
||||||
|
Memory-efficient derivative computation:
|
||||||
|
double_swish(x) = x * s, where s(x) = torch.sigmoid(x-1)
|
||||||
|
double_swish'(x) = d/dx double_swish(x) = x * s'(x) + x' * s(x) = x * s'(x) + s(x).
|
||||||
|
Now, s'(x) = s(x) * (1-s(x)).
|
||||||
|
double_swish'(x) = x * s'(x) + s(x).
|
||||||
|
= x * s(x) * (1-s(x)) + s(x).
|
||||||
|
= double_swish(x) * (1-s(x)) + s(x)
|
||||||
|
... so we just need to remember s(x) but not x itself.
|
||||||
|
"""
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def forward(ctx, x: Tensor) -> Tensor:
|
||||||
|
x = x.detach()
|
||||||
|
s = torch.sigmoid(x - 1.0)
|
||||||
|
y = x * s
|
||||||
|
ctx.save_for_backward(s, y)
|
||||||
|
return y
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def backward(ctx, y_grad: Tensor) -> Tensor:
|
||||||
|
s, y = ctx.saved_tensors
|
||||||
|
return (y * (1 - s) + s) * y_grad
|
||||||
|
|
||||||
|
|
||||||
|
class DoubleSwish(torch.nn.Module):
|
||||||
|
def forward(self, x: Tensor) -> Tensor:
|
||||||
|
"""Return double-swish activation function which is an approximation to Swish(Swish(x)),
|
||||||
|
that we approximate closely with x * sigmoid(x-1).
|
||||||
|
"""
|
||||||
|
if torch.jit.is_scripting():
|
||||||
|
return x * torch.sigmoid(x - 1.0)
|
||||||
|
else:
|
||||||
|
return DoubleSwishFunction.apply(x)
|
||||||
|
|
||||||
|
|
||||||
|
class ScaledEmbedding(nn.Module):
|
||||||
|
r"""This is a modified version of nn.Embedding that introduces a learnable scale
|
||||||
|
on the parameters. Note: due to how we initialize it, it's best used with
|
||||||
|
schedulers like Noam that have a warmup period.
|
||||||
|
|
||||||
|
It is a simple lookup table that stores embeddings of a fixed dictionary and size.
|
||||||
|
|
||||||
|
This module is often used to store word embeddings and retrieve them using indices.
|
||||||
|
The input to the module is a list of indices, and the output is the corresponding
|
||||||
|
word embeddings.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
num_embeddings (int): size of the dictionary of embeddings
|
||||||
|
embedding_dim (int): the size of each embedding vector
|
||||||
|
padding_idx (int, optional): If given, pads the output with the embedding vector at :attr:`padding_idx`
|
||||||
|
(initialized to zeros) whenever it encounters the index.
|
||||||
|
max_norm (float, optional): If given, each embedding vector with norm larger than :attr:`max_norm`
|
||||||
|
is renormalized to have norm :attr:`max_norm`.
|
||||||
|
norm_type (float, optional): The p of the p-norm to compute for the :attr:`max_norm` option. Default ``2``.
|
||||||
|
scale_grad_by_freq (boolean, optional): If given, this will scale gradients by the inverse of frequency of
|
||||||
|
the words in the mini-batch. Default ``False``.
|
||||||
|
sparse (bool, optional): If ``True``, gradient w.r.t. :attr:`weight` matrix will be a sparse tensor.
|
||||||
|
See Notes for more details regarding sparse gradients.
|
||||||
|
|
||||||
|
initial_speed (float, optional): This affects how fast the parameter will
|
||||||
|
learn near the start of training; you can set it to a value less than
|
||||||
|
one if you suspect that a module is contributing to instability near
|
||||||
|
the start of training. Nnote: regardless of the use of this option,
|
||||||
|
it's best to use schedulers like Noam that have a warm-up period.
|
||||||
|
Alternatively you can set it to more than 1 if you want it to
|
||||||
|
initially train faster. Must be greater than 0.
|
||||||
|
|
||||||
|
|
||||||
|
Attributes:
|
||||||
|
weight (Tensor): the learnable weights of the module of shape (num_embeddings, embedding_dim)
|
||||||
|
initialized from :math:`\mathcal{N}(0, 1)`
|
||||||
|
|
||||||
|
Shape:
|
||||||
|
- Input: :math:`(*)`, LongTensor of arbitrary shape containing the indices to extract
|
||||||
|
- Output: :math:`(*, H)`, where `*` is the input shape and :math:`H=\text{embedding\_dim}`
|
||||||
|
|
||||||
|
.. note::
|
||||||
|
Keep in mind that only a limited number of optimizers support
|
||||||
|
sparse gradients: currently it's :class:`optim.SGD` (`CUDA` and `CPU`),
|
||||||
|
:class:`optim.SparseAdam` (`CUDA` and `CPU`) and :class:`optim.Adagrad` (`CPU`)
|
||||||
|
|
||||||
|
.. note::
|
||||||
|
With :attr:`padding_idx` set, the embedding vector at
|
||||||
|
:attr:`padding_idx` is initialized to all zeros. However, note that this
|
||||||
|
vector can be modified afterwards, e.g., using a customized
|
||||||
|
initialization method, and thus changing the vector used to pad the
|
||||||
|
output. The gradient for this vector from :class:`~torch.nn.Embedding`
|
||||||
|
is always zero.
|
||||||
|
|
||||||
|
Examples::
|
||||||
|
|
||||||
|
>>> # an Embedding module containing 10 tensors of size 3
|
||||||
|
>>> embedding = nn.Embedding(10, 3)
|
||||||
|
>>> # a batch of 2 samples of 4 indices each
|
||||||
|
>>> input = torch.LongTensor([[1,2,4,5],[4,3,2,9]])
|
||||||
|
>>> embedding(input)
|
||||||
|
tensor([[[-0.0251, -1.6902, 0.7172],
|
||||||
|
[-0.6431, 0.0748, 0.6969],
|
||||||
|
[ 1.4970, 1.3448, -0.9685],
|
||||||
|
[-0.3677, -2.7265, -0.1685]],
|
||||||
|
|
||||||
|
[[ 1.4970, 1.3448, -0.9685],
|
||||||
|
[ 0.4362, -0.4004, 0.9400],
|
||||||
|
[-0.6431, 0.0748, 0.6969],
|
||||||
|
[ 0.9124, -2.3616, 1.1151]]])
|
||||||
|
|
||||||
|
|
||||||
|
>>> # example with padding_idx
|
||||||
|
>>> embedding = nn.Embedding(10, 3, padding_idx=0)
|
||||||
|
>>> input = torch.LongTensor([[0,2,0,5]])
|
||||||
|
>>> embedding(input)
|
||||||
|
tensor([[[ 0.0000, 0.0000, 0.0000],
|
||||||
|
[ 0.1535, -2.0309, 0.9315],
|
||||||
|
[ 0.0000, 0.0000, 0.0000],
|
||||||
|
[-0.1655, 0.9897, 0.0635]]])
|
||||||
|
|
||||||
|
"""
|
||||||
|
__constants__ = [
|
||||||
|
"num_embeddings",
|
||||||
|
"embedding_dim",
|
||||||
|
"padding_idx",
|
||||||
|
"scale_grad_by_freq",
|
||||||
|
"sparse",
|
||||||
|
]
|
||||||
|
|
||||||
|
num_embeddings: int
|
||||||
|
embedding_dim: int
|
||||||
|
padding_idx: int
|
||||||
|
scale_grad_by_freq: bool
|
||||||
|
weight: Tensor
|
||||||
|
sparse: bool
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
num_embeddings: int,
|
||||||
|
embedding_dim: int,
|
||||||
|
padding_idx: Optional[int] = None,
|
||||||
|
scale_grad_by_freq: bool = False,
|
||||||
|
sparse: bool = False,
|
||||||
|
initial_speed: float = 1.0,
|
||||||
|
) -> None:
|
||||||
|
super(ScaledEmbedding, self).__init__()
|
||||||
|
self.num_embeddings = num_embeddings
|
||||||
|
self.embedding_dim = embedding_dim
|
||||||
|
if padding_idx is not None:
|
||||||
|
if padding_idx > 0:
|
||||||
|
assert (
|
||||||
|
padding_idx < self.num_embeddings
|
||||||
|
), "Padding_idx must be within num_embeddings"
|
||||||
|
elif padding_idx < 0:
|
||||||
|
assert (
|
||||||
|
padding_idx >= -self.num_embeddings
|
||||||
|
), "Padding_idx must be within num_embeddings"
|
||||||
|
padding_idx = self.num_embeddings + padding_idx
|
||||||
|
self.padding_idx = padding_idx
|
||||||
|
self.scale_grad_by_freq = scale_grad_by_freq
|
||||||
|
|
||||||
|
self.scale = nn.Parameter(torch.zeros(())) # see reset_parameters()
|
||||||
|
self.sparse = sparse
|
||||||
|
|
||||||
|
self.weight = nn.Parameter(torch.Tensor(num_embeddings, embedding_dim))
|
||||||
|
self.reset_parameters(initial_speed)
|
||||||
|
|
||||||
|
def reset_parameters(self, initial_speed: float = 1.0) -> None:
|
||||||
|
std = 0.1 / initial_speed
|
||||||
|
nn.init.normal_(self.weight, std=std)
|
||||||
|
nn.init.constant_(self.scale, torch.tensor(1.0 / std).log())
|
||||||
|
|
||||||
|
if self.padding_idx is not None:
|
||||||
|
with torch.no_grad():
|
||||||
|
self.weight[self.padding_idx].fill_(0)
|
||||||
|
|
||||||
|
def forward(self, input: Tensor) -> Tensor:
|
||||||
|
F = torch.nn.functional
|
||||||
|
scale = self.scale.exp()
|
||||||
|
if input.numel() < self.num_embeddings:
|
||||||
|
return (
|
||||||
|
F.embedding(
|
||||||
|
input,
|
||||||
|
self.weight,
|
||||||
|
self.padding_idx,
|
||||||
|
None,
|
||||||
|
2.0, # None, 2.0 relate to normalization
|
||||||
|
self.scale_grad_by_freq,
|
||||||
|
self.sparse,
|
||||||
|
)
|
||||||
|
* scale
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
return F.embedding(
|
||||||
|
input,
|
||||||
|
self.weight * scale,
|
||||||
|
self.padding_idx,
|
||||||
|
None,
|
||||||
|
2.0, # None, 2.0 relates to normalization
|
||||||
|
self.scale_grad_by_freq,
|
||||||
|
self.sparse,
|
||||||
|
)
|
||||||
|
|
||||||
|
def extra_repr(self) -> str:
|
||||||
|
s = "{num_embeddings}, {embedding_dim}, scale={scale}"
|
||||||
|
if self.padding_idx is not None:
|
||||||
|
s += ", padding_idx={padding_idx}"
|
||||||
|
if self.scale_grad_by_freq is not False:
|
||||||
|
s += ", scale_grad_by_freq={scale_grad_by_freq}"
|
||||||
|
if self.sparse is not False:
|
||||||
|
s += ", sparse=True"
|
||||||
|
return s.format(**self.__dict__)
|
||||||
|
|
||||||
|
|
||||||
|
def _test_activation_balancer_sign():
|
||||||
|
probs = torch.arange(0, 1, 0.01)
|
||||||
|
N = 1000
|
||||||
|
x = 1.0 * (torch.rand(probs.numel(), N) < probs.unsqueeze(-1))
|
||||||
|
x = x.detach()
|
||||||
|
x.requires_grad = True
|
||||||
|
m = ActivationBalancer(
|
||||||
|
channel_dim=0,
|
||||||
|
min_positive=0.05,
|
||||||
|
max_positive=0.95,
|
||||||
|
max_factor=0.2,
|
||||||
|
min_abs=0.0,
|
||||||
|
)
|
||||||
|
|
||||||
|
y_grad = torch.sign(torch.randn(probs.numel(), N))
|
||||||
|
|
||||||
|
y = m(x)
|
||||||
|
y.backward(gradient=y_grad)
|
||||||
|
print("_test_activation_balancer_sign: x = ", x)
|
||||||
|
print("_test_activation_balancer_sign: y grad = ", y_grad)
|
||||||
|
print("_test_activation_balancer_sign: x grad = ", x.grad)
|
||||||
|
|
||||||
|
|
||||||
|
def _test_activation_balancer_magnitude():
|
||||||
|
magnitudes = torch.arange(0, 1, 0.01)
|
||||||
|
N = 1000
|
||||||
|
x = torch.sign(torch.randn(magnitudes.numel(), N)) * magnitudes.unsqueeze(
|
||||||
|
-1
|
||||||
|
)
|
||||||
|
x = x.detach()
|
||||||
|
x.requires_grad = True
|
||||||
|
m = ActivationBalancer(
|
||||||
|
channel_dim=0,
|
||||||
|
min_positive=0.0,
|
||||||
|
max_positive=1.0,
|
||||||
|
max_factor=0.2,
|
||||||
|
min_abs=0.2,
|
||||||
|
max_abs=0.8,
|
||||||
|
)
|
||||||
|
|
||||||
|
y_grad = torch.sign(torch.randn(magnitudes.numel(), N))
|
||||||
|
|
||||||
|
y = m(x)
|
||||||
|
y.backward(gradient=y_grad)
|
||||||
|
print("_test_activation_balancer_magnitude: x = ", x)
|
||||||
|
print("_test_activation_balancer_magnitude: y grad = ", y_grad)
|
||||||
|
print("_test_activation_balancer_magnitude: x grad = ", x.grad)
|
||||||
|
|
||||||
|
|
||||||
|
def _test_basic_norm():
|
||||||
|
num_channels = 128
|
||||||
|
m = BasicNorm(num_channels=num_channels, channel_dim=1)
|
||||||
|
|
||||||
|
x = torch.randn(500, num_channels)
|
||||||
|
|
||||||
|
y = m(x)
|
||||||
|
|
||||||
|
assert y.shape == x.shape
|
||||||
|
x_rms = (x ** 2).mean().sqrt()
|
||||||
|
y_rms = (y ** 2).mean().sqrt()
|
||||||
|
print("x rms = ", x_rms)
|
||||||
|
print("y rms = ", y_rms)
|
||||||
|
assert y_rms < x_rms
|
||||||
|
assert y_rms > 0.5 * x_rms
|
||||||
|
|
||||||
|
|
||||||
|
def _test_double_swish_deriv():
|
||||||
|
x = torch.randn(10, 12, dtype=torch.double) * 0.5
|
||||||
|
x.requires_grad = True
|
||||||
|
m = DoubleSwish()
|
||||||
|
torch.autograd.gradcheck(m, x)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
_test_activation_balancer_sign()
|
||||||
|
_test_activation_balancer_magnitude()
|
||||||
|
_test_basic_norm()
|
||||||
|
_test_double_swish_deriv()
|
682
egs/fisher_swbd/ASR/pruned_transducer_stateless2/streaming_decode.py
Executable file
682
egs/fisher_swbd/ASR/pruned_transducer_stateless2/streaming_decode.py
Executable file
@ -0,0 +1,682 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2022 Xiaomi Corporation (Authors: Wei Kang, Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
"""
|
||||||
|
Usage:
|
||||||
|
./pruned_transducer_stateless2/streaming_decode.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--left-context 32 \
|
||||||
|
--decode-chunk-size 8 \
|
||||||
|
--right-context 0 \
|
||||||
|
--exp-dir ./pruned_transducer_stateless2/exp \
|
||||||
|
--decoding_method greedy_search \
|
||||||
|
--num-decode-streams 1000
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import math
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Dict, List, Optional, Tuple
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import numpy as np
|
||||||
|
import sentencepiece as spm
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
|
||||||
|
# from asr_datamodule import LibriSpeechAsrDataModule
|
||||||
|
from asr_datamodule import FisherSwbdSpeechAsrDataModule
|
||||||
|
from decode_stream import DecodeStream
|
||||||
|
from kaldifeat import Fbank, FbankOptions
|
||||||
|
from lhotse import CutSet
|
||||||
|
from torch.nn.utils.rnn import pad_sequence
|
||||||
|
from train import add_model_arguments, get_params, get_transducer_model
|
||||||
|
|
||||||
|
from icefall.checkpoint import (
|
||||||
|
average_checkpoints,
|
||||||
|
find_checkpoints,
|
||||||
|
load_checkpoint,
|
||||||
|
)
|
||||||
|
from icefall.decode import one_best_decoding
|
||||||
|
from icefall.utils import (
|
||||||
|
AttributeDict,
|
||||||
|
get_texts,
|
||||||
|
setup_logger,
|
||||||
|
store_transcripts,
|
||||||
|
write_error_stats,
|
||||||
|
)
|
||||||
|
|
||||||
|
LOG_EPS = math.log(1e-10)
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--epoch",
|
||||||
|
type=int,
|
||||||
|
default=28,
|
||||||
|
help="""It specifies the checkpoint to use for decoding.
|
||||||
|
Note: Epoch counts from 0.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--iter",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="""If positive, --epoch is ignored and it
|
||||||
|
will use the checkpoint exp_dir/checkpoint-iter.pt.
|
||||||
|
You can specify --avg to use more checkpoints for model averaging.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--avg",
|
||||||
|
type=int,
|
||||||
|
default=15,
|
||||||
|
help="Number of checkpoints to average. Automatically select "
|
||||||
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
|
"'--epoch' and '--iter'",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=str,
|
||||||
|
default="pruned_transducer_stateless2/exp",
|
||||||
|
help="The experiment dir",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--bpe-model",
|
||||||
|
type=str,
|
||||||
|
default="data/lang_bpe_500/bpe.model",
|
||||||
|
help="Path to the BPE model",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--decoding-method",
|
||||||
|
type=str,
|
||||||
|
default="greedy_search",
|
||||||
|
help="""Support only greedy_search and fast_beam_search now.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--beam",
|
||||||
|
type=float,
|
||||||
|
default=4,
|
||||||
|
help="""A floating point value to calculate the cutoff score during beam
|
||||||
|
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||||
|
`beam` in Kaldi.
|
||||||
|
Used only when --decoding-method is fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-contexts",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="""Used only when --decoding-method is
|
||||||
|
fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-states",
|
||||||
|
type=int,
|
||||||
|
default=32,
|
||||||
|
help="""Used only when --decoding-method is
|
||||||
|
fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--context-size",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The context size in the decoder. 1 means bigram; "
|
||||||
|
"2 means tri-gram",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--decode-chunk-size",
|
||||||
|
type=int,
|
||||||
|
default=16,
|
||||||
|
help="The chunk size for decoding (in frames after subsampling)",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--left-context",
|
||||||
|
type=int,
|
||||||
|
default=64,
|
||||||
|
help="left context can be seen during decoding (in frames after subsampling)",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--right-context",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="right context can be seen during decoding (in frames after subsampling)",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-decode-streams",
|
||||||
|
type=int,
|
||||||
|
default=2000,
|
||||||
|
help="The number of streams that can be decoded parallel.",
|
||||||
|
)
|
||||||
|
|
||||||
|
add_model_arguments(parser)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def greedy_search(
|
||||||
|
model: nn.Module, encoder_out: torch.Tensor, streams: List[DecodeStream]
|
||||||
|
) -> List[List[int]]:
|
||||||
|
|
||||||
|
assert len(streams) == encoder_out.size(0)
|
||||||
|
assert encoder_out.ndim == 3
|
||||||
|
|
||||||
|
blank_id = model.decoder.blank_id
|
||||||
|
context_size = model.decoder.context_size
|
||||||
|
device = model.device
|
||||||
|
T = encoder_out.size(1)
|
||||||
|
|
||||||
|
decoder_input = torch.tensor(
|
||||||
|
[stream.hyp[-context_size:] for stream in streams],
|
||||||
|
device=device,
|
||||||
|
dtype=torch.int64,
|
||||||
|
)
|
||||||
|
# decoder_out is of shape (N, decoder_out_dim)
|
||||||
|
decoder_out = model.decoder(decoder_input, need_pad=False)
|
||||||
|
decoder_out = model.joiner.decoder_proj(decoder_out)
|
||||||
|
# logging.info(f"decoder_out shape : {decoder_out.shape}")
|
||||||
|
|
||||||
|
for t in range(T):
|
||||||
|
# current_encoder_out's shape: (batch_size, 1, encoder_out_dim)
|
||||||
|
current_encoder_out = encoder_out[:, t : t + 1, :] # noqa
|
||||||
|
|
||||||
|
logits = model.joiner(
|
||||||
|
current_encoder_out.unsqueeze(2),
|
||||||
|
decoder_out.unsqueeze(1),
|
||||||
|
project_input=False,
|
||||||
|
)
|
||||||
|
# logits'shape (batch_size, vocab_size)
|
||||||
|
logits = logits.squeeze(1).squeeze(1)
|
||||||
|
|
||||||
|
assert logits.ndim == 2, logits.shape
|
||||||
|
y = logits.argmax(dim=1).tolist()
|
||||||
|
emitted = False
|
||||||
|
for i, v in enumerate(y):
|
||||||
|
if v != blank_id:
|
||||||
|
streams[i].hyp.append(v)
|
||||||
|
emitted = True
|
||||||
|
if emitted:
|
||||||
|
# update decoder output
|
||||||
|
decoder_input = torch.tensor(
|
||||||
|
[stream.hyp[-context_size:] for stream in streams],
|
||||||
|
device=device,
|
||||||
|
dtype=torch.int64,
|
||||||
|
)
|
||||||
|
decoder_out = model.decoder(decoder_input, need_pad=False)
|
||||||
|
decoder_out = model.joiner.decoder_proj(decoder_out)
|
||||||
|
|
||||||
|
hyp_tokens = []
|
||||||
|
for stream in streams:
|
||||||
|
hyp_tokens.append(stream.hyp)
|
||||||
|
return hyp_tokens
|
||||||
|
|
||||||
|
|
||||||
|
def fast_beam_search(
|
||||||
|
model: nn.Module,
|
||||||
|
encoder_out: torch.Tensor,
|
||||||
|
processed_lens: torch.Tensor,
|
||||||
|
decoding_streams: k2.RnntDecodingStreams,
|
||||||
|
) -> List[List[int]]:
|
||||||
|
|
||||||
|
B, T, C = encoder_out.shape
|
||||||
|
for t in range(T):
|
||||||
|
# shape is a RaggedShape of shape (B, context)
|
||||||
|
# contexts is a Tensor of shape (shape.NumElements(), context_size)
|
||||||
|
shape, contexts = decoding_streams.get_contexts()
|
||||||
|
# `nn.Embedding()` in torch below v1.7.1 supports only torch.int64
|
||||||
|
contexts = contexts.to(torch.int64)
|
||||||
|
# decoder_out is of shape (shape.NumElements(), 1, decoder_out_dim)
|
||||||
|
decoder_out = model.decoder(contexts, need_pad=False)
|
||||||
|
decoder_out = model.joiner.decoder_proj(decoder_out)
|
||||||
|
# current_encoder_out is of shape
|
||||||
|
# (shape.NumElements(), 1, joiner_dim)
|
||||||
|
# fmt: off
|
||||||
|
current_encoder_out = torch.index_select(
|
||||||
|
encoder_out[:, t:t + 1, :], 0, shape.row_ids(1).to(torch.int64)
|
||||||
|
)
|
||||||
|
# fmt: on
|
||||||
|
logits = model.joiner(
|
||||||
|
current_encoder_out.unsqueeze(2),
|
||||||
|
decoder_out.unsqueeze(1),
|
||||||
|
project_input=False,
|
||||||
|
)
|
||||||
|
logits = logits.squeeze(1).squeeze(1)
|
||||||
|
log_probs = logits.log_softmax(dim=-1)
|
||||||
|
decoding_streams.advance(log_probs)
|
||||||
|
|
||||||
|
decoding_streams.terminate_and_flush_to_streams()
|
||||||
|
|
||||||
|
lattice = decoding_streams.format_output(processed_lens.tolist())
|
||||||
|
best_path = one_best_decoding(lattice)
|
||||||
|
hyp_tokens = get_texts(best_path)
|
||||||
|
return hyp_tokens
|
||||||
|
|
||||||
|
|
||||||
|
def decode_one_chunk(
|
||||||
|
params: AttributeDict, model: nn.Module, decode_streams: List[DecodeStream]
|
||||||
|
) -> List[int]:
|
||||||
|
"""Decode one chunk frames of features for each decode_streams and
|
||||||
|
return the indexes of finished streams in a List.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It's the return value of :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
decode_streams:
|
||||||
|
A List of DecodeStream, each belonging to a utterance.
|
||||||
|
Returns:
|
||||||
|
Return a List containing which DecodeStreams are finished.
|
||||||
|
"""
|
||||||
|
device = model.device
|
||||||
|
|
||||||
|
features = []
|
||||||
|
feature_lens = []
|
||||||
|
states = []
|
||||||
|
|
||||||
|
rnnt_stream_list = []
|
||||||
|
processed_lens = []
|
||||||
|
|
||||||
|
for stream in decode_streams:
|
||||||
|
feat, feat_len = stream.get_feature_frames(
|
||||||
|
params.decode_chunk_size * params.subsampling_factor
|
||||||
|
)
|
||||||
|
features.append(feat)
|
||||||
|
feature_lens.append(feat_len)
|
||||||
|
states.append(stream.states)
|
||||||
|
processed_lens.append(stream.done_frames)
|
||||||
|
if params.decoding_method == "fast_beam_search":
|
||||||
|
rnnt_stream_list.append(stream.rnnt_decoding_stream)
|
||||||
|
|
||||||
|
feature_lens = torch.tensor(feature_lens, device=device)
|
||||||
|
features = pad_sequence(features, batch_first=True, padding_value=LOG_EPS)
|
||||||
|
|
||||||
|
# if T is less than 7 there will be an error in time reduction layer,
|
||||||
|
# because we subsample features with ((x_len - 1) // 2 - 1) // 2
|
||||||
|
# we plus 2 here because we will cut off one frame on each size of
|
||||||
|
# encoder_embed output as they see invalid paddings. so we need extra 2
|
||||||
|
# frames.
|
||||||
|
tail_length = 7 + (2 + params.right_context) * params.subsampling_factor
|
||||||
|
if features.size(1) < tail_length:
|
||||||
|
feature_lens += tail_length - features.size(1)
|
||||||
|
features = torch.cat(
|
||||||
|
[
|
||||||
|
features,
|
||||||
|
torch.tensor(
|
||||||
|
LOG_EPS, dtype=features.dtype, device=device
|
||||||
|
).expand(
|
||||||
|
features.size(0),
|
||||||
|
tail_length - features.size(1),
|
||||||
|
features.size(2),
|
||||||
|
),
|
||||||
|
],
|
||||||
|
dim=1,
|
||||||
|
)
|
||||||
|
|
||||||
|
states = [
|
||||||
|
torch.stack([x[0] for x in states], dim=2),
|
||||||
|
torch.stack([x[1] for x in states], dim=2),
|
||||||
|
]
|
||||||
|
processed_lens = torch.tensor(processed_lens, device=device)
|
||||||
|
|
||||||
|
encoder_out, encoder_out_lens, states = model.encoder.streaming_forward(
|
||||||
|
x=features,
|
||||||
|
x_lens=feature_lens,
|
||||||
|
states=states,
|
||||||
|
left_context=params.left_context,
|
||||||
|
right_context=params.right_context,
|
||||||
|
processed_lens=processed_lens,
|
||||||
|
)
|
||||||
|
|
||||||
|
encoder_out = model.joiner.encoder_proj(encoder_out)
|
||||||
|
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
hyp_tokens = greedy_search(model, encoder_out, decode_streams)
|
||||||
|
elif params.decoding_method == "fast_beam_search":
|
||||||
|
config = k2.RnntDecodingConfig(
|
||||||
|
vocab_size=params.vocab_size,
|
||||||
|
decoder_history_len=params.context_size,
|
||||||
|
beam=params.beam,
|
||||||
|
max_contexts=params.max_contexts,
|
||||||
|
max_states=params.max_states,
|
||||||
|
)
|
||||||
|
decoding_streams = k2.RnntDecodingStreams(rnnt_stream_list, config)
|
||||||
|
processed_lens = processed_lens + encoder_out_lens
|
||||||
|
hyp_tokens = fast_beam_search(
|
||||||
|
model, encoder_out, processed_lens, decoding_streams
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
assert False
|
||||||
|
|
||||||
|
states = [torch.unbind(states[0], dim=2), torch.unbind(states[1], dim=2)]
|
||||||
|
|
||||||
|
finished_streams = []
|
||||||
|
for i in range(len(decode_streams)):
|
||||||
|
decode_streams[i].states = [states[0][i], states[1][i]]
|
||||||
|
decode_streams[i].done_frames += encoder_out_lens[i]
|
||||||
|
if params.decoding_method == "fast_beam_search":
|
||||||
|
decode_streams[i].hyp = hyp_tokens[i]
|
||||||
|
if decode_streams[i].done:
|
||||||
|
finished_streams.append(i)
|
||||||
|
|
||||||
|
return finished_streams
|
||||||
|
|
||||||
|
|
||||||
|
def decode_dataset(
|
||||||
|
cuts: CutSet,
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
sp: spm.SentencePieceProcessor,
|
||||||
|
decoding_graph: Optional[k2.Fsa] = None,
|
||||||
|
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
||||||
|
"""Decode dataset.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
cuts:
|
||||||
|
Lhotse Cutset containing the dataset to decode.
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
sp:
|
||||||
|
The BPE model.
|
||||||
|
decoding_graph:
|
||||||
|
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||||
|
only when --decoding_method is fast_beam_search.
|
||||||
|
Returns:
|
||||||
|
Return a dict, whose key may be "greedy_search" if greedy search
|
||||||
|
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||||
|
Its value is a list of tuples. Each tuple contains two elements:
|
||||||
|
The first is the reference transcript, and the second is the
|
||||||
|
predicted result.
|
||||||
|
"""
|
||||||
|
device = model.device
|
||||||
|
|
||||||
|
opts = FbankOptions()
|
||||||
|
opts.device = device
|
||||||
|
opts.frame_opts.dither = 0
|
||||||
|
opts.frame_opts.snip_edges = False
|
||||||
|
opts.frame_opts.samp_freq = 16000
|
||||||
|
opts.mel_opts.num_bins = 80
|
||||||
|
|
||||||
|
log_interval = 50
|
||||||
|
|
||||||
|
decode_results = []
|
||||||
|
# Contain decode streams currently running.
|
||||||
|
decode_streams = []
|
||||||
|
initial_states = model.encoder.get_init_state(
|
||||||
|
params.left_context, device=device
|
||||||
|
)
|
||||||
|
for num, cut in enumerate(cuts):
|
||||||
|
# each utterance has a DecodeStream.
|
||||||
|
decode_stream = DecodeStream(
|
||||||
|
params=params,
|
||||||
|
initial_states=initial_states,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
|
||||||
|
audio: np.ndarray = cut.load_audio()
|
||||||
|
# audio.shape: (1, num_samples)
|
||||||
|
assert len(audio.shape) == 2
|
||||||
|
assert audio.shape[0] == 1, "Should be single channel"
|
||||||
|
assert audio.dtype == np.float32, audio.dtype
|
||||||
|
|
||||||
|
# The trained model is using normalized samples
|
||||||
|
assert audio.max() <= 1, "Should be normalized to [-1, 1])"
|
||||||
|
|
||||||
|
samples = torch.from_numpy(audio).squeeze(0)
|
||||||
|
|
||||||
|
fbank = Fbank(opts)
|
||||||
|
feature = fbank(samples.to(device))
|
||||||
|
decode_stream.set_features(feature)
|
||||||
|
decode_stream.ground_truth = cut.supervisions[0].text
|
||||||
|
|
||||||
|
decode_streams.append(decode_stream)
|
||||||
|
|
||||||
|
while len(decode_streams) >= params.num_decode_streams:
|
||||||
|
finished_streams = decode_one_chunk(
|
||||||
|
params=params, model=model, decode_streams=decode_streams
|
||||||
|
)
|
||||||
|
for i in sorted(finished_streams, reverse=True):
|
||||||
|
hyp = decode_streams[i].hyp
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
hyp = hyp[params.context_size :] # noqa
|
||||||
|
decode_results.append(
|
||||||
|
(
|
||||||
|
decode_streams[i].ground_truth.split(),
|
||||||
|
sp.decode(hyp).split(),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
del decode_streams[i]
|
||||||
|
|
||||||
|
if num % log_interval == 0:
|
||||||
|
logging.info(f"Cuts processed until now is {num}.")
|
||||||
|
|
||||||
|
# decode final chunks of last sequences
|
||||||
|
while len(decode_streams):
|
||||||
|
finished_streams = decode_one_chunk(
|
||||||
|
params=params, model=model, decode_streams=decode_streams
|
||||||
|
)
|
||||||
|
for i in sorted(finished_streams, reverse=True):
|
||||||
|
hyp = decode_streams[i].hyp
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
hyp = hyp[params.context_size :] # noqa
|
||||||
|
decode_results.append(
|
||||||
|
(decode_streams[i].ground_truth.split(), sp.decode(hyp).split())
|
||||||
|
)
|
||||||
|
del decode_streams[i]
|
||||||
|
|
||||||
|
key = "greedy_search"
|
||||||
|
if params.decoding_method == "fast_beam_search":
|
||||||
|
key = (
|
||||||
|
f"beam_{params.beam}_"
|
||||||
|
f"max_contexts_{params.max_contexts}_"
|
||||||
|
f"max_states_{params.max_states}"
|
||||||
|
)
|
||||||
|
return {key: decode_results}
|
||||||
|
|
||||||
|
|
||||||
|
def save_results(
|
||||||
|
params: AttributeDict,
|
||||||
|
test_set_name: str,
|
||||||
|
results_dict: Dict[str, List[Tuple[List[str], List[str]]]],
|
||||||
|
):
|
||||||
|
test_set_wers = dict()
|
||||||
|
for key, results in results_dict.items():
|
||||||
|
recog_path = (
|
||||||
|
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
# sort results so we can easily compare the difference between two
|
||||||
|
# recognition results
|
||||||
|
results = sorted(results)
|
||||||
|
store_transcripts(filename=recog_path, texts=results)
|
||||||
|
logging.info(f"The transcripts are stored in {recog_path}")
|
||||||
|
|
||||||
|
# The following prints out WERs, per-word error statistics and aligned
|
||||||
|
# ref/hyp pairs.
|
||||||
|
errs_filename = (
|
||||||
|
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
with open(errs_filename, "w") as f:
|
||||||
|
wer = write_error_stats(
|
||||||
|
f, f"{test_set_name}-{key}", results, enable_log=True
|
||||||
|
)
|
||||||
|
test_set_wers[key] = wer
|
||||||
|
|
||||||
|
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||||
|
|
||||||
|
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||||
|
errs_info = (
|
||||||
|
params.res_dir
|
||||||
|
/ f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
with open(errs_info, "w") as f:
|
||||||
|
print("settings\tWER", file=f)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
print("{}\t{}".format(key, val), file=f)
|
||||||
|
|
||||||
|
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||||
|
note = "\tbest for {}".format(test_set_name)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
s += "{}\t{}{}\n".format(key, val, note)
|
||||||
|
note = ""
|
||||||
|
logging.info(s)
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
FisherSwbdSpeechAsrDataModule.add_arguments(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
args.exp_dir = Path(args.exp_dir)
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
params.res_dir = params.exp_dir / "streaming" / params.decoding_method
|
||||||
|
|
||||||
|
if params.iter > 0:
|
||||||
|
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
|
||||||
|
else:
|
||||||
|
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||||
|
|
||||||
|
# for streaming
|
||||||
|
params.suffix += f"-streaming-chunk-size-{params.decode_chunk_size}"
|
||||||
|
params.suffix += f"-left-context-{params.left_context}"
|
||||||
|
params.suffix += f"-right-context-{params.right_context}"
|
||||||
|
|
||||||
|
# for fast_beam_search
|
||||||
|
if params.decoding_method == "fast_beam_search":
|
||||||
|
params.suffix += f"-beam-{params.beam}"
|
||||||
|
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||||
|
params.suffix += f"-max-states-{params.max_states}"
|
||||||
|
|
||||||
|
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
||||||
|
logging.info("Decoding started")
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"Device: {device}")
|
||||||
|
|
||||||
|
sp = spm.SentencePieceProcessor()
|
||||||
|
sp.load(params.bpe_model)
|
||||||
|
|
||||||
|
# <blk> and <unk> is defined in local/train_bpe_model.py
|
||||||
|
params.blank_id = sp.piece_to_id("<blk>")
|
||||||
|
params.unk_id = sp.piece_to_id("<unk>")
|
||||||
|
params.vocab_size = sp.get_piece_size()
|
||||||
|
# Decoding in streaming requires causal convolution
|
||||||
|
params.causal_convolution = True
|
||||||
|
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
logging.info("About to create model")
|
||||||
|
model = get_transducer_model(params)
|
||||||
|
|
||||||
|
if params.iter > 0:
|
||||||
|
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
|
||||||
|
: params.avg
|
||||||
|
]
|
||||||
|
if len(filenames) == 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"No checkpoints found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
elif len(filenames) < params.avg:
|
||||||
|
raise ValueError(
|
||||||
|
f"Not enough checkpoints ({len(filenames)}) found for"
|
||||||
|
f" --iter {params.iter}, --avg {params.avg}"
|
||||||
|
)
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
elif params.avg == 1:
|
||||||
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||||
|
else:
|
||||||
|
start = params.epoch - params.avg + 1
|
||||||
|
filenames = []
|
||||||
|
for i in range(start, params.epoch + 1):
|
||||||
|
if start >= 0:
|
||||||
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
|
||||||
|
model.to(device)
|
||||||
|
model.eval()
|
||||||
|
model.device = device
|
||||||
|
|
||||||
|
decoding_graph = None
|
||||||
|
if params.decoding_method == "fast_beam_search":
|
||||||
|
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||||
|
|
||||||
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
|
logging.info(f"Number of model parameters: {num_param}")
|
||||||
|
|
||||||
|
fisherswbd = FisherSwbdSpeechAsrDataModule(args)
|
||||||
|
|
||||||
|
test_eval2000_cuts = fisherswbd.test_eval2000_cuts()
|
||||||
|
test_swbd_cuts = fisherswbd.test_swbd_cuts()
|
||||||
|
test_callhome_cuts = fisherswbd.test_callhome_cuts()
|
||||||
|
|
||||||
|
test_eval2000_dl = fisherswbd.test_dataloaders(test_eval2000_cuts)
|
||||||
|
test_swbd_dl = fisherswbd.test_dataloaders(test_swbd_cuts)
|
||||||
|
test_callhome_dl = fisherswbd.test_dataloaders(test_callhome_cuts)
|
||||||
|
|
||||||
|
test_sets = ["eval2000", "swbd", "callhome"]
|
||||||
|
test_cuts = [test_eval2000_dl, test_swbd_dl, test_callhome_dl]
|
||||||
|
|
||||||
|
for test_set, test_cut in zip(test_sets, test_cuts):
|
||||||
|
results_dict = decode_dataset(
|
||||||
|
cuts=test_cut,
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
sp=sp,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
)
|
||||||
|
|
||||||
|
save_results(
|
||||||
|
params=params, test_set_name=test_set, results_dict=results_dict
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Done!")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
76
egs/fisher_swbd/ASR/pruned_transducer_stateless2/test_model.py
Executable file
76
egs/fisher_swbd/ASR/pruned_transducer_stateless2/test_model.py
Executable file
@ -0,0 +1,76 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
To run this file, do:
|
||||||
|
|
||||||
|
cd icefall/egs/librispeech/ASR
|
||||||
|
python ./pruned_transducer_stateless/test_model.py
|
||||||
|
"""
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from train import get_params, get_transducer_model
|
||||||
|
|
||||||
|
|
||||||
|
def test_model():
|
||||||
|
params = get_params()
|
||||||
|
params.vocab_size = 500
|
||||||
|
params.blank_id = 0
|
||||||
|
params.context_size = 2
|
||||||
|
params.unk_id = 2
|
||||||
|
|
||||||
|
params.dynamic_chunk_training = False
|
||||||
|
params.short_chunk_size = 25
|
||||||
|
params.num_left_chunks = 4
|
||||||
|
params.causal_convolution = False
|
||||||
|
|
||||||
|
model = get_transducer_model(params)
|
||||||
|
|
||||||
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
|
print(f"Number of model parameters: {num_param}")
|
||||||
|
model.__class__.forward = torch.jit.ignore(model.__class__.forward)
|
||||||
|
torch.jit.script(model)
|
||||||
|
|
||||||
|
|
||||||
|
def test_model_streaming():
|
||||||
|
params = get_params()
|
||||||
|
params.vocab_size = 500
|
||||||
|
params.blank_id = 0
|
||||||
|
params.context_size = 2
|
||||||
|
params.unk_id = 2
|
||||||
|
|
||||||
|
params.dynamic_chunk_training = True
|
||||||
|
params.short_chunk_size = 25
|
||||||
|
params.num_left_chunks = 4
|
||||||
|
params.causal_convolution = True
|
||||||
|
|
||||||
|
model = get_transducer_model(params)
|
||||||
|
|
||||||
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
|
print(f"Number of model parameters: {num_param}")
|
||||||
|
model.__class__.forward = torch.jit.ignore(model.__class__.forward)
|
||||||
|
torch.jit.script(model)
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
test_model()
|
||||||
|
test_model_streaming()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
1069
egs/fisher_swbd/ASR/pruned_transducer_stateless2/train.py
Executable file
1069
egs/fisher_swbd/ASR/pruned_transducer_stateless2/train.py
Executable file
File diff suppressed because it is too large
Load Diff
1
egs/fisher_swbd/ASR/shared
Symbolic link
1
egs/fisher_swbd/ASR/shared
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../../../icefall/shared/
|
Loading…
x
Reference in New Issue
Block a user