Update diagnostics.py (#254)

* update diagnostics.py

* do some changes
This commit is contained in:
Mingshuang Luo 2022-03-16 20:17:45 +08:00 committed by GitHub
parent a7643301ec
commit 518ec6414a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -1,5 +1,6 @@
# Copyright 2022 Xiaomi Corp. (authors: Daniel Povey
# Zengwei Yao)
# Zengwei Yao
# Mingshuang Luo)
#
# See ../LICENSE for clarification regarding multiple authors
#
@ -17,7 +18,7 @@
import random
from typing import List, Tuple
from typing import List, Optional, Tuple
import torch
from torch import Tensor, nn
@ -28,22 +29,29 @@ class TensorDiagnosticOptions(object):
Args:
memory_limit:
The maximum number of bytes per tensor (limits how many copies
of the tensor we cache).
The maximum number of bytes per tensor
(limits how many copies of the tensor we cache).
max_eig_dim:
The maximum dimension for which we print out eigenvalues
(limited for speed reasons).
"""
def __init__(self, memory_limit: int):
def __init__(self, memory_limit: int = (2 ** 20), max_eig_dim: int = 512):
self.memory_limit = memory_limit
self.max_eig_dim = max_eig_dim
def dim_is_summarized(self, size: int):
return size > 10 and size != 31
def get_sum_abs_stats(
x: Tensor, dim: int, stats_type: str
def get_tensor_stats(
x: Tensor,
dim: int,
stats_type: str,
) -> Tuple[Tensor, int]:
"""Returns the sum-of-absolute-value of this Tensor, for each index into
the specified axis/dim of the tensor.
"""
Returns the specified transformation of the Tensor (either x or x.abs()
or (x > 0), summed over all but the index `dim`.
Args:
x:
@ -51,28 +59,38 @@ def get_sum_abs_stats(
dim:
Dimension with 0 <= dim < x.ndim
stats_type:
Either "mean-abs" in which case the stats represent the mean absolute
value, or "pos-ratio" in which case the stats represent the proportion
of positive values (actually: the tensor is count of positive values,
count is the count of all values).
The stats_type includes several types:
"abs" -> take abs() before summing
"positive" -> take (x > 0) before summing
"rms" -> square before summing, we'll take sqrt later
"value -> just sum x itself
Returns:
(sum_abs, count) where sum_abs is a Tensor of shape (x.shape[dim],),
and the count is an integer saying how many items were counted in
each element of sum_abs.
stats: a Tensor of shape (x.shape[dim],).
count: an integer saying how many items were counted in each element
of stats.
"""
if stats_type == "mean-abs":
count = x.numel() // x.shape[dim]
if stats_type == "eigs":
x = x.transpose(dim, -1)
x = x.reshape(-1, x.shape[-1])
# shape of returned tensor: (s, s),
# where s is size of dimension `dim` of original x.
return torch.matmul(x.transpose(0, 1), x), count
elif stats_type == "abs":
x = x.abs()
else:
assert stats_type == "pos-ratio"
elif stats_type == "rms":
x = x ** 2
elif stats_type == "positive":
x = (x > 0).to(dtype=torch.float)
else:
assert stats_type == "value"
orig_numel = x.numel()
sum_dims = [d for d in range(x.ndim) if d != dim]
if len(sum_dims) > 0:
x = torch.sum(x, dim=sum_dims)
count = orig_numel // x.numel()
x = x.flatten()
return x, count
@ -83,43 +101,58 @@ def get_diagnostics_for_dim(
sizes_same: bool,
stats_type: str,
) -> str:
"""This function gets diagnostics for a dimension of a module.
"""
This function gets diagnostics for a dimension of a module.
Args:
dim:
The dimension to analyze, with 0 <= dim < tensors[0].ndim
tensors:
List of cached tensors to get the stats
the dimension to analyze, with 0 <= dim < tensors[0].ndim
options:
Options object
options object
sizes_same:
True if all the tensor sizes are the same on this dimension
stats_type: either "mean-abs" or "pos-ratio", dictates the type of
stats we accumulate, mean-abs is mean absolute value, "pos-ratio" is
proportion of positive to nonnegative values.
stats_type: either "abs" or "positive" or "eigs" or "value",
imdictates the type of stats we accumulate, abs is mean absolute
value, "positive" is proportion of positive to nonnegative values,
"eigs" is eigenvalues after doing outer product on this dim, sum
over all other dimes.
Returns:
Diagnostic as a string, either percentiles or the actual values,
see the code.
see the code. Will return the empty string if the diagnostics did
not make sense to print out for this dimension, e.g. dimension
mismatch and stats_type == "eigs".
"""
# stats_and_counts is a list of pair (Tensor, int)
stats_and_counts = [get_sum_abs_stats(x, dim, stats_type) for x in tensors]
stats_and_counts = [get_tensor_stats(x, dim, stats_type) for x in tensors]
stats = [x[0] for x in stats_and_counts]
counts = [x[1] for x in stats_and_counts]
if sizes_same:
if stats_type == "eigs":
try:
stats = torch.stack(stats).sum(dim=0)
except: # noqa
return ""
count = sum(counts)
stats = stats / count
stats, _ = torch.symeig(stats)
stats = stats.abs().sqrt()
# sqrt so it reflects data magnitude, like stddev- not variance
elif sizes_same:
stats = torch.stack(stats).sum(dim=0)
count = sum(counts)
stats = stats / count
else:
stats = [x[0] / x[1] for x in stats_and_counts]
stats = torch.cat(stats, dim=0)
if stats_type == "rms":
stats = stats.sqrt()
# If `summarize` we print percentiles of the stats;
# else, we print out individual elements.
# if `summarize` we print percentiles of the stats; else,
# we print out individual elements.
summarize = (not sizes_same) or options.dim_is_summarized(stats.numel())
if summarize:
# Print out percentiles.
# print out percentiles.
stats = stats.sort()[0]
num_percentiles = 10
size = stats.numel()
@ -129,12 +162,25 @@ def get_diagnostics_for_dim(
percentiles.append(stats[index].item())
percentiles = ["%.2g" % x for x in percentiles]
percentiles = " ".join(percentiles)
return f"percentiles: [{percentiles}]"
ans = f"percentiles: [{percentiles}]"
else:
stats = stats.tolist()
stats = ["%.2g" % x for x in stats]
stats = "[" + " ".join(stats) + "]"
return stats
ans = stats.tolist()
ans = ["%.2g" % x for x in ans]
ans = "[" + " ".join(ans) + "]"
if stats_type == "value":
# This norm is useful because it is strictly less than the largest
# sqrt(eigenvalue) of the variance, which we print out, and shows,
# speaking in an approximate way, how much of that largest eigenvalue
# can be attributed to the mean of the distribution.
norm = (stats ** 2).sum().sqrt().item()
mean = stats.mean().item()
rms = (stats ** 2).mean().sqrt().item()
ans += f", norm={norm:.2g}, mean={mean:.2g}, rms={rms:.2g}"
else:
mean = stats.mean().item()
rms = (stats ** 2).mean().sqrt().item()
ans += f", mean={mean:.2g}, rms={rms:.2g}"
return ans
def print_diagnostics_for_dim(
@ -153,17 +199,27 @@ def print_diagnostics_for_dim(
Options object.
"""
for stats_type in ["mean-abs", "pos-ratio"]:
# stats_type will be "mean-abs" or "pos-ratio".
ndim = tensors[0].ndim
if ndim > 1:
stats_types = ["abs", "positive", "value", "rms"]
if tensors[0].shape[dim] <= options.max_eig_dim:
stats_types.append("eigs")
else:
stats_types = ["value", "abs"]
for stats_type in stats_types:
sizes = [x.shape[dim] for x in tensors]
sizes_same = all([x == sizes[0] for x in sizes])
s = get_diagnostics_for_dim(
dim, tensors, options, sizes_same, stats_type
)
if s == "":
continue
min_size = min(sizes)
max_size = max(sizes)
size_str = f"{min_size}" if sizes_same else f"{min_size}..{max_size}"
# stats_type will be "abs" or "positive".
print(f"module={name}, dim={dim}, size={size_str}, {stats_type} {s}")
@ -225,11 +281,15 @@ class TensorDiagnostic(object):
# Ensure there is at least one dim.
self.saved_tensors = [x.unsqueeze(0) for x in self.saved_tensors]
try:
device = torch.device("cuda")
except: # noqa
device = torch.device("cpu")
ndim = self.saved_tensors[0].ndim
tensors = [x.to(device) for x in self.saved_tensors]
for dim in range(ndim):
print_diagnostics_for_dim(
self.name, dim, self.saved_tensors, self.opts
)
print_diagnostics_for_dim(self.name, dim, tensors, self.opts)
class ModelDiagnostic(object):
@ -240,11 +300,14 @@ class ModelDiagnostic(object):
Options object.
"""
def __init__(self, opts: TensorDiagnosticOptions):
def __init__(self, opts: Optional[TensorDiagnosticOptions] = None):
# In this dictionary, the keys are tensors names and the values
# are corresponding TensorDiagnostic objects.
self.diagnostics = dict()
if opts is None:
self.opts = TensorDiagnosticOptions()
else:
self.opts = opts
self.diagnostics = dict()
def __getitem__(self, name: str):
if name not in self.diagnostics:
@ -321,7 +384,7 @@ def attach_diagnostics(
def _test_tensor_diagnostic():
opts = TensorDiagnosticOptions(2 ** 20)
opts = TensorDiagnosticOptions(2 ** 20, 512)
diagnostic = TensorDiagnostic(opts, "foo")