mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-13 12:02:21 +00:00
Add more doc for the LibriSpeech recipe.
This commit is contained in:
parent
95601d8a1e
commit
4f4041f704
@ -14,6 +14,12 @@ with the `LibriSpeech <https://www.openslr.org/12>`_ dataset.
|
||||
|
||||
We recommend you to use a GPU or several GPUs to run this recipe.
|
||||
|
||||
In this tutorial, you will learn:
|
||||
|
||||
- (1) How to prepare data for training and decoding
|
||||
- (2) How to start the training, either with a single GPU or multiple GPUs
|
||||
- (3) How to do decoding after training, with n-gram LM rescoring and attention decoder rescoring
|
||||
- (4) How to use a pre-trained model, provided by us
|
||||
|
||||
Data preparation
|
||||
----------------
|
||||
@ -81,12 +87,12 @@ The following options are used quite often:
|
||||
- ``--full-libri``
|
||||
|
||||
If it's True, the training part uses all the training data, i.e.,
|
||||
960 hours. Otherwise, the training part uses only 100 hours subset.
|
||||
960 hours. Otherwise, the training part uses only the subset
|
||||
``train-clean-100``, which has 100 hours of training data.
|
||||
|
||||
.. CAUTION::
|
||||
|
||||
The training set is perturbed by two different speeds:
|
||||
one with a value 0.9 and the other is 1.1.
|
||||
The training set is perturbed by speed with two factors: 0.9 and 1.1.
|
||||
If ``--full-libri`` is True, each epoch actually processes
|
||||
``3x960 == 2880`` hours of data.
|
||||
|
||||
@ -143,11 +149,11 @@ The following options are used quite often:
|
||||
.. CAUTION::
|
||||
|
||||
Only multi-GPU single-machine DDP training is implemented at present.
|
||||
Mult-GPU multi-machine DDP training will be added later.
|
||||
Multi-GPU multi-machine DDP training will be added later.
|
||||
|
||||
- ``--max-duration``
|
||||
|
||||
It specifies number of seconds over all utterances in a
|
||||
It specifies the number of seconds over all utterances in a
|
||||
batch, before **padding**.
|
||||
If you encounter CUDA OOM, please reduce it. For instance, if
|
||||
your are using V100 NVIDIA GPU, we recommend you to set it to ``200``.
|
||||
@ -157,8 +163,8 @@ The following options are used quite often:
|
||||
Due to padding, the number of seconds of all utterances in a
|
||||
batch will usually be larger than ``--max-duration``.
|
||||
|
||||
A large value for ``--max-duration`` may cause OOM during training,
|
||||
while a small value may increase the training time. You have to
|
||||
A larger value for ``--max-duration`` may cause OOM during training,
|
||||
while a smaller value may increase the training time. You have to
|
||||
tune it.
|
||||
|
||||
|
||||
@ -272,6 +278,350 @@ training from epoch 3. Also, it trains for 10 epochs.
|
||||
Decoding
|
||||
--------
|
||||
|
||||
The decoding part uses checkpoints saved by the training part, so you have
|
||||
to run the training part first.
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ cd egs/librispeech/ASR
|
||||
$ ./conformer_ctc/decode.py --help
|
||||
|
||||
shows the options for decoding.
|
||||
|
||||
The commonly used options are:
|
||||
|
||||
- ``--method``
|
||||
|
||||
This specifies the decoding method.
|
||||
|
||||
The following command uses attention decoder for rescoring:
|
||||
|
||||
.. code-block::
|
||||
|
||||
$ cd egs/librispeech/ASR
|
||||
$ ./conformer_ctc/decode.py --method attention-decoder --max-duration 30 --lattice-score-scale 0.5
|
||||
|
||||
- ``--lattice-score-scale``
|
||||
|
||||
It is used to scaled down lattice scores so that we can more unique
|
||||
paths for rescoring.
|
||||
|
||||
- ``--max-duration``
|
||||
|
||||
It has the same meaning as the one during training. A larger
|
||||
value may cause OOM.
|
||||
|
||||
Pre-trained Model
|
||||
-----------------
|
||||
|
||||
We have uploaded the pre-trained model to
|
||||
`<https://huggingface.co/pkufool/icefall_asr_librispeech_conformer_ctc>`_.
|
||||
|
||||
We describe how to use the pre-trained model to transcribe a sound file or
|
||||
multiple sound files in the following.
|
||||
|
||||
Install kaldifeat
|
||||
~~~~~~~~~~~~~~~~~
|
||||
|
||||
`kaldifeat <https://github.com/csukuangfj/kaldifeat>`_ is used to
|
||||
extract features for a single sound file or multiple soundfiles
|
||||
at the same time.
|
||||
|
||||
Please refer to `<https://github.com/csukuangfj/kaldifeat>`_ for installation.
|
||||
|
||||
Download the pre-trained model
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
The following commands describe how to download the pre-trained model:
|
||||
|
||||
.. code-block::
|
||||
|
||||
$ cd egs/librispeech/ASR
|
||||
$ mkdir tmp
|
||||
$ cd tmp
|
||||
$ git lfs install
|
||||
$ git clone https://huggingface.co/pkufool/icefall_asr_librispeech_conformer_ctc
|
||||
|
||||
.. CAUTION::
|
||||
|
||||
You have to use ``git lfs`` to download the pre-trained model.
|
||||
|
||||
After downloading, you will have the following files:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ cd egs/librispeech/ASR
|
||||
$ tree tmp
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
tmp
|
||||
`-- icefall_asr_librispeech_conformer_ctc
|
||||
|-- README.md
|
||||
|-- data
|
||||
| |-- lang_bpe
|
||||
| | |-- HLG.pt
|
||||
| | |-- bpe.model
|
||||
| | |-- tokens.txt
|
||||
| | `-- words.txt
|
||||
| `-- lm
|
||||
| `-- G_4_gram.pt
|
||||
|-- exp
|
||||
| `-- pretraind.pt
|
||||
`-- test_wavs
|
||||
|-- 1089-134686-0001.flac
|
||||
|-- 1221-135766-0001.flac
|
||||
|-- 1221-135766-0002.flac
|
||||
`-- trans.txt
|
||||
|
||||
6 directories, 11 files
|
||||
|
||||
**File descriptions**:
|
||||
|
||||
- ``data/lang_bpe/HLG.pt``
|
||||
|
||||
It is the decoding graph.
|
||||
|
||||
- ``data/lang_bpe/bpe.model``
|
||||
|
||||
It is a sentencepiece model. You can use it to reproduce our results.
|
||||
|
||||
- ``data/lang_bpe/tokens.txt``
|
||||
|
||||
It contains tokens and their IDs, generated from ``bpe.model``.
|
||||
Provided only for convenience so that you can look up the SOS/EOS ID easily.
|
||||
|
||||
- ``data/lang_bpe/words.txt``
|
||||
|
||||
It contains words and their IDs.
|
||||
|
||||
- ``data/lm/G_4_gram.pt``
|
||||
|
||||
It is a 4-gram LM, useful for LM rescoring.
|
||||
|
||||
- ``exp/pretrained.pt``
|
||||
|
||||
It contains pre-trained model parameters, obtained by averaging
|
||||
checkpoints from ``epoch-15.pt`` to ``epoch-34.pt``.
|
||||
Note: We have removed optimizer ``state_dict`` to reduce file size.
|
||||
|
||||
- ``test_waves/*.flac``
|
||||
|
||||
It contains some test sound files from LibriSpeech ``test-clean`` dataset.
|
||||
|
||||
- `test_waves/trans.txt`
|
||||
|
||||
It contains the reference transcripts for the sound files in `test_waves/`.
|
||||
|
||||
The information of the test sound files is listed below:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ soxi tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/*.flac
|
||||
|
||||
Input File : 'tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac'
|
||||
Channels : 1
|
||||
Sample Rate : 16000
|
||||
Precision : 16-bit
|
||||
Duration : 00:00:06.62 = 106000 samples ~ 496.875 CDDA sectors
|
||||
File Size : 116k
|
||||
Bit Rate : 140k
|
||||
Sample Encoding: 16-bit FLAC
|
||||
|
||||
Input File : 'tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac'
|
||||
Channels : 1
|
||||
Sample Rate : 16000
|
||||
Precision : 16-bit
|
||||
Duration : 00:00:16.71 = 267440 samples ~ 1253.62 CDDA sectors
|
||||
File Size : 343k
|
||||
Bit Rate : 164k
|
||||
Sample Encoding: 16-bit FLAC
|
||||
|
||||
Input File : 'tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac'
|
||||
Channels : 1
|
||||
Sample Rate : 16000
|
||||
Precision : 16-bit
|
||||
Duration : 00:00:04.83 = 77200 samples ~ 361.875 CDDA sectors
|
||||
File Size : 105k
|
||||
Bit Rate : 174k
|
||||
Sample Encoding: 16-bit FLAC
|
||||
|
||||
Total Duration of 3 files: 00:00:28.16
|
||||
|
||||
Usage
|
||||
~~~~~
|
||||
|
||||
.. code-block::
|
||||
|
||||
$ cd egs/librispeech/ASR
|
||||
$ ./conformer_ctc/pretrained.py --help
|
||||
|
||||
displays the help information.
|
||||
|
||||
It supports three decoding methods:
|
||||
|
||||
- HLG decoding
|
||||
- HLG + n-gram LM rescoring
|
||||
- HLG + n-gram LM rescoring + attention decoder rescoring
|
||||
|
||||
HLG decoding
|
||||
^^^^^^^^^^^^
|
||||
|
||||
HLG decoding uses the best path of the decoding lattice as the decoding result.
|
||||
|
||||
The command to run HLG decoding is:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ cd egs/librispeech/ASR
|
||||
$ ./conformer_ctc/pretrained.py \
|
||||
--checkpoint ./tmp/icefall_asr_librispeech_conformer_ctc/exp/pretraind.pt \
|
||||
--words-file ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/words.txt \
|
||||
--HLG ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/HLG.pt \
|
||||
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac \
|
||||
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac \
|
||||
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac
|
||||
|
||||
The output is given below:
|
||||
|
||||
.. code-block::
|
||||
|
||||
2021-08-20 11:03:05,712 INFO [pretrained.py:217] device: cuda:0
|
||||
2021-08-20 11:03:05,712 INFO [pretrained.py:219] Creating model
|
||||
2021-08-20 11:03:11,345 INFO [pretrained.py:238] Loading HLG from ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/HLG.pt
|
||||
2021-08-20 11:03:18,442 INFO [pretrained.py:255] Constructing Fbank computer
|
||||
2021-08-20 11:03:18,444 INFO [pretrained.py:265] Reading sound files: ['./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac', './tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac', './tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac']
|
||||
2021-08-20 11:03:18,507 INFO [pretrained.py:271] Decoding started
|
||||
2021-08-20 11:03:18,795 INFO [pretrained.py:300] Use HLG decoding
|
||||
2021-08-20 11:03:19,149 INFO [pretrained.py:339]
|
||||
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac:
|
||||
AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS
|
||||
|
||||
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac:
|
||||
GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY CHILD WHOSE PLACE WAS ON THAT SAME DISHONOURED
|
||||
BOSOM TO CONNECT HER PARENT FOR EVER WITH THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN
|
||||
|
||||
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac:
|
||||
YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION
|
||||
|
||||
2021-08-20 11:03:19,149 INFO [pretrained.py:341] Decoding Done
|
||||
|
||||
HLG decoding + LM rescoring
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
It uses an n-gram LM to rescore the decoding lattice and the best
|
||||
path of the rescored lattice is the decoding result.
|
||||
|
||||
The command to run HLG decoding + LM rescoring is:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ cd egs/librispeech/ASR
|
||||
$ ./conformer_ctc/pretrained.py \
|
||||
--checkpoint ./tmp/icefall_asr_librispeech_conformer_ctc/exp/pretraind.pt \
|
||||
--words-file ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/words.txt \
|
||||
--HLG ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/HLG.pt \
|
||||
--method whole-lattice-rescoring \
|
||||
--G ./tmp/icefall_asr_librispeech_conformer_ctc/data/lm/G_4_gram.pt \
|
||||
--ngram-lm-scale 0.8 \
|
||||
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac \
|
||||
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac \
|
||||
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac
|
||||
|
||||
Its output is:
|
||||
|
||||
.. code-block::
|
||||
|
||||
2021-08-20 11:12:17,565 INFO [pretrained.py:217] device: cuda:0
|
||||
2021-08-20 11:12:17,565 INFO [pretrained.py:219] Creating model
|
||||
2021-08-20 11:12:23,728 INFO [pretrained.py:238] Loading HLG from ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/HLG.pt
|
||||
2021-08-20 11:12:30,035 INFO [pretrained.py:246] Loading G from ./tmp/icefall_asr_librispeech_conformer_ctc/data/lm/G_4_gram.pt
|
||||
2021-08-20 11:13:10,779 INFO [pretrained.py:255] Constructing Fbank computer
|
||||
2021-08-20 11:13:10,787 INFO [pretrained.py:265] Reading sound files: ['./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac', './tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac', './tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac']
|
||||
2021-08-20 11:13:10,798 INFO [pretrained.py:271] Decoding started
|
||||
2021-08-20 11:13:11,085 INFO [pretrained.py:305] Use HLG decoding + LM rescoring
|
||||
2021-08-20 11:13:11,736 INFO [pretrained.py:339]
|
||||
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac:
|
||||
AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS
|
||||
|
||||
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac:
|
||||
GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY CHILD WHOSE PLACE WAS ON THAT SAME DISHONOURED
|
||||
BOSOM TO CONNECT HER PARENT FOR EVER WITH THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN
|
||||
|
||||
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac:
|
||||
YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION
|
||||
|
||||
2021-08-20 11:13:11,737 INFO [pretrained.py:341] Decoding Done
|
||||
|
||||
HLG decoding + LM rescoring + attention decoder rescoring
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
It uses an n-gram LM to rescore the decoding lattice, extracts
|
||||
n paths from the rescored lattice, recores the extracted paths with
|
||||
an attention decoder. The path with the highest score is the decoding result.
|
||||
|
||||
The command to run HLG decoding + LM rescoring + attention decoder rescoring is:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
$ cd egs/librispeech/ASR
|
||||
$ ./conformer_ctc/pretrained.py \
|
||||
--checkpoint ./tmp/icefall_asr_librispeech_conformer_ctc/exp/pretraind.pt \
|
||||
--words-file ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/words.txt \
|
||||
--HLG ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/HLG.pt \
|
||||
--method attention-decoder \
|
||||
--G ./tmp/icefall_asr_librispeech_conformer_ctc/data/lm/G_4_gram.pt \
|
||||
--ngram-lm-scale 1.3 \
|
||||
--attention-decoder-scale 1.2 \
|
||||
--lattice-score-scale 0.5 \
|
||||
--num-paths 100 \
|
||||
--sos-id 1 \
|
||||
--eos-id 1 \
|
||||
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac \
|
||||
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac \
|
||||
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac
|
||||
|
||||
The output is below:
|
||||
|
||||
.. code-block::
|
||||
|
||||
2021-08-20 11:19:11,397 INFO [pretrained.py:217] device: cuda:0
|
||||
2021-08-20 11:19:11,397 INFO [pretrained.py:219] Creating model
|
||||
2021-08-20 11:19:17,354 INFO [pretrained.py:238] Loading HLG from ./tmp/icefall_asr_librispeech_conformer_ctc/data/lang_bpe/HLG.pt
|
||||
2021-08-20 11:19:24,615 INFO [pretrained.py:246] Loading G from ./tmp/icefall_asr_librispeech_conformer_ctc/data/lm/G_4_gram.pt
|
||||
2021-08-20 11:20:04,576 INFO [pretrained.py:255] Constructing Fbank computer
|
||||
2021-08-20 11:20:04,584 INFO [pretrained.py:265] Reading sound files: ['./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac', './tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac', './tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac']
|
||||
2021-08-20 11:20:04,595 INFO [pretrained.py:271] Decoding started
|
||||
2021-08-20 11:20:04,854 INFO [pretrained.py:313] Use HLG + LM rescoring + attention decoder rescoring
|
||||
2021-08-20 11:20:05,805 INFO [pretrained.py:339]
|
||||
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1089-134686-0001.flac:
|
||||
AFTER EARLY NIGHTFALL THE YELLOW LAMPS WOULD LIGHT UP HERE AND THERE THE SQUALID QUARTER OF THE BROTHELS
|
||||
|
||||
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0001.flac:
|
||||
GOD AS A DIRECT CONSEQUENCE OF THE SIN WHICH MAN THUS PUNISHED HAD GIVEN HER A LOVELY CHILD WHOSE PLACE WAS ON THAT SAME DISHONOURED
|
||||
BOSOM TO CONNECT HER PARENT FOR EVER WITH THE RACE AND DESCENT OF MORTALS AND TO BE FINALLY A BLESSED SOUL IN HEAVEN
|
||||
|
||||
./tmp/icefall_asr_librispeech_conformer_ctc/test_wavs/1221-135766-0002.flac:
|
||||
YET THESE THOUGHTS AFFECTED HESTER PRYNNE LESS WITH HOPE THAN APPREHENSION
|
||||
|
||||
2021-08-20 11:20:05,805 INFO [pretrained.py:341] Decoding Done
|
||||
|
||||
Colab notebook
|
||||
--------------
|
||||
|
||||
We do provide a colab notebook for this recipe showing how to use a pre-trained model.
|
||||
|
||||
|librispeech asr conformer ctc colab notebook|
|
||||
|
||||
.. |librispeech asr conformer ctc colab notebook| image:: https://colab.research.google.com/assets/colab-badge.svg
|
||||
:target: https://colab.research.google.com/drive/1huyupXAcHsUrKaWfI83iMEJ6J0Nh0213?usp=sharing
|
||||
|
||||
.. HINT::
|
||||
|
||||
Due to limited memory provided by Colab, you have to upgrade to Colab Pro to
|
||||
run ``HLG decoding + LM rescoring`` and
|
||||
``HLG decoding + LM rescoring + attention decoder rescoring``.
|
||||
Otherwise, you can only run ``HLG decoding`` with Colab.
|
||||
|
||||
**Congratulations!** You have finished the librispeech ASR recipe with
|
||||
conformer CTC models in ``icefall``.
|
||||
|
@ -57,28 +57,63 @@ def get_parser():
|
||||
parser.add_argument(
|
||||
"--epoch",
|
||||
type=int,
|
||||
default=9,
|
||||
default=34,
|
||||
help="It specifies the checkpoint to use for decoding."
|
||||
"Note: Epoch counts from 0.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--avg",
|
||||
type=int,
|
||||
default=1,
|
||||
default=20,
|
||||
help="Number of checkpoints to average. Automatically select "
|
||||
"consecutive checkpoints before the checkpoint specified by "
|
||||
"'--epoch'. ",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--method",
|
||||
type=str,
|
||||
default="attention-decoder",
|
||||
help="""Decoding method.
|
||||
Supported values are:
|
||||
- (1) 1best. Extract the best path from the decoding lattice as the
|
||||
decoding result.
|
||||
- (2) nbest. Extract n paths from the decoding lattice; the path with
|
||||
the highest score is the decoding result.
|
||||
- (3) nbest-rescoring. Extract n paths from the decoding lattice,
|
||||
rescore them with an n-gram LM (e.g., a 4-gram LM), the path with
|
||||
the highest score is the decoding result.
|
||||
- (4) whole-lattice. Rescore the decoding lattice with an n-gram LM
|
||||
(e.g., a 4-gram LM), the best path of rescored lattice is the
|
||||
decoding result.
|
||||
- (5) attention-decoder. Extract n paths from the LM rescored lattice,
|
||||
the path with the highest score is the decoding result.
|
||||
- (6) nbest-oracle. Its WER is the lower bound of any n-best
|
||||
rescoring method can achieve. Useful for debugging n-best
|
||||
rescoring method.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-paths",
|
||||
type=int,
|
||||
default=100,
|
||||
help="""Number of paths for n-best based decoding method.
|
||||
Used only when "method" is one of the following values:
|
||||
nbest, nbest-rescoring, attention-decoder, and nbest-oracle
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--lattice-score-scale",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="The scale to be applied to `lattice.scores`."
|
||||
"It's needed if you use any kinds of n-best based rescoring. "
|
||||
"Currently, it is used when the decoding method is: nbest, "
|
||||
"nbest-rescoring, attention-decoder, and nbest-oracle. "
|
||||
"A smaller value results in more unique paths.",
|
||||
help="""The scale to be applied to `lattice.scores`.
|
||||
It's needed if you use any kinds of n-best based rescoring.
|
||||
Used only when "method" is one of the following values:
|
||||
nbest, nbest-rescoring, attention-decoder, and nbest-oracle
|
||||
A smaller value results in more unique paths.
|
||||
""",
|
||||
)
|
||||
|
||||
return parser
|
||||
@ -104,21 +139,6 @@ def get_params() -> AttributeDict:
|
||||
"min_active_states": 30,
|
||||
"max_active_states": 10000,
|
||||
"use_double_scores": True,
|
||||
# Possible values for method:
|
||||
# - 1best
|
||||
# - nbest
|
||||
# - nbest-rescoring
|
||||
# - whole-lattice-rescoring
|
||||
# - attention-decoder
|
||||
# - nbest-oracle
|
||||
# "method": "nbest",
|
||||
# "method": "nbest-rescoring",
|
||||
# "method": "whole-lattice-rescoring",
|
||||
"method": "attention-decoder",
|
||||
# "method": "nbest-oracle",
|
||||
# num_paths is used when method is "nbest", "nbest-rescoring",
|
||||
# attention-decoder, and nbest-oracle
|
||||
"num_paths": 100,
|
||||
}
|
||||
)
|
||||
return params
|
||||
@ -129,7 +149,7 @@ def decode_one_batch(
|
||||
model: nn.Module,
|
||||
HLG: k2.Fsa,
|
||||
batch: dict,
|
||||
lexicon: Lexicon,
|
||||
word_table: k2.SymbolTable,
|
||||
sos_id: int,
|
||||
eos_id: int,
|
||||
G: Optional[k2.Fsa] = None,
|
||||
@ -163,8 +183,8 @@ def decode_one_batch(
|
||||
It is the return value from iterating
|
||||
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||
for the format of the `batch`.
|
||||
lexicon:
|
||||
It contains word symbol table.
|
||||
word_table:
|
||||
The word symbol table.
|
||||
sos_id:
|
||||
The token ID of the SOS.
|
||||
eos_id:
|
||||
@ -217,7 +237,7 @@ def decode_one_batch(
|
||||
lattice=lattice,
|
||||
num_paths=params.num_paths,
|
||||
ref_texts=supervisions["text"],
|
||||
lexicon=lexicon,
|
||||
word_table=word_table,
|
||||
scale=params.lattice_score_scale,
|
||||
)
|
||||
|
||||
@ -237,7 +257,7 @@ def decode_one_batch(
|
||||
key = f"no_rescore-scale-{params.lattice_score_scale}-{params.num_paths}" # noqa
|
||||
|
||||
hyps = get_texts(best_path)
|
||||
hyps = [[lexicon.word_table[i] for i in ids] for ids in hyps]
|
||||
hyps = [[word_table[i] for i in ids] for ids in hyps]
|
||||
return {key: hyps}
|
||||
|
||||
assert params.method in [
|
||||
@ -283,7 +303,7 @@ def decode_one_batch(
|
||||
ans = dict()
|
||||
for lm_scale_str, best_path in best_path_dict.items():
|
||||
hyps = get_texts(best_path)
|
||||
hyps = [[lexicon.word_table[i] for i in ids] for ids in hyps]
|
||||
hyps = [[word_table[i] for i in ids] for ids in hyps]
|
||||
ans[lm_scale_str] = hyps
|
||||
return ans
|
||||
|
||||
@ -293,7 +313,7 @@ def decode_dataset(
|
||||
params: AttributeDict,
|
||||
model: nn.Module,
|
||||
HLG: k2.Fsa,
|
||||
lexicon: Lexicon,
|
||||
word_table: k2.SymbolTable,
|
||||
sos_id: int,
|
||||
eos_id: int,
|
||||
G: Optional[k2.Fsa] = None,
|
||||
@ -309,8 +329,8 @@ def decode_dataset(
|
||||
The neural model.
|
||||
HLG:
|
||||
The decoding graph.
|
||||
lexicon:
|
||||
It contains word symbol table.
|
||||
word_table:
|
||||
It is the word symbol table.
|
||||
sos_id:
|
||||
The token ID for SOS.
|
||||
eos_id:
|
||||
@ -344,7 +364,7 @@ def decode_dataset(
|
||||
model=model,
|
||||
HLG=HLG,
|
||||
batch=batch,
|
||||
lexicon=lexicon,
|
||||
word_table=word_table,
|
||||
G=G,
|
||||
sos_id=sos_id,
|
||||
eos_id=eos_id,
|
||||
@ -540,7 +560,7 @@ def main():
|
||||
params=params,
|
||||
model=model,
|
||||
HLG=HLG,
|
||||
lexicon=lexicon,
|
||||
word_table=lexicon.word_table,
|
||||
G=G,
|
||||
sos_id=sos_id,
|
||||
eos_id=eos_id,
|
||||
|
@ -22,8 +22,6 @@ import kaldialign
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from icefall.lexicon import Lexicon
|
||||
|
||||
|
||||
def _get_random_paths(
|
||||
lattice: k2.Fsa,
|
||||
@ -623,7 +621,7 @@ def nbest_oracle(
|
||||
lattice: k2.Fsa,
|
||||
num_paths: int,
|
||||
ref_texts: List[str],
|
||||
lexicon: Lexicon,
|
||||
word_table: k2.SymbolTable,
|
||||
scale: float = 1.0,
|
||||
) -> Dict[str, List[List[int]]]:
|
||||
"""Select the best hypothesis given a lattice and a reference transcript.
|
||||
@ -644,8 +642,8 @@ def nbest_oracle(
|
||||
ref_texts:
|
||||
A list of reference transcript. Each entry contains space(s)
|
||||
separated words
|
||||
lexicon:
|
||||
It is used to convert word IDs to word symbols.
|
||||
word_table:
|
||||
It is the word symbol table.
|
||||
scale:
|
||||
It's the scale applied to the lattice.scores. A smaller value
|
||||
yields more unique paths.
|
||||
@ -680,7 +678,7 @@ def nbest_oracle(
|
||||
best_hyp_words = None
|
||||
min_error = float("inf")
|
||||
for hyp_words in hyps:
|
||||
hyp_words = [lexicon.word_table[i] for i in hyp_words]
|
||||
hyp_words = [word_table[i] for i in hyp_words]
|
||||
this_error = kaldialign.edit_distance(ref_words, hyp_words)["total"]
|
||||
if this_error < min_error:
|
||||
min_error = this_error
|
||||
|
Loading…
x
Reference in New Issue
Block a user