mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-12-11 06:55:27 +00:00
Use fewer hidden channels in NonlinAttentionModule
This commit is contained in:
parent
12fe963ceb
commit
4f9bb332fb
@ -422,9 +422,9 @@ class ZipformerEncoderLayer(nn.Module):
|
||||
feedforward_dim,
|
||||
dropout)
|
||||
|
||||
#self.conv_module1 = ConvolutionModule(embed_dim,
|
||||
#cnn_module_kernel)
|
||||
self.nonlin_attention_module = NonlinAttentionModule(embed_dim)
|
||||
self.nonlin_attention_module = NonlinAttentionModule(embed_dim,
|
||||
hidden_channels=embed_dim // 4,
|
||||
ratio=1)
|
||||
|
||||
|
||||
self.conv_module = ConvolutionModule(embed_dim,
|
||||
@ -1450,20 +1450,25 @@ class NonlinAttentionModule(nn.Module):
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, channels: int, ratio: int = 2,
|
||||
self,
|
||||
channels: int,
|
||||
hidden_channels: int,
|
||||
ratio: int = 1,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
|
||||
self.ratio = ratio
|
||||
self.hidden_channels = hidden_channels
|
||||
|
||||
assert channels % (ratio * 2) == 0
|
||||
self.in_proj = nn.Linear(channels, (channels + channels // ratio) // 2, bias=True)
|
||||
self.in_proj = nn.Linear(channels, hidden_channels + hidden_channels // ratio, bias=True)
|
||||
|
||||
# balancer that goes before the sigmoid. Have quite a large min_abs value, at 2.0,
|
||||
# because we noticed that well-trained instances of this module have abs-value before the sigmoid
|
||||
# starting from about 3, and poorly-trained instances of the module have smaller abs values
|
||||
# before the sigmoid.
|
||||
self.balancer = ActivationBalancer(
|
||||
channels // (2 * ratio), channel_dim=-1,
|
||||
hidden_channels // ratio, channel_dim=-1,
|
||||
min_positive=ScheduledFloat((0.0, 0.1), (8000.0, 0.05)),
|
||||
max_positive=1.0,
|
||||
min_abs=1.5,
|
||||
@ -1472,7 +1477,7 @@ class NonlinAttentionModule(nn.Module):
|
||||
self.sigmoid = nn.Sigmoid()
|
||||
|
||||
self.activation = Identity() # for diagnostics.
|
||||
self.out_proj = ScaledLinear(channels // 2, channels,
|
||||
self.out_proj = ScaledLinear(hidden_channels, channels,
|
||||
bias=True,
|
||||
initial_scale=0.05)
|
||||
|
||||
@ -1495,18 +1500,19 @@ attn_weights: a Tensor of shape (num_heads, batch_size, seq_len, seq_len)
|
||||
a Tensor with the same shape as x
|
||||
"""
|
||||
num_channels = x.shape[-1]
|
||||
(seq_len, batch_size, num_channels) = x.shape
|
||||
|
||||
x = self.in_proj(x)
|
||||
|
||||
s = x[..., num_channels // 2:]
|
||||
x = x[..., :num_channels // 2]
|
||||
(seq_len, batch_size, _) = x.shape
|
||||
hidden_channels = self.hidden_channels
|
||||
|
||||
s = x[..., hidden_channels:]
|
||||
x = x[..., :hidden_channels]
|
||||
|
||||
s = self.balancer(s)
|
||||
s = self.sigmoid(s)
|
||||
|
||||
s = s.unsqueeze(-1).expand(-1, -1, -1, self.ratio).reshape(seq_len, batch_size, num_channels // 2)
|
||||
|
||||
s = s.unsqueeze(-1).expand(-1, -1, -1, self.ratio).reshape(seq_len, batch_size,
|
||||
hidden_channels)
|
||||
x = self.activation(x) # diagnostics only, it's the identity.
|
||||
x = x * s
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user