Merge branch 'master' into context_biasing

This commit is contained in:
pkufool 2023-03-22 19:49:35 +08:00
commit 4eb356ce49
131 changed files with 3292 additions and 898 deletions

View File

@ -15,5 +15,5 @@ mkdir -p data
cd data cd data
[ ! -e fbank ] && ln -s ~/tmp/fbank-libri fbank [ ! -e fbank ] && ln -s ~/tmp/fbank-libri fbank
cd .. cd ..
./local/compute_fbank_librispeech.py ./local/compute_fbank_librispeech.py --dataset 'test-clean test-other'
ls -lh data/fbank/ ls -lh data/fbank/

View File

@ -25,7 +25,6 @@ repo=$(basename $repo_url)
log "Display test files" log "Display test files"
tree $repo/ tree $repo/
soxi $repo/test_wavs/*.wav
ls -lh $repo/test_wavs/*.wav ls -lh $repo/test_wavs/*.wav
pushd $repo/exp pushd $repo/exp

View File

@ -18,7 +18,6 @@ repo=$(basename $repo_url)
log "Display test files" log "Display test files"
tree $repo/ tree $repo/
soxi $repo/test_wavs/*.wav
ls -lh $repo/test_wavs/*.wav ls -lh $repo/test_wavs/*.wav
pushd $repo/exp pushd $repo/exp

View File

@ -20,7 +20,6 @@ abs_repo=$(realpath $repo)
log "Display test files" log "Display test files"
tree $repo/ tree $repo/
soxi $repo/test_wavs/*.wav
ls -lh $repo/test_wavs/*.wav ls -lh $repo/test_wavs/*.wav
pushd $repo/exp pushd $repo/exp

View File

@ -19,7 +19,6 @@ repo=$(basename $repo_url)
log "Display test files" log "Display test files"
tree $repo/ tree $repo/
soxi $repo/test_wavs/*.wav
ls -lh $repo/test_wavs/*.wav ls -lh $repo/test_wavs/*.wav
for sym in 1 2 3; do for sym in 1 2 3; do

View File

@ -23,7 +23,6 @@ popd
log "Display test files" log "Display test files"
tree $repo/ tree $repo/
soxi $repo/test_wavs/*.wav
ls -lh $repo/test_wavs/*.wav ls -lh $repo/test_wavs/*.wav
pushd $repo/exp pushd $repo/exp

View File

@ -22,7 +22,6 @@ popd
log "Display test files" log "Display test files"
tree $repo/ tree $repo/
soxi $repo/test_wavs/*.wav
ls -lh $repo/test_wavs/*.wav ls -lh $repo/test_wavs/*.wav
pushd $repo/exp pushd $repo/exp

View File

@ -19,7 +19,6 @@ repo=$(basename $repo_url)
log "Display test files" log "Display test files"
tree $repo/ tree $repo/
soxi $repo/test_wavs/*.wav
ls -lh $repo/test_wavs/*.wav ls -lh $repo/test_wavs/*.wav
pushd $repo/exp pushd $repo/exp

View File

@ -19,7 +19,6 @@ repo=$(basename $repo_url)
log "Display test files" log "Display test files"
tree $repo/ tree $repo/
soxi $repo/test_wavs/*.wav
ls -lh $repo/test_wavs/*.wav ls -lh $repo/test_wavs/*.wav
pushd $repo/exp pushd $repo/exp

View File

@ -19,7 +19,6 @@ repo=$(basename $repo_url)
log "Display test files" log "Display test files"
tree $repo/ tree $repo/
soxi $repo/test_wavs/*.wav
ls -lh $repo/test_wavs/*.wav ls -lh $repo/test_wavs/*.wav
pushd $repo/exp pushd $repo/exp

View File

@ -18,7 +18,6 @@ repo=$(basename $repo_url)
log "Display test files" log "Display test files"
tree $repo/ tree $repo/
soxi $repo/test_wavs/*.wav
ls -lh $repo/test_wavs/*.wav ls -lh $repo/test_wavs/*.wav
pushd $repo/exp pushd $repo/exp
@ -148,4 +147,4 @@ if [[ x"${GITHUB_EVENT_NAME}" == x"schedule" || x"${GITHUB_EVENT_LABEL_NAME}" ==
done done
rm pruned_transducer_stateless7_ctc/exp/*.pt rm pruned_transducer_stateless7_ctc/exp/*.pt
fi fi

View File

@ -10,7 +10,7 @@ log() {
cd egs/librispeech/ASR cd egs/librispeech/ASR
repo_url=https://huggingface.co/yfyeung/icefall-asr-librispeech-pruned_transducer_stateless7_ctc_bs-2022-12-14 repo_url=https://huggingface.co/yfyeung/icefall-asr-librispeech-pruned_transducer_stateless7_ctc_bs-2023-01-29
log "Downloading pre-trained model from $repo_url" log "Downloading pre-trained model from $repo_url"
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
@ -18,7 +18,6 @@ repo=$(basename $repo_url)
log "Display test files" log "Display test files"
tree $repo/ tree $repo/
soxi $repo/test_wavs/*.wav
ls -lh $repo/test_wavs/*.wav ls -lh $repo/test_wavs/*.wav
pushd $repo/exp pushd $repo/exp

View File

@ -19,7 +19,6 @@ repo=$(basename $repo_url)
log "Display test files" log "Display test files"
tree $repo/ tree $repo/
soxi $repo/test_wavs/*.wav
ls -lh $repo/test_wavs/*.wav ls -lh $repo/test_wavs/*.wav
pushd $repo pushd $repo

View File

@ -19,7 +19,6 @@ repo=$(basename $repo_url)
log "Display test files" log "Display test files"
tree $repo/ tree $repo/
soxi $repo/test_wavs/*.wav
ls -lh $repo/test_wavs/*.wav ls -lh $repo/test_wavs/*.wav
pushd $repo/exp pushd $repo/exp

View File

@ -19,7 +19,6 @@ repo=$(basename $repo_url)
log "Display test files" log "Display test files"
tree $repo/ tree $repo/
soxi $repo/test_wavs/*.wav
ls -lh $repo/test_wavs/*.wav ls -lh $repo/test_wavs/*.wav
pushd $repo/exp pushd $repo/exp

View File

@ -19,7 +19,6 @@ repo=$(basename $repo_url)
log "Display test files" log "Display test files"
tree $repo/ tree $repo/
soxi $repo/test_wavs/*.wav
ls -lh $repo/test_wavs/*.wav ls -lh $repo/test_wavs/*.wav
for sym in 1 2 3; do for sym in 1 2 3; do

View File

@ -18,7 +18,6 @@ repo=$(basename $repo_url)
log "Display test files" log "Display test files"
tree $repo/ tree $repo/
soxi $repo/test_wavs/*.wav
ls -lh $repo/test_wavs/*.wav ls -lh $repo/test_wavs/*.wav
pushd $repo/exp pushd $repo/exp

View File

@ -19,7 +19,6 @@ repo=$(basename $repo_url)
log "Display test files" log "Display test files"
tree $repo/ tree $repo/
soxi $repo/test_wavs/*.flac
ls -lh $repo/test_wavs/*.flac ls -lh $repo/test_wavs/*.flac
log "CTC decoding" log "CTC decoding"

View File

@ -19,7 +19,6 @@ repo=$(basename $repo_url)
log "Display test files" log "Display test files"
tree $repo/ tree $repo/
soxi $repo/test_wavs/*.wav
ls -lh $repo/test_wavs/*.wav ls -lh $repo/test_wavs/*.wav
for sym in 1 2 3; do for sym in 1 2 3; do

View File

@ -19,7 +19,6 @@ repo=$(basename $repo_url)
log "Display test files" log "Display test files"
tree $repo/ tree $repo/
soxi $repo/test_wavs/*.wav
ls -lh $repo/test_wavs/*.wav ls -lh $repo/test_wavs/*.wav
for sym in 1 2 3; do for sym in 1 2 3; do

View File

@ -19,7 +19,6 @@ repo=$(basename $repo_url)
log "Display test files" log "Display test files"
tree $repo/ tree $repo/
soxi $repo/test_wavs/*.wav
ls -lh $repo/test_wavs/*.wav ls -lh $repo/test_wavs/*.wav
for sym in 1 2 3; do for sym in 1 2 3; do

View File

@ -19,7 +19,6 @@ repo=$(basename $repo_url)
log "Display test files" log "Display test files"
tree $repo/ tree $repo/
soxi $repo/test_wavs/*.wav
ls -lh $repo/test_wavs/*.wav ls -lh $repo/test_wavs/*.wav
for sym in 1 2 3; do for sym in 1 2 3; do

View File

@ -19,7 +19,6 @@ repo=$(basename $repo_url)
log "Display test files" log "Display test files"
tree $repo/ tree $repo/
soxi $repo/test_wavs/*.wav
ls -lh $repo/test_wavs/*.wav ls -lh $repo/test_wavs/*.wav
for sym in 1 2 3; do for sym in 1 2 3; do

View File

@ -19,7 +19,6 @@ repo=$(basename $repo_url)
log "Display test files" log "Display test files"
tree $repo/ tree $repo/
soxi $repo/test_wavs/*.wav
ls -lh $repo/test_wavs/*.wav ls -lh $repo/test_wavs/*.wav
log "Beam search decoding" log "Beam search decoding"

View File

@ -20,7 +20,6 @@ repo=$(basename $repo_url)
log "Display test files" log "Display test files"
tree $repo/ tree $repo/
soxi $repo/test_wavs/*.wav
ls -lh $repo/test_wavs/*.wav ls -lh $repo/test_wavs/*.wav
pushd $repo/exp pushd $repo/exp

View File

@ -232,70 +232,3 @@ python3 ./pruned_transducer_stateless7_streaming/streaming-ncnn-decode.py \
rm -rf $repo rm -rf $repo
log "--------------------------------------------------------------------------" log "--------------------------------------------------------------------------"
# Go back to the root directory of icefall repo
popd
pushd egs/csj/ASR
log "=========================================================================="
repo_url=https://huggingface.co/TeoWenShen/icefall-asr-csj-pruned-transducer-stateless7-streaming-230208
GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url
repo=$(basename $repo_url)
pushd $repo
git lfs pull --include "exp_fluent/pretrained.pt"
git lfs pull --include "exp_disfluent/pretrained.pt"
cd exp_fluent
ln -s pretrained.pt epoch-99.pt
cd ../exp_disfluent
ln -s pretrained.pt epoch-99.pt
cd ../test_wavs
git lfs pull --include "*.wav"
popd
log "Export via torch.jit.trace()"
for exp in exp_fluent exp_disfluent; do
./pruned_transducer_stateless7_streaming/export-for-ncnn.py \
--exp-dir $repo/$exp/ \
--lang $repo/data/lang_char \
--epoch 99 \
--avg 1 \
--use-averaged-model 0 \
\
--decode-chunk-len 32 \
--num-left-chunks 4 \
--num-encoder-layers "2,4,3,2,4" \
--feedforward-dims "1024,1024,2048,2048,1024" \
--nhead "8,8,8,8,8" \
--encoder-dims "384,384,384,384,384" \
--attention-dims "192,192,192,192,192" \
--encoder-unmasked-dims "256,256,256,256,256" \
--zipformer-downsampling-factors "1,2,4,8,2" \
--cnn-module-kernels "31,31,31,31,31" \
--decoder-dim 512 \
--joiner-dim 512
pnnx $repo/$exp/encoder_jit_trace-pnnx.pt
pnnx $repo/$exp/decoder_jit_trace-pnnx.pt
pnnx $repo/$exp/joiner_jit_trace-pnnx.pt
for wav in aps-smp.wav interview_aps-smp.wav reproduction-smp.wav sps-smp.wav; do
python3 ./pruned_transducer_stateless7_streaming/streaming-ncnn-decode.py \
--tokens $repo/data/lang_char/tokens.txt \
--encoder-param-filename $repo/$exp/encoder_jit_trace-pnnx.ncnn.param \
--encoder-bin-filename $repo/$exp/encoder_jit_trace-pnnx.ncnn.bin \
--decoder-param-filename $repo/$exp/decoder_jit_trace-pnnx.ncnn.param \
--decoder-bin-filename $repo/$exp/decoder_jit_trace-pnnx.ncnn.bin \
--joiner-param-filename $repo/$exp/joiner_jit_trace-pnnx.ncnn.param \
--joiner-bin-filename $repo/$exp/joiner_jit_trace-pnnx.ncnn.bin \
$repo/test_wavs/$wav
done
done
rm -rf $repo
log "--------------------------------------------------------------------------"

View File

@ -65,7 +65,7 @@ jobs:
run: | run: |
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
pip uninstall -y protobuf pip uninstall -y protobuf
pip install --no-binary protobuf protobuf pip install --no-binary protobuf protobuf==3.20.*
- name: Cache kaldifeat - name: Cache kaldifeat
id: my-cache id: my-cache
@ -87,7 +87,7 @@ jobs:
GITHUB_EVENT_NAME: ${{ github.event_name }} GITHUB_EVENT_NAME: ${{ github.event_name }}
GITHUB_EVENT_LABEL_NAME: ${{ github.event.label.name }} GITHUB_EVENT_LABEL_NAME: ${{ github.event.label.name }}
run: | run: |
sudo apt-get -qq install git-lfs tree sox sudo apt-get -qq install git-lfs tree
export PYTHONPATH=$PWD:$PYTHONPATH export PYTHONPATH=$PWD:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH

View File

@ -64,7 +64,7 @@ jobs:
run: | run: |
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
pip uninstall -y protobuf pip uninstall -y protobuf
pip install --no-binary protobuf protobuf pip install --no-binary protobuf protobuf==3.20.*
- name: Cache kaldifeat - name: Cache kaldifeat
id: my-cache id: my-cache

View File

@ -64,7 +64,7 @@ jobs:
run: | run: |
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
pip uninstall -y protobuf pip uninstall -y protobuf
pip install --no-binary protobuf protobuf pip install --no-binary protobuf protobuf==3.20.*
- name: Cache kaldifeat - name: Cache kaldifeat
id: my-cache id: my-cache
@ -123,7 +123,7 @@ jobs:
ln -sfv ~/tmp/fbank-libri egs/librispeech/ASR/data/fbank ln -sfv ~/tmp/fbank-libri egs/librispeech/ASR/data/fbank
ls -lh egs/librispeech/ASR/data/* ls -lh egs/librispeech/ASR/data/*
sudo apt-get -qq install git-lfs tree sox sudo apt-get -qq install git-lfs tree
export PYTHONPATH=$PWD:$PYTHONPATH export PYTHONPATH=$PWD:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH

View File

@ -64,7 +64,7 @@ jobs:
run: | run: |
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
pip uninstall -y protobuf pip uninstall -y protobuf
pip install --no-binary protobuf protobuf pip install --no-binary protobuf protobuf==3.20.*
- name: Cache kaldifeat - name: Cache kaldifeat
id: my-cache id: my-cache
@ -123,7 +123,7 @@ jobs:
ln -sfv ~/tmp/fbank-libri egs/librispeech/ASR/data/fbank ln -sfv ~/tmp/fbank-libri egs/librispeech/ASR/data/fbank
ls -lh egs/librispeech/ASR/data/* ls -lh egs/librispeech/ASR/data/*
sudo apt-get -qq install git-lfs tree sox sudo apt-get -qq install git-lfs tree
export PYTHONPATH=$PWD:$PYTHONPATH export PYTHONPATH=$PWD:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH

View File

@ -64,7 +64,7 @@ jobs:
run: | run: |
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
pip uninstall -y protobuf pip uninstall -y protobuf
pip install --no-binary protobuf protobuf pip install --no-binary protobuf protobuf==3.20.*
- name: Cache kaldifeat - name: Cache kaldifeat
id: my-cache id: my-cache
@ -123,7 +123,7 @@ jobs:
ln -sfv ~/tmp/fbank-libri egs/librispeech/ASR/data/fbank ln -sfv ~/tmp/fbank-libri egs/librispeech/ASR/data/fbank
ls -lh egs/librispeech/ASR/data/* ls -lh egs/librispeech/ASR/data/*
sudo apt-get -qq install git-lfs tree sox sudo apt-get -qq install git-lfs tree
export PYTHONPATH=$PWD:$PYTHONPATH export PYTHONPATH=$PWD:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH

View File

@ -64,7 +64,7 @@ jobs:
run: | run: |
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
pip uninstall -y protobuf pip uninstall -y protobuf
pip install --no-binary protobuf protobuf pip install --no-binary protobuf protobuf==3.20.*
- name: Cache kaldifeat - name: Cache kaldifeat
id: my-cache id: my-cache
@ -123,7 +123,7 @@ jobs:
ln -sfv ~/tmp/fbank-libri egs/librispeech/ASR/data/fbank ln -sfv ~/tmp/fbank-libri egs/librispeech/ASR/data/fbank
ls -lh egs/librispeech/ASR/data/* ls -lh egs/librispeech/ASR/data/*
sudo apt-get -qq install git-lfs tree sox sudo apt-get -qq install git-lfs tree
export PYTHONPATH=$PWD:$PYTHONPATH export PYTHONPATH=$PWD:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH

View File

@ -64,7 +64,7 @@ jobs:
run: | run: |
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
pip uninstall -y protobuf pip uninstall -y protobuf
pip install --no-binary protobuf protobuf pip install --no-binary protobuf protobuf==3.20.*
- name: Cache kaldifeat - name: Cache kaldifeat
id: my-cache id: my-cache
@ -123,7 +123,7 @@ jobs:
ln -sfv ~/tmp/fbank-libri egs/librispeech/ASR/data/fbank ln -sfv ~/tmp/fbank-libri egs/librispeech/ASR/data/fbank
ls -lh egs/librispeech/ASR/data/* ls -lh egs/librispeech/ASR/data/*
sudo apt-get -qq install git-lfs tree sox sudo apt-get -qq install git-lfs tree
export PYTHONPATH=$PWD:$PYTHONPATH export PYTHONPATH=$PWD:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH

View File

@ -60,7 +60,7 @@ jobs:
run: | run: |
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
pip uninstall -y protobuf pip uninstall -y protobuf
pip install --no-binary protobuf protobuf pip install --no-binary protobuf protobuf==3.20.*
- name: Cache kaldifeat - name: Cache kaldifeat
id: my-cache id: my-cache
@ -119,7 +119,7 @@ jobs:
ln -sfv ~/tmp/fbank-libri egs/librispeech/ASR/data/fbank ln -sfv ~/tmp/fbank-libri egs/librispeech/ASR/data/fbank
ls -lh egs/librispeech/ASR/data/* ls -lh egs/librispeech/ASR/data/*
sudo apt-get -qq install git-lfs tree sox sudo apt-get -qq install git-lfs tree
export PYTHONPATH=$PWD:$PYTHONPATH export PYTHONPATH=$PWD:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH

View File

@ -64,7 +64,7 @@ jobs:
run: | run: |
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
pip uninstall -y protobuf pip uninstall -y protobuf
pip install --no-binary protobuf protobuf pip install --no-binary protobuf protobuf==3.20.*
- name: Cache kaldifeat - name: Cache kaldifeat
id: my-cache id: my-cache
@ -123,7 +123,7 @@ jobs:
ln -sfv ~/tmp/fbank-libri egs/librispeech/ASR/data/fbank ln -sfv ~/tmp/fbank-libri egs/librispeech/ASR/data/fbank
ls -lh egs/librispeech/ASR/data/* ls -lh egs/librispeech/ASR/data/*
sudo apt-get -qq install git-lfs tree sox sudo apt-get -qq install git-lfs tree
export PYTHONPATH=$PWD:$PYTHONPATH export PYTHONPATH=$PWD:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH

View File

@ -35,7 +35,7 @@ on:
jobs: jobs:
run_librispeech_2022_12_15_zipformer_ctc_bs: run_librispeech_2022_12_15_zipformer_ctc_bs:
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event.label.name == 'blank-skip' || github.event_name == 'push' || github.event_name == 'schedule' if: github.event.label.name == 'run-decode' || github.event.label.name == 'blank-skip' || github.event_name == 'push' || github.event_name == 'schedule'
runs-on: ${{ matrix.os }} runs-on: ${{ matrix.os }}
strategy: strategy:
matrix: matrix:
@ -60,7 +60,7 @@ jobs:
run: | run: |
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
pip uninstall -y protobuf pip uninstall -y protobuf
pip install --no-binary protobuf protobuf pip install --no-binary protobuf protobuf==3.20.*
- name: Cache kaldifeat - name: Cache kaldifeat
id: my-cache id: my-cache
@ -119,7 +119,7 @@ jobs:
ln -sfv ~/tmp/fbank-libri egs/librispeech/ASR/data/fbank ln -sfv ~/tmp/fbank-libri egs/librispeech/ASR/data/fbank
ls -lh egs/librispeech/ASR/data/* ls -lh egs/librispeech/ASR/data/*
sudo apt-get -qq install git-lfs tree sox sudo apt-get -qq install git-lfs tree
export PYTHONPATH=$PWD:$PYTHONPATH export PYTHONPATH=$PWD:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH

View File

@ -64,7 +64,7 @@ jobs:
run: | run: |
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
pip uninstall -y protobuf pip uninstall -y protobuf
pip install --no-binary protobuf protobuf pip install --no-binary protobuf protobuf==3.20.*
- name: Cache kaldifeat - name: Cache kaldifeat
id: my-cache id: my-cache
@ -123,7 +123,7 @@ jobs:
ln -sfv ~/tmp/fbank-libri egs/librispeech/ASR/data/fbank ln -sfv ~/tmp/fbank-libri egs/librispeech/ASR/data/fbank
ls -lh egs/librispeech/ASR/data/* ls -lh egs/librispeech/ASR/data/*
sudo apt-get -qq install git-lfs tree sox sudo apt-get -qq install git-lfs tree
export PYTHONPATH=$PWD:$PYTHONPATH export PYTHONPATH=$PWD:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH

View File

@ -64,7 +64,7 @@ jobs:
run: | run: |
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
pip uninstall -y protobuf pip uninstall -y protobuf
pip install --no-binary protobuf protobuf pip install --no-binary protobuf protobuf==3.20.*
- name: Cache kaldifeat - name: Cache kaldifeat
id: my-cache id: my-cache
@ -123,7 +123,7 @@ jobs:
ln -sfv ~/tmp/fbank-libri egs/librispeech/ASR/data/fbank ln -sfv ~/tmp/fbank-libri egs/librispeech/ASR/data/fbank
ls -lh egs/librispeech/ASR/data/* ls -lh egs/librispeech/ASR/data/*
sudo apt-get -qq install git-lfs tree sox sudo apt-get -qq install git-lfs tree
export PYTHONPATH=$PWD:$PYTHONPATH export PYTHONPATH=$PWD:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH

View File

@ -47,7 +47,7 @@ jobs:
run: | run: |
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
pip uninstall -y protobuf pip uninstall -y protobuf
pip install --no-binary protobuf protobuf pip install --no-binary protobuf protobuf==3.20.*
- name: Cache kaldifeat - name: Cache kaldifeat
id: my-cache id: my-cache
@ -106,7 +106,7 @@ jobs:
ln -sfv ~/tmp/fbank-libri egs/librispeech/ASR/data/fbank ln -sfv ~/tmp/fbank-libri egs/librispeech/ASR/data/fbank
ls -lh egs/librispeech/ASR/data/* ls -lh egs/librispeech/ASR/data/*
sudo apt-get -qq install git-lfs tree sox sudo apt-get -qq install git-lfs tree
export PYTHONPATH=$PWD:$PYTHONPATH export PYTHONPATH=$PWD:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH

View File

@ -64,7 +64,7 @@ jobs:
run: | run: |
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
pip uninstall -y protobuf pip uninstall -y protobuf
pip install --no-binary protobuf protobuf pip install --no-binary protobuf protobuf==3.20.*
- name: Cache kaldifeat - name: Cache kaldifeat
id: my-cache id: my-cache
@ -123,7 +123,7 @@ jobs:
ln -sfv ~/tmp/fbank-libri egs/librispeech/ASR/data/fbank ln -sfv ~/tmp/fbank-libri egs/librispeech/ASR/data/fbank
ls -lh egs/librispeech/ASR/data/* ls -lh egs/librispeech/ASR/data/*
sudo apt-get -qq install git-lfs tree sox sudo apt-get -qq install git-lfs tree
export PYTHONPATH=$PWD:$PYTHONPATH export PYTHONPATH=$PWD:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH

View File

@ -64,7 +64,7 @@ jobs:
run: | run: |
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
pip uninstall -y protobuf pip uninstall -y protobuf
pip install --no-binary protobuf protobuf pip install --no-binary protobuf protobuf==3.20.*
- name: Cache kaldifeat - name: Cache kaldifeat
id: my-cache id: my-cache
@ -123,7 +123,7 @@ jobs:
ln -sfv ~/tmp/fbank-libri egs/librispeech/ASR/data/fbank ln -sfv ~/tmp/fbank-libri egs/librispeech/ASR/data/fbank
ls -lh egs/librispeech/ASR/data/* ls -lh egs/librispeech/ASR/data/*
sudo apt-get -qq install git-lfs tree sox sudo apt-get -qq install git-lfs tree
export PYTHONPATH=$PWD:$PYTHONPATH export PYTHONPATH=$PWD:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH

View File

@ -64,7 +64,7 @@ jobs:
run: | run: |
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
pip uninstall -y protobuf pip uninstall -y protobuf
pip install --no-binary protobuf protobuf pip install --no-binary protobuf protobuf==3.20.*
- name: Cache kaldifeat - name: Cache kaldifeat
id: my-cache id: my-cache
@ -123,7 +123,7 @@ jobs:
ln -sfv ~/tmp/fbank-libri egs/librispeech/ASR/data/fbank ln -sfv ~/tmp/fbank-libri egs/librispeech/ASR/data/fbank
ls -lh egs/librispeech/ASR/data/* ls -lh egs/librispeech/ASR/data/*
sudo apt-get -qq install git-lfs tree sox sudo apt-get -qq install git-lfs tree
export PYTHONPATH=$PWD:$PYTHONPATH export PYTHONPATH=$PWD:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH

View File

@ -54,7 +54,7 @@ jobs:
run: | run: |
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
pip uninstall -y protobuf pip uninstall -y protobuf
pip install --no-binary protobuf protobuf pip install --no-binary protobuf protobuf==3.20.*
- name: Cache kaldifeat - name: Cache kaldifeat
id: my-cache id: my-cache
@ -73,7 +73,7 @@ jobs:
- name: Inference with pre-trained model - name: Inference with pre-trained model
shell: bash shell: bash
run: | run: |
sudo apt-get -qq install git-lfs tree sox sudo apt-get -qq install git-lfs tree
export PYTHONPATH=$PWD:$PYTHONPATH export PYTHONPATH=$PWD:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH

View File

@ -63,7 +63,7 @@ jobs:
run: | run: |
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
pip uninstall -y protobuf pip uninstall -y protobuf
pip install --no-binary protobuf protobuf pip install --no-binary protobuf protobuf==3.20.*
- name: Cache kaldifeat - name: Cache kaldifeat
id: my-cache id: my-cache
@ -122,7 +122,7 @@ jobs:
ln -sfv ~/tmp/fbank-libri egs/librispeech/ASR/data/fbank ln -sfv ~/tmp/fbank-libri egs/librispeech/ASR/data/fbank
ls -lh egs/librispeech/ASR/data/* ls -lh egs/librispeech/ASR/data/*
sudo apt-get -qq install git-lfs tree sox sudo apt-get -qq install git-lfs tree
export PYTHONPATH=$PWD:$PYTHONPATH export PYTHONPATH=$PWD:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH

View File

@ -63,7 +63,7 @@ jobs:
run: | run: |
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
pip uninstall -y protobuf pip uninstall -y protobuf
pip install --no-binary protobuf protobuf pip install --no-binary protobuf protobuf==3.20.*
- name: Cache kaldifeat - name: Cache kaldifeat
id: my-cache id: my-cache
@ -122,7 +122,7 @@ jobs:
ln -sfv ~/tmp/fbank-libri egs/librispeech/ASR/data/fbank ln -sfv ~/tmp/fbank-libri egs/librispeech/ASR/data/fbank
ls -lh egs/librispeech/ASR/data/* ls -lh egs/librispeech/ASR/data/*
sudo apt-get -qq install git-lfs tree sox sudo apt-get -qq install git-lfs tree
export PYTHONPATH=$PWD:$PYTHONPATH export PYTHONPATH=$PWD:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH

View File

@ -54,7 +54,7 @@ jobs:
run: | run: |
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
pip uninstall -y protobuf pip uninstall -y protobuf
pip install --no-binary protobuf protobuf pip install --no-binary protobuf protobuf==3.20.*
- name: Cache kaldifeat - name: Cache kaldifeat
id: my-cache id: my-cache
@ -73,7 +73,7 @@ jobs:
- name: Inference with pre-trained model - name: Inference with pre-trained model
shell: bash shell: bash
run: | run: |
sudo apt-get -qq install git-lfs tree sox sudo apt-get -qq install git-lfs tree
export PYTHONPATH=$PWD:$PYTHONPATH export PYTHONPATH=$PWD:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH

View File

@ -54,7 +54,7 @@ jobs:
run: | run: |
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
pip uninstall -y protobuf pip uninstall -y protobuf
pip install --no-binary protobuf protobuf pip install --no-binary protobuf protobuf==3.20.*
- name: Cache kaldifeat - name: Cache kaldifeat
id: my-cache id: my-cache
@ -73,7 +73,7 @@ jobs:
- name: Inference with pre-trained model - name: Inference with pre-trained model
shell: bash shell: bash
run: | run: |
sudo apt-get -qq install git-lfs tree sox sudo apt-get -qq install git-lfs tree
export PYTHONPATH=$PWD:$PYTHONPATH export PYTHONPATH=$PWD:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH

View File

@ -63,7 +63,7 @@ jobs:
run: | run: |
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
pip uninstall -y protobuf pip uninstall -y protobuf
pip install --no-binary protobuf protobuf pip install --no-binary protobuf protobuf==3.20.*
- name: Cache kaldifeat - name: Cache kaldifeat
id: my-cache id: my-cache
@ -122,7 +122,7 @@ jobs:
ln -sfv ~/tmp/fbank-libri egs/librispeech/ASR/data/fbank ln -sfv ~/tmp/fbank-libri egs/librispeech/ASR/data/fbank
ls -lh egs/librispeech/ASR/data/* ls -lh egs/librispeech/ASR/data/*
sudo apt-get -qq install git-lfs tree sox sudo apt-get -qq install git-lfs tree
export PYTHONPATH=$PWD:$PYTHONPATH export PYTHONPATH=$PWD:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH

View File

@ -54,7 +54,7 @@ jobs:
run: | run: |
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
pip uninstall -y protobuf pip uninstall -y protobuf
pip install --no-binary protobuf protobuf pip install --no-binary protobuf protobuf==3.20.*
- name: Cache kaldifeat - name: Cache kaldifeat
id: my-cache id: my-cache
@ -73,7 +73,7 @@ jobs:
- name: Inference with pre-trained model - name: Inference with pre-trained model
shell: bash shell: bash
run: | run: |
sudo apt-get -qq install git-lfs tree sox sudo apt-get -qq install git-lfs tree
export PYTHONPATH=$PWD:$PYTHONPATH export PYTHONPATH=$PWD:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH

View File

@ -47,7 +47,7 @@ jobs:
run: | run: |
grep -v '^#' ./requirements-ci.txt | grep -v kaldifst | xargs -n 1 -L 1 pip install grep -v '^#' ./requirements-ci.txt | grep -v kaldifst | xargs -n 1 -L 1 pip install
pip uninstall -y protobuf pip uninstall -y protobuf
pip install --no-binary protobuf protobuf pip install --no-binary protobuf protobuf==3.20.*
- name: Prepare data - name: Prepare data
shell: bash shell: bash

View File

@ -54,7 +54,7 @@ jobs:
run: | run: |
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
pip uninstall -y protobuf pip uninstall -y protobuf
pip install --no-binary protobuf protobuf pip install --no-binary protobuf protobuf==3.20.*
- name: Cache kaldifeat - name: Cache kaldifeat
id: my-cache id: my-cache
@ -76,7 +76,7 @@ jobs:
GITHUB_EVENT_NAME: ${{ github.event_name }} GITHUB_EVENT_NAME: ${{ github.event_name }}
GITHUB_EVENT_LABEL_NAME: ${{ github.event.label.name }} GITHUB_EVENT_LABEL_NAME: ${{ github.event.label.name }}
run: | run: |
sudo apt-get -qq install git-lfs tree sox sudo apt-get -qq install git-lfs tree
export PYTHONPATH=$PWD:$PYTHONPATH export PYTHONPATH=$PWD:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH

View File

@ -67,7 +67,7 @@ jobs:
run: | run: |
grep -v '^#' ./requirements-ci.txt | grep -v kaldifst | xargs -n 1 -L 1 pip install grep -v '^#' ./requirements-ci.txt | grep -v kaldifst | xargs -n 1 -L 1 pip install
pip uninstall -y protobuf pip uninstall -y protobuf
pip install --no-binary protobuf protobuf pip install --no-binary protobuf protobuf==3.20.*
- name: Run yesno recipe - name: Run yesno recipe
shell: bash shell: bash

View File

@ -46,7 +46,7 @@ jobs:
run: | run: |
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
pip uninstall -y protobuf pip uninstall -y protobuf
pip install --no-binary protobuf protobuf pip install --no-binary protobuf protobuf==3.20.*
- name: Cache kaldifeat - name: Cache kaldifeat
id: my-cache id: my-cache

View File

@ -46,7 +46,7 @@ jobs:
run: | run: |
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
pip uninstall -y protobuf pip uninstall -y protobuf
pip install --no-binary protobuf protobuf pip install --no-binary protobuf protobuf==3.20.*
- name: Cache kaldifeat - name: Cache kaldifeat
id: my-cache id: my-cache

View File

@ -56,7 +56,7 @@ jobs:
run: | run: |
sudo apt update sudo apt update
sudo apt install -q -y libsndfile1-dev libsndfile1 ffmpeg sudo apt install -q -y libsndfile1-dev libsndfile1 ffmpeg
sudo apt install -q -y --fix-missing sox libsox-dev libsox-fmt-all sudo apt install -q -y --fix-missing libsox-dev libsox-fmt-all
- name: Install Python dependencies - name: Install Python dependencies
run: | run: |
@ -70,7 +70,7 @@ jobs:
pip install git+https://github.com/lhotse-speech/lhotse pip install git+https://github.com/lhotse-speech/lhotse
# icefall requirements # icefall requirements
pip uninstall -y protobuf pip uninstall -y protobuf
pip install --no-binary protobuf protobuf pip install --no-binary protobuf protobuf==3.20.*
pip install kaldifst pip install kaldifst
pip install onnxruntime pip install onnxruntime
@ -119,8 +119,8 @@ jobs:
cd ../transducer_stateless cd ../transducer_stateless
pytest -v -s pytest -v -s
cd ../transducer # cd ../transducer
pytest -v -s # pytest -v -s
cd ../transducer_stateless2 cd ../transducer_stateless2
pytest -v -s pytest -v -s
@ -157,8 +157,8 @@ jobs:
cd ../transducer_stateless cd ../transducer_stateless
pytest -v -s pytest -v -s
cd ../transducer # cd ../transducer
pytest -v -s # pytest -v -s
cd ../transducer_stateless2 cd ../transducer_stateless2
pytest -v -s pytest -v -s

View File

@ -391,18 +391,14 @@ def save_results(
): ):
test_set_wers = dict() test_set_wers = dict()
for key, results in results_dict.items(): for key, results in results_dict.items():
recog_path = ( recog_path = params.res_dir / f"recogs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
)
results = sorted(results) results = sorted(results)
store_transcripts(filename=recog_path, texts=results) store_transcripts(filename=recog_path, texts=results)
logging.info(f"The transcripts are stored in {recog_path}") logging.info(f"The transcripts are stored in {recog_path}")
# The following prints out WERs, per-word error statistics and aligned # The following prints out WERs, per-word error statistics and aligned
# ref/hyp pairs. # ref/hyp pairs.
errs_filename = ( errs_filename = params.res_dir / f"errs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_filename, "w") as f: with open(errs_filename, "w") as f:
wer = write_error_stats( wer = write_error_stats(
f, f"{test_set_name}-{key}", results, enable_log=True f, f"{test_set_name}-{key}", results, enable_log=True
@ -412,9 +408,7 @@ def save_results(
logging.info("Wrote detailed error stats to {}".format(errs_filename)) logging.info("Wrote detailed error stats to {}".format(errs_filename))
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
errs_info = ( errs_info = params.res_dir / f"wer-summary-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_info, "w") as f: with open(errs_info, "w") as f:
print("settings\tWER", file=f) print("settings\tWER", file=f)
for key, val in test_set_wers: for key, val in test_set_wers:

View File

@ -0,0 +1,164 @@
#!/usr/bin/env python3
# Copyright (c) 2021 Xiaomi Corporation (authors: Daniel Povey
# Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script takes a `tokens.txt` and a text file such as
./download/lm/aishell-transcript.txt
and outputs the LM training data to a supplied directory such
as data/lm_training_char. The format is as follows:
It creates a PyTorch archive (.pt file), say data/lm_training.pt, which is a
representation of a dict with the same format with librispeech receipe
"""
import argparse
import logging
from pathlib import Path
import k2
import torch
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--lang-char",
type=str,
help="""Lang dir of asr model, e.g. data/lang_char""",
)
parser.add_argument(
"--lm-data",
type=str,
help="""Input LM training data as text, e.g.
download/lm/aishell-train-word.txt""",
)
parser.add_argument(
"--lm-archive",
type=str,
help="""Path to output archive, e.g. data/lm_training_char/lm_data.pt;
look at the source of this script to see the format.""",
)
return parser.parse_args()
def main():
args = get_args()
if Path(args.lm_archive).exists():
logging.warning(f"{args.lm_archive} exists - skipping")
return
# make token_dict from tokens.txt in order to map characters to tokens.
token_dict = {}
token_file = args.lang_char + "/tokens.txt"
with open(token_file, "r") as f:
for line in f.readlines():
line_list = line.split()
token_dict[line_list[0]] = int(line_list[1])
# word2index is a dictionary from words to integer ids. No need to reserve
# space for epsilon, etc.; the words are just used as a convenient way to
# compress the sequences of tokens.
word2index = dict()
word2token = [] # Will be a list-of-list-of-int, representing tokens.
sentences = [] # Will be a list-of-list-of-int, representing word-ids.
if "aishell-lm" in args.lm_data:
num_lines_in_total = 120098.0
step = 50000
elif "valid" in args.lm_data:
num_lines_in_total = 14326.0
step = 3000
elif "test" in args.lm_data:
num_lines_in_total = 7176.0
step = 3000
else:
num_lines_in_total = None
step = None
processed = 0
with open(args.lm_data) as f:
while True:
line = f.readline()
if line == "":
break
if step and processed % step == 0:
logging.info(
f"Processed number of lines: {processed} "
f"({processed / num_lines_in_total * 100: .3f}%)"
)
processed += 1
line_words = line.split()
for w in line_words:
if w not in word2index:
w_token = []
for t in w:
if t in token_dict:
w_token.append(token_dict[t])
else:
w_token.append(token_dict["<unk>"])
word2index[w] = len(word2token)
word2token.append(w_token)
sentences.append([word2index[w] for w in line_words])
logging.info("Constructing ragged tensors")
words = k2.ragged.RaggedTensor(word2token)
sentences = k2.ragged.RaggedTensor(sentences)
output = dict(words=words, sentences=sentences)
num_sentences = sentences.dim0
logging.info(f"Computing sentence lengths, num_sentences: {num_sentences}")
sentence_lengths = [0] * num_sentences
for i in range(num_sentences):
if step and i % step == 0:
logging.info(
f"Processed number of lines: {i} ({i / num_sentences * 100: .3f}%)"
)
word_ids = sentences[i]
# NOTE: If word_ids is a tensor with only 1 entry,
# token_ids is a torch.Tensor
token_ids = words[word_ids]
if isinstance(token_ids, k2.RaggedTensor):
token_ids = token_ids.values
# token_ids is a 1-D tensor containing the BPE tokens
# of the current sentence
sentence_lengths[i] = token_ids.numel()
output["sentence_lengths"] = torch.tensor(sentence_lengths, dtype=torch.int32)
torch.save(output, args.lm_archive)
logging.info(f"Saved to {args.lm_archive}")
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
main()

View File

@ -7,7 +7,7 @@ set -eou pipefail
nj=15 nj=15
stage=-1 stage=-1
stop_stage=10 stop_stage=11
# We assume dl_dir (download dir) contains the following # We assume dl_dir (download dir) contains the following
# directories and files. If not, they will be downloaded # directories and files. If not, they will be downloaded
@ -219,3 +219,93 @@ if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
./local/compile_hlg.py --lang-dir $lang_phone_dir ./local/compile_hlg.py --lang-dir $lang_phone_dir
./local/compile_hlg.py --lang-dir $lang_char_dir ./local/compile_hlg.py --lang-dir $lang_char_dir
fi fi
if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
log "Stage 9: Generate LM training data"
log "Processing char based data"
out_dir=data/lm_training_char
mkdir -p $out_dir $dl_dir/lm
if [ ! -f $dl_dir/lm/aishell-train-word.txt ]; then
cp $lang_phone_dir/transcript_words.txt $dl_dir/lm/aishell-train-word.txt
fi
./local/prepare_char_lm_training_data.py \
--lang-char data/lang_char \
--lm-data $dl_dir/lm/aishell-train-word.txt \
--lm-archive $out_dir/lm_data.pt
if [ ! -f $dl_dir/lm/aishell-valid-word.txt ]; then
aishell_text=$dl_dir/aishell/data_aishell/transcript/aishell_transcript_v0.8.txt
aishell_valid_uid=$dl_dir/aishell/data_aishell/transcript/aishell_valid_uid
find $dl_dir/aishell/data_aishell/wav/dev -name "*.wav" | sed 's/\.wav//g' | awk -F '/' '{print $NF}' > $aishell_valid_uid
awk 'NR==FNR{uid[$1]=$1} NR!=FNR{if($1 in uid) print $0}' $aishell_valid_uid $aishell_text |
cut -d " " -f 2- > $dl_dir/lm/aishell-valid-word.txt
fi
./local/prepare_char_lm_training_data.py \
--lang-char data/lang_char \
--lm-data $dl_dir/lm/aishell-valid-word.txt \
--lm-archive $out_dir/lm_data_valid.pt
if [ ! -f $dl_dir/lm/aishell-test-word.txt ]; then
aishell_text=$dl_dir/aishell/data_aishell/transcript/aishell_transcript_v0.8.txt
aishell_test_uid=$dl_dir/aishell/data_aishell/transcript/aishell_test_uid
find $dl_dir/aishell/data_aishell/wav/test -name "*.wav" | sed 's/\.wav//g' | awk -F '/' '{print $NF}' > $aishell_test_uid
awk 'NR==FNR{uid[$1]=$1} NR!=FNR{if($1 in uid) print $0}' $aishell_test_uid $aishell_text |
cut -d " " -f 2- > $dl_dir/lm/aishell-test-word.txt
fi
./local/prepare_char_lm_training_data.py \
--lang-char data/lang_char \
--lm-data $dl_dir/lm/aishell-test-word.txt \
--lm-archive $out_dir/lm_data_test.pt
fi
if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then
log "Stage 10: Sort LM training data"
# Sort LM training data by sentence length in descending order
# for ease of training.
#
# Sentence length equals to the number of tokens
# in a sentence.
out_dir=data/lm_training_char
mkdir -p $out_dir
ln -snf ../../../librispeech/ASR/local/sort_lm_training_data.py local/
./local/sort_lm_training_data.py \
--in-lm-data $out_dir/lm_data.pt \
--out-lm-data $out_dir/sorted_lm_data.pt \
--out-statistics $out_dir/statistics.txt
./local/sort_lm_training_data.py \
--in-lm-data $out_dir/lm_data_valid.pt \
--out-lm-data $out_dir/sorted_lm_data-valid.pt \
--out-statistics $out_dir/statistics-valid.txt
./local/sort_lm_training_data.py \
--in-lm-data $out_dir/lm_data_test.pt \
--out-lm-data $out_dir/sorted_lm_data-test.pt \
--out-statistics $out_dir/statistics-test.txt
fi
if [ $stage -le 11 ] && [ $stop_stage -ge 11 ]; then
log "Stage 11: Train RNN LM model"
python ../../../icefall/rnn_lm/train.py \
--start-epoch 0 \
--world-size 1 \
--num-epochs 20 \
--use-fp16 0 \
--embedding-dim 512 \
--hidden-dim 512 \
--num-layers 2 \
--batch-size 400 \
--exp-dir rnnlm_char/exp \
--lm-data data/lm_training_char/sorted_lm_data.pt \
--lm-data-valid data/lm_training_char/sorted_lm_data-valid.pt \
--vocab-size 4336 \
--master-port 12345
fi

View File

@ -388,18 +388,14 @@ def save_results(
): ):
test_set_wers = dict() test_set_wers = dict()
for key, results in results_dict.items(): for key, results in results_dict.items():
recog_path = ( recog_path = params.res_dir / f"recogs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
)
results = sorted(results) results = sorted(results)
store_transcripts(filename=recog_path, texts=results) store_transcripts(filename=recog_path, texts=results)
logging.info(f"The transcripts are stored in {recog_path}") logging.info(f"The transcripts are stored in {recog_path}")
# The following prints out WERs, per-word error statistics and aligned # The following prints out WERs, per-word error statistics and aligned
# ref/hyp pairs. # ref/hyp pairs.
errs_filename = ( errs_filename = params.res_dir / f"errs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
)
# we compute CER for aishell dataset. # we compute CER for aishell dataset.
results_char = [] results_char = []
for res in results: for res in results:
@ -413,9 +409,7 @@ def save_results(
logging.info("Wrote detailed error stats to {}".format(errs_filename)) logging.info("Wrote detailed error stats to {}".format(errs_filename))
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
errs_info = ( errs_info = params.res_dir / f"wer-summary-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_info, "w") as f: with open(errs_info, "w") as f:
print("settings\tWER", file=f) print("settings\tWER", file=f)
for key, val in test_set_wers: for key, val in test_set_wers:

View File

@ -406,18 +406,14 @@ def save_results(
): ):
test_set_wers = dict() test_set_wers = dict()
for key, results in results_dict.items(): for key, results in results_dict.items():
recog_path = ( recog_path = params.res_dir / f"recogs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
)
results = sorted(results) results = sorted(results)
store_transcripts(filename=recog_path, texts=results) store_transcripts(filename=recog_path, texts=results)
logging.info(f"The transcripts are stored in {recog_path}") logging.info(f"The transcripts are stored in {recog_path}")
# The following prints out WERs, per-word error statistics and aligned # The following prints out WERs, per-word error statistics and aligned
# ref/hyp pairs. # ref/hyp pairs.
errs_filename = ( errs_filename = params.res_dir / f"errs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
)
# we compute CER for aishell dataset. # we compute CER for aishell dataset.
results_char = [] results_char = []
for res in results: for res in results:
@ -431,9 +427,7 @@ def save_results(
logging.info("Wrote detailed error stats to {}".format(errs_filename)) logging.info("Wrote detailed error stats to {}".format(errs_filename))
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
errs_info = ( errs_info = params.res_dir / f"wer-summary-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_info, "w") as f: with open(errs_info, "w") as f:
print("settings\tCER", file=f) print("settings\tCER", file=f)
for key, val in test_set_wers: for key, val in test_set_wers:

View File

@ -325,17 +325,13 @@ def save_results(
): ):
test_set_wers = dict() test_set_wers = dict()
for key, results in results_dict.items(): for key, results in results_dict.items():
recog_path = ( recog_path = params.res_dir / f"recogs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
)
results = sorted(results) results = sorted(results)
store_transcripts(filename=recog_path, texts=results) store_transcripts(filename=recog_path, texts=results)
# The following prints out WERs, per-word error statistics and aligned # The following prints out WERs, per-word error statistics and aligned
# ref/hyp pairs. # ref/hyp pairs.
errs_filename = ( errs_filename = params.res_dir / f"errs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
)
# we compute CER for aishell dataset. # we compute CER for aishell dataset.
results_char = [] results_char = []
for res in results: for res in results:
@ -349,9 +345,7 @@ def save_results(
logging.info("Wrote detailed error stats to {}".format(errs_filename)) logging.info("Wrote detailed error stats to {}".format(errs_filename))
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
errs_info = ( errs_info = params.res_dir / f"wer-summary-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_info, "w") as f: with open(errs_info, "w") as f:
print("settings\tCER", file=f) print("settings\tCER", file=f)
for key, val in test_set_wers: for key, val in test_set_wers:

View File

@ -370,18 +370,14 @@ def save_results(
): ):
test_set_wers = dict() test_set_wers = dict()
for key, results in results_dict.items(): for key, results in results_dict.items():
recog_path = ( recog_path = params.res_dir / f"recogs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
)
results = sorted(results) results = sorted(results)
store_transcripts(filename=recog_path, texts=results) store_transcripts(filename=recog_path, texts=results)
logging.info(f"The transcripts are stored in {recog_path}") logging.info(f"The transcripts are stored in {recog_path}")
# The following prints out WERs, per-word error statistics and aligned # The following prints out WERs, per-word error statistics and aligned
# ref/hyp pairs. # ref/hyp pairs.
errs_filename = ( errs_filename = params.res_dir / f"errs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
)
# we compute CER for aishell dataset. # we compute CER for aishell dataset.
results_char = [] results_char = []
for res in results: for res in results:
@ -395,9 +391,7 @@ def save_results(
logging.info("Wrote detailed error stats to {}".format(errs_filename)) logging.info("Wrote detailed error stats to {}".format(errs_filename))
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
errs_info = ( errs_info = params.res_dir / f"wer-summary-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_info, "w") as f: with open(errs_info, "w") as f:
print("settings\tCER", file=f) print("settings\tCER", file=f)
for key, val in test_set_wers: for key, val in test_set_wers:

View File

@ -374,18 +374,14 @@ def save_results(
): ):
test_set_wers = dict() test_set_wers = dict()
for key, results in results_dict.items(): for key, results in results_dict.items():
recog_path = ( recog_path = params.res_dir / f"recogs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
)
results = sorted(results) results = sorted(results)
store_transcripts(filename=recog_path, texts=results) store_transcripts(filename=recog_path, texts=results)
logging.info(f"The transcripts are stored in {recog_path}") logging.info(f"The transcripts are stored in {recog_path}")
# The following prints out WERs, per-word error statistics and aligned # The following prints out WERs, per-word error statistics and aligned
# ref/hyp pairs. # ref/hyp pairs.
errs_filename = ( errs_filename = params.res_dir / f"errs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
)
# we compute CER for aishell dataset. # we compute CER for aishell dataset.
results_char = [] results_char = []
for res in results: for res in results:
@ -399,9 +395,7 @@ def save_results(
logging.info("Wrote detailed error stats to {}".format(errs_filename)) logging.info("Wrote detailed error stats to {}".format(errs_filename))
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
errs_info = ( errs_info = params.res_dir / f"wer-summary-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_info, "w") as f: with open(errs_info, "w") as f:
print("settings\tCER", file=f) print("settings\tCER", file=f)
for key, val in test_set_wers: for key, val in test_set_wers:

View File

@ -543,18 +543,14 @@ def save_results(
): ):
test_set_wers = dict() test_set_wers = dict()
for key, results in results_dict.items(): for key, results in results_dict.items():
recog_path = ( recog_path = params.res_dir / f"recogs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
)
results = sorted(results) results = sorted(results)
store_transcripts(filename=recog_path, texts=results) store_transcripts(filename=recog_path, texts=results)
logging.info(f"The transcripts are stored in {recog_path}") logging.info(f"The transcripts are stored in {recog_path}")
# The following prints out WERs, per-word error statistics and aligned # The following prints out WERs, per-word error statistics and aligned
# ref/hyp pairs. # ref/hyp pairs.
errs_filename = ( errs_filename = params.res_dir / f"errs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_filename, "w") as f: with open(errs_filename, "w") as f:
wer = write_error_stats( wer = write_error_stats(
f, f"{test_set_name}-{key}", results, enable_log=True f, f"{test_set_name}-{key}", results, enable_log=True
@ -564,9 +560,7 @@ def save_results(
logging.info("Wrote detailed error stats to {}".format(errs_filename)) logging.info("Wrote detailed error stats to {}".format(errs_filename))
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
errs_info = ( errs_info = params.res_dir / f"wer-summary-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_info, "w") as f: with open(errs_info, "w") as f:
print("settings\tWER", file=f) print("settings\tWER", file=f)
for key, val in test_set_wers: for key, val in test_set_wers:

View File

@ -406,18 +406,14 @@ def save_results(
): ):
test_set_wers = dict() test_set_wers = dict()
for key, results in results_dict.items(): for key, results in results_dict.items():
recog_path = ( recog_path = params.res_dir / f"recogs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
)
results = sorted(results) results = sorted(results)
store_transcripts(filename=recog_path, texts=results) store_transcripts(filename=recog_path, texts=results)
logging.info(f"The transcripts are stored in {recog_path}") logging.info(f"The transcripts are stored in {recog_path}")
# The following prints out WERs, per-word error statistics and aligned # The following prints out WERs, per-word error statistics and aligned
# ref/hyp pairs. # ref/hyp pairs.
errs_filename = ( errs_filename = params.res_dir / f"errs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_filename, "w") as f: with open(errs_filename, "w") as f:
wer = write_error_stats( wer = write_error_stats(
f, f"{test_set_name}-{key}", results, enable_log=True f, f"{test_set_name}-{key}", results, enable_log=True
@ -427,9 +423,7 @@ def save_results(
logging.info("Wrote detailed error stats to {}".format(errs_filename)) logging.info("Wrote detailed error stats to {}".format(errs_filename))
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
errs_info = ( errs_info = params.res_dir / f"wer-summary-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_info, "w") as f: with open(errs_info, "w") as f:
print("settings\tWER", file=f) print("settings\tWER", file=f)
for key, val in test_set_wers: for key, val in test_set_wers:

View File

@ -391,18 +391,14 @@ def save_results(
): ):
test_set_wers = dict() test_set_wers = dict()
for key, results in results_dict.items(): for key, results in results_dict.items():
recog_path = ( recog_path = params.res_dir / f"recogs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
)
results = sorted(results) results = sorted(results)
store_transcripts(filename=recog_path, texts=results) store_transcripts(filename=recog_path, texts=results)
logging.info(f"The transcripts are stored in {recog_path}") logging.info(f"The transcripts are stored in {recog_path}")
# The following prints out WERs, per-word error statistics and aligned # The following prints out WERs, per-word error statistics and aligned
# ref/hyp pairs. # ref/hyp pairs.
errs_filename = ( errs_filename = params.res_dir / f"errs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_filename, "w") as f: with open(errs_filename, "w") as f:
wer = write_error_stats( wer = write_error_stats(
f, f"{test_set_name}-{key}", results, enable_log=True f, f"{test_set_name}-{key}", results, enable_log=True
@ -412,9 +408,7 @@ def save_results(
logging.info("Wrote detailed error stats to {}".format(errs_filename)) logging.info("Wrote detailed error stats to {}".format(errs_filename))
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
errs_info = ( errs_info = params.res_dir / f"wer-summary-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_info, "w") as f: with open(errs_info, "w") as f:
print("settings\tWER", file=f) print("settings\tWER", file=f)
for key, val in test_set_wers: for key, val in test_set_wers:

View File

@ -462,18 +462,14 @@ def save_results(
): ):
test_set_wers = dict() test_set_wers = dict()
for key, results in results_dict.items(): for key, results in results_dict.items():
recog_path = ( recog_path = params.res_dir / f"recogs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
)
results = sorted(results) results = sorted(results)
store_transcripts(filename=recog_path, texts=results) store_transcripts(filename=recog_path, texts=results)
logging.info(f"The transcripts are stored in {recog_path}") logging.info(f"The transcripts are stored in {recog_path}")
# The following prints out WERs, per-word error statistics and aligned # The following prints out WERs, per-word error statistics and aligned
# ref/hyp pairs. # ref/hyp pairs.
errs_filename = ( errs_filename = params.res_dir / f"errs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_filename, "w") as f: with open(errs_filename, "w") as f:
wer = write_error_stats( wer = write_error_stats(
f, f"{test_set_name}-{key}", results, enable_log=True f, f"{test_set_name}-{key}", results, enable_log=True
@ -483,9 +479,7 @@ def save_results(
logging.info("Wrote detailed error stats to {}".format(errs_filename)) logging.info("Wrote detailed error stats to {}".format(errs_filename))
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
errs_info = ( errs_info = params.res_dir / f"wer-summary-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_info, "w") as f: with open(errs_info, "w") as f:
print("settings\tWER", file=f) print("settings\tWER", file=f)
for key, val in test_set_wers: for key, val in test_set_wers:

View File

@ -478,17 +478,13 @@ def save_results(
test_set_wers = dict() test_set_wers = dict()
test_set_cers = dict() test_set_cers = dict()
for key, results in results_dict.items(): for key, results in results_dict.items():
recog_path = ( recog_path = params.res_dir / f"recogs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
)
store_transcripts(filename=recog_path, texts=results) store_transcripts(filename=recog_path, texts=results)
logging.info(f"The transcripts are stored in {recog_path}") logging.info(f"The transcripts are stored in {recog_path}")
# The following prints out WERs, per-word error statistics and aligned # The following prints out WERs, per-word error statistics and aligned
# ref/hyp pairs. # ref/hyp pairs.
wers_filename = ( wers_filename = params.res_dir / f"wers-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"wers-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(wers_filename, "w") as f: with open(wers_filename, "w") as f:
wer = write_error_stats( wer = write_error_stats(
f, f"{test_set_name}-{key}", results, enable_log=True f, f"{test_set_name}-{key}", results, enable_log=True
@ -499,9 +495,7 @@ def save_results(
results_char = [] results_char = []
for res in results: for res in results:
results_char.append((res[0], list("".join(res[1])), list("".join(res[2])))) results_char.append((res[0], list("".join(res[1])), list("".join(res[2]))))
cers_filename = ( cers_filename = params.res_dir / f"cers-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"cers-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(cers_filename, "w") as f: with open(cers_filename, "w") as f:
cer = write_error_stats( cer = write_error_stats(
f, f"{test_set_name}-{key}", results_char, enable_log=True f, f"{test_set_name}-{key}", results_char, enable_log=True
@ -512,9 +506,7 @@ def save_results(
test_set_wers = {k: v for k, v in sorted(test_set_wers.items(), key=lambda x: x[1])} test_set_wers = {k: v for k, v in sorted(test_set_wers.items(), key=lambda x: x[1])}
test_set_cers = {k: v for k, v in sorted(test_set_cers.items(), key=lambda x: x[1])} test_set_cers = {k: v for k, v in sorted(test_set_cers.items(), key=lambda x: x[1])}
errs_info = ( errs_info = params.res_dir / f"wer-summary-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_info, "w") as f: with open(errs_info, "w") as f:
print("settings\tWER\tCER", file=f) print("settings\tWER\tCER", file=f)
for key in test_set_wers: for key in test_set_wers:

View File

@ -599,9 +599,7 @@ def save_results(
): ):
test_set_wers = dict() test_set_wers = dict()
for key, results in results_dict.items(): for key, results in results_dict.items():
recog_path = ( recog_path = params.res_dir / f"recogs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
)
results = sorted(results) results = sorted(results)
store_transcripts(filename=recog_path, texts=results) store_transcripts(filename=recog_path, texts=results)
@ -609,9 +607,7 @@ def save_results(
# The following prints out WERs, per-word error statistics and aligned # The following prints out WERs, per-word error statistics and aligned
# ref/hyp pairs. # ref/hyp pairs.
errs_filename = ( errs_filename = params.res_dir / f"errs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_filename, "w") as f: with open(errs_filename, "w") as f:
wer = write_error_stats( wer = write_error_stats(
f, f"{test_set_name}-{key}", results, enable_log=True f, f"{test_set_name}-{key}", results, enable_log=True
@ -621,9 +617,7 @@ def save_results(
logging.info("Wrote detailed error stats to {}".format(errs_filename)) logging.info("Wrote detailed error stats to {}".format(errs_filename))
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
errs_info = ( errs_info = params.res_dir / f"wer-summary-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_info, "w") as f: with open(errs_info, "w") as f:
print("settings\tWER", file=f) print("settings\tWER", file=f)
for key, val in test_set_wers: for key, val in test_set_wers:

View File

@ -399,9 +399,7 @@ def save_results(
): ):
test_set_wers = dict() test_set_wers = dict()
for key, results in results_dict.items(): for key, results in results_dict.items():
recog_path = ( recog_path = params.res_dir / f"recogs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
)
results = post_processing(results) results = post_processing(results)
results = sorted(results) results = sorted(results)
store_transcripts(filename=recog_path, texts=results) store_transcripts(filename=recog_path, texts=results)
@ -409,9 +407,7 @@ def save_results(
# The following prints out WERs, per-word error statistics and aligned # The following prints out WERs, per-word error statistics and aligned
# ref/hyp pairs. # ref/hyp pairs.
errs_filename = ( errs_filename = params.res_dir / f"errs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_filename, "w") as f: with open(errs_filename, "w") as f:
wer = write_error_stats( wer = write_error_stats(
f, f"{test_set_name}-{key}", results, enable_log=True f, f"{test_set_name}-{key}", results, enable_log=True
@ -421,9 +417,7 @@ def save_results(
logging.info("Wrote detailed error stats to {}".format(errs_filename)) logging.info("Wrote detailed error stats to {}".format(errs_filename))
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
errs_info = ( errs_info = params.res_dir / f"wer-summary-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_info, "w") as f: with open(errs_info, "w") as f:
print("settings\tWER", file=f) print("settings\tWER", file=f)
for key, val in test_set_wers: for key, val in test_set_wers:

View File

@ -540,6 +540,10 @@ for m in greedy_search fast_beam_search modified_beam_search ; do
done done
``` ```
Note that a small change is made to the `pruned_transducer_stateless7/decoder.py` in
this [PR](/ceph-data4/yangxiaoyu/softwares/icefall_development/icefall_random_padding/egs/librispeech/ASR/pruned_transducer_stateless7/exp_960h_no_paddingidx_ngpu4/tensorboard) to address the
problem of emitting the first symbol at the very beginning. If you need a
model without this issue, please download the model from here: <https://huggingface.co/marcoyang/icefall-asr-librispeech-pruned-transducer-stateless7-2023-03-10>
### LibriSpeech BPE training results (Pruned Stateless LSTM RNN-T + gradient filter) ### LibriSpeech BPE training results (Pruned Stateless LSTM RNN-T + gradient filter)

View File

@ -728,18 +728,14 @@ def save_results(
test_set_wers = dict() test_set_wers = dict()
test_set_delays = dict() test_set_delays = dict()
for key, results in results_dict.items(): for key, results in results_dict.items():
recog_path = ( recog_path = params.res_dir / f"recogs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
)
results = sorted(results) results = sorted(results)
store_transcripts_and_timestamps(filename=recog_path, texts=results) store_transcripts_and_timestamps(filename=recog_path, texts=results)
logging.info(f"The transcripts are stored in {recog_path}") logging.info(f"The transcripts are stored in {recog_path}")
# The following prints out WERs, per-word error statistics and aligned # The following prints out WERs, per-word error statistics and aligned
# ref/hyp pairs. # ref/hyp pairs.
errs_filename = ( errs_filename = params.res_dir / f"errs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_filename, "w") as f: with open(errs_filename, "w") as f:
wer, mean_delay, var_delay = write_error_stats_with_timestamps( wer, mean_delay, var_delay = write_error_stats_with_timestamps(
f, f,
@ -754,9 +750,7 @@ def save_results(
logging.info("Wrote detailed error stats to {}".format(errs_filename)) logging.info("Wrote detailed error stats to {}".format(errs_filename))
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
errs_info = ( errs_info = params.res_dir / f"wer-summary-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_info, "w") as f: with open(errs_info, "w") as f:
print("settings\tWER", file=f) print("settings\tWER", file=f)
for key, val in test_set_wers: for key, val in test_set_wers:
@ -765,8 +759,7 @@ def save_results(
# sort according to the mean start symbol delay # sort according to the mean start symbol delay
test_set_delays = sorted(test_set_delays.items(), key=lambda x: x[1][0][0]) test_set_delays = sorted(test_set_delays.items(), key=lambda x: x[1][0][0])
delays_info = ( delays_info = (
params.res_dir params.res_dir / f"symbol-delay-summary-{test_set_name}-{params.suffix}.txt"
/ f"symbol-delay-summary-{test_set_name}-{key}-{params.suffix}.txt"
) )
with open(delays_info, "w") as f: with open(delays_info, "w") as f:
print("settings\t(start, end) symbol-delay (s) (start, end)", file=f) print("settings\t(start, end) symbol-delay (s) (start, end)", file=f)

View File

@ -432,18 +432,14 @@ def save_results(
): ):
test_set_wers = dict() test_set_wers = dict()
for key, results in results_dict.items(): for key, results in results_dict.items():
recog_path = ( recog_path = params.res_dir / f"recogs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
)
results = sorted(results) results = sorted(results)
store_transcripts(filename=recog_path, texts=results) store_transcripts(filename=recog_path, texts=results)
logging.info(f"The transcripts are stored in {recog_path}") logging.info(f"The transcripts are stored in {recog_path}")
# The following prints out WERs, per-word error statistics and aligned # The following prints out WERs, per-word error statistics and aligned
# ref/hyp pairs. # ref/hyp pairs.
errs_filename = ( errs_filename = params.res_dir / f"errs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_filename, "w") as f: with open(errs_filename, "w") as f:
wer = write_error_stats( wer = write_error_stats(
f, f"{test_set_name}-{key}", results, enable_log=True f, f"{test_set_name}-{key}", results, enable_log=True
@ -453,9 +449,7 @@ def save_results(
logging.info("Wrote detailed error stats to {}".format(errs_filename)) logging.info("Wrote detailed error stats to {}".format(errs_filename))
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
errs_info = ( errs_info = params.res_dir / f"wer-summary-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_info, "w") as f: with open(errs_info, "w") as f:
print("settings\tWER", file=f) print("settings\tWER", file=f)
for key, val in test_set_wers: for key, val in test_set_wers:

View File

@ -750,17 +750,13 @@ def save_results(
): ):
test_set_wers = dict() test_set_wers = dict()
for key, results in results_dict.items(): for key, results in results_dict.items():
recog_path = ( recog_path = params.res_dir / f"recogs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
)
store_transcripts(filename=recog_path, texts=sorted(results)) store_transcripts(filename=recog_path, texts=sorted(results))
logging.info(f"The transcripts are stored in {recog_path}") logging.info(f"The transcripts are stored in {recog_path}")
# The following prints out WERs, per-word error statistics and aligned # The following prints out WERs, per-word error statistics and aligned
# ref/hyp pairs. # ref/hyp pairs.
errs_filename = ( errs_filename = params.res_dir / f"errs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_filename, "w") as f: with open(errs_filename, "w") as f:
wer = write_error_stats( wer = write_error_stats(
f, f"{test_set_name}-{key}", results, enable_log=True f, f"{test_set_name}-{key}", results, enable_log=True
@ -770,9 +766,7 @@ def save_results(
logging.info("Wrote detailed error stats to {}".format(errs_filename)) logging.info("Wrote detailed error stats to {}".format(errs_filename))
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
errs_info = ( errs_info = params.res_dir / f"wer-summary-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_info, "w") as f: with open(errs_info, "w") as f:
print("settings\tWER", file=f) print("settings\tWER", file=f)
for key, val in test_set_wers: for key, val in test_set_wers:

View File

@ -432,18 +432,14 @@ def save_results(
): ):
test_set_wers = dict() test_set_wers = dict()
for key, results in results_dict.items(): for key, results in results_dict.items():
recog_path = ( recog_path = params.res_dir / f"recogs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
)
results = sorted(results) results = sorted(results)
store_transcripts(filename=recog_path, texts=results) store_transcripts(filename=recog_path, texts=results)
logging.info(f"The transcripts are stored in {recog_path}") logging.info(f"The transcripts are stored in {recog_path}")
# The following prints out WERs, per-word error statistics and aligned # The following prints out WERs, per-word error statistics and aligned
# ref/hyp pairs. # ref/hyp pairs.
errs_filename = ( errs_filename = params.res_dir / f"errs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_filename, "w") as f: with open(errs_filename, "w") as f:
wer = write_error_stats( wer = write_error_stats(
f, f"{test_set_name}-{key}", results, enable_log=True f, f"{test_set_name}-{key}", results, enable_log=True
@ -453,9 +449,7 @@ def save_results(
logging.info("Wrote detailed error stats to {}".format(errs_filename)) logging.info("Wrote detailed error stats to {}".format(errs_filename))
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
errs_info = ( errs_info = params.res_dir / f"wer-summary-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_info, "w") as f: with open(errs_info, "w") as f:
print("settings\tWER", file=f) print("settings\tWER", file=f)
for key, val in test_set_wers: for key, val in test_set_wers:

View File

@ -750,17 +750,13 @@ def save_results(
): ):
test_set_wers = dict() test_set_wers = dict()
for key, results in results_dict.items(): for key, results in results_dict.items():
recog_path = ( recog_path = params.res_dir / f"recogs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
)
store_transcripts(filename=recog_path, texts=sorted(results)) store_transcripts(filename=recog_path, texts=sorted(results))
logging.info(f"The transcripts are stored in {recog_path}") logging.info(f"The transcripts are stored in {recog_path}")
# The following prints out WERs, per-word error statistics and aligned # The following prints out WERs, per-word error statistics and aligned
# ref/hyp pairs. # ref/hyp pairs.
errs_filename = ( errs_filename = params.res_dir / f"errs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_filename, "w") as f: with open(errs_filename, "w") as f:
wer = write_error_stats( wer = write_error_stats(
f, f"{test_set_name}-{key}", results, enable_log=True f, f"{test_set_name}-{key}", results, enable_log=True
@ -770,9 +766,7 @@ def save_results(
logging.info("Wrote detailed error stats to {}".format(errs_filename)) logging.info("Wrote detailed error stats to {}".format(errs_filename))
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
errs_info = ( errs_info = params.res_dir / f"wer-summary-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_info, "w") as f: with open(errs_info, "w") as f:
print("settings\tWER", file=f) print("settings\tWER", file=f)
for key, val in test_set_wers: for key, val in test_set_wers:

85
egs/librispeech/ASR/finetune.sh Executable file
View File

@ -0,0 +1,85 @@
#!/usr/bin/env bash
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
set -eou pipefail
stage=-1
stop_stage=100
# This is an example script for fine-tuning. Here, we fine-tune a model trained
# on Librispeech on GigaSpeech. The model used for fine-tuning is
# pruned_transducer_stateless7 (zipformer). If you want to fine-tune model
# from another recipe, you can adapt ./pruned_transducer_stateless7/finetune.py
# for that recipe. If you have any problem, please open up an issue in https://github.com/k2-fsa/icefall/issues.
# We assume that you have already prepared the GigaSpeech manfiest&features under ./data.
# If you haven't done that, please see https://github.com/k2-fsa/icefall/blob/master/egs/gigaspeech/ASR/prepare.sh.
dl_dir=$PWD/download
. shared/parse_options.sh || exit 1
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then
log "Stage -1: Download Pre-trained model"
# clone from huggingface
git lfs install
git clone https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless7-2022-11-11
fi
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
log "Stage 0: Start fine-tuning"
# The following configuration of lr schedule should work well
# You may also tune the following parameters to adjust learning rate schedule
base_lr=0.005
lr_epochs=100
lr_batches=100000
# We recommend to start from an averaged model
finetune_ckpt=icefall-asr-librispeech-pruned-transducer-stateless7-2022-11-11/exp/pretrained.pt
export CUDA_VISIBLE_DEVICES="0,1"
./pruned_transducer_stateless7/finetune.py \
--world-size 2 \
--master-port 18180 \
--num-epochs 20 \
--start-epoch 1 \
--exp-dir pruned_transducer_stateless7/exp_giga_finetune \
--subset S \
--use-fp16 1 \
--base-lr $base_lr \
--lr-epochs $lr_epochs \
--lr-batches $lr_batches \
--bpe-model icefall-asr-librispeech-pruned-transducer-stateless7-2022-11-11/data/lang_bpe_500/bpe.model \
--do-finetune True \
--finetune-ckpt $finetune_ckpt \
--max-duration 500
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
log "Stage 1: Decoding"
epoch=15
avg=10
for m in greedy_search modified_beam_search; do
python pruned_transducer_stateless7/decode_gigaspeech.py \
--epoch $epoch \
--avg $avg \
--use-averaged-model True \
--beam-size 4 \
--exp-dir pruned_transducer_stateless7/exp_giga_finetune \
--max-duration 400 \
--decoding-method $m
done
fi

View File

@ -54,10 +54,20 @@ def get_args():
help="""Path to the bpe.model. If not None, we will remove short and help="""Path to the bpe.model. If not None, we will remove short and
long utterances before extracting features""", long utterances before extracting features""",
) )
parser.add_argument(
"--dataset",
type=str,
help="""Dataset parts to compute fbank. If None, we will use all""",
)
return parser.parse_args() return parser.parse_args()
def compute_fbank_librispeech(bpe_model: Optional[str] = None): def compute_fbank_librispeech(
bpe_model: Optional[str] = None,
dataset: Optional[str] = None,
):
src_dir = Path("data/manifests") src_dir = Path("data/manifests")
output_dir = Path("data/fbank") output_dir = Path("data/fbank")
num_jobs = min(15, os.cpu_count()) num_jobs = min(15, os.cpu_count())
@ -68,15 +78,19 @@ def compute_fbank_librispeech(bpe_model: Optional[str] = None):
sp = spm.SentencePieceProcessor() sp = spm.SentencePieceProcessor()
sp.load(bpe_model) sp.load(bpe_model)
dataset_parts = ( if dataset is None:
"dev-clean", dataset_parts = (
"dev-other", "dev-clean",
"test-clean", "dev-other",
"test-other", "test-clean",
"train-clean-100", "test-other",
"train-clean-360", "train-clean-100",
"train-other-500", "train-clean-360",
) "train-other-500",
)
else:
dataset_parts = dataset.split(" ", -1)
prefix = "librispeech" prefix = "librispeech"
suffix = "jsonl.gz" suffix = "jsonl.gz"
manifests = read_manifests_if_cached( manifests = read_manifests_if_cached(
@ -131,4 +145,4 @@ if __name__ == "__main__":
logging.basicConfig(format=formatter, level=logging.INFO) logging.basicConfig(format=formatter, level=logging.INFO)
args = get_args() args = get_args()
logging.info(vars(args)) logging.info(vars(args))
compute_fbank_librispeech(bpe_model=args.bpe_model) compute_fbank_librispeech(bpe_model=args.bpe_model, dataset=args.dataset)

View File

@ -566,18 +566,14 @@ def save_results(
): ):
test_set_wers = dict() test_set_wers = dict()
for key, results in results_dict.items(): for key, results in results_dict.items():
recog_path = ( recog_path = params.res_dir / f"recogs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
)
results = sorted(results) results = sorted(results)
store_transcripts(filename=recog_path, texts=results) store_transcripts(filename=recog_path, texts=results)
logging.info(f"The transcripts are stored in {recog_path}") logging.info(f"The transcripts are stored in {recog_path}")
# The following prints out WERs, per-word error statistics and aligned # The following prints out WERs, per-word error statistics and aligned
# ref/hyp pairs. # ref/hyp pairs.
errs_filename = ( errs_filename = params.res_dir / f"errs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_filename, "w") as f: with open(errs_filename, "w") as f:
wer = write_error_stats( wer = write_error_stats(
f, f"{test_set_name}-{key}", results, enable_log=True f, f"{test_set_name}-{key}", results, enable_log=True
@ -587,9 +583,7 @@ def save_results(
logging.info("Wrote detailed error stats to {}".format(errs_filename)) logging.info("Wrote detailed error stats to {}".format(errs_filename))
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
errs_info = ( errs_info = params.res_dir / f"wer-summary-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_info, "w") as f: with open(errs_info, "w") as f:
print("settings\tWER", file=f) print("settings\tWER", file=f)
for key, val in test_set_wers: for key, val in test_set_wers:

View File

@ -742,17 +742,13 @@ def save_results(
): ):
test_set_wers = dict() test_set_wers = dict()
for key, results in results_dict.items(): for key, results in results_dict.items():
recog_path = ( recog_path = params.res_dir / f"recogs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
)
store_transcripts(filename=recog_path, texts=sorted(results)) store_transcripts(filename=recog_path, texts=sorted(results))
logging.info(f"The transcripts are stored in {recog_path}") logging.info(f"The transcripts are stored in {recog_path}")
# The following prints out WERs, per-word error statistics and aligned # The following prints out WERs, per-word error statistics and aligned
# ref/hyp pairs. # ref/hyp pairs.
errs_filename = ( errs_filename = params.res_dir / f"errs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_filename, "w") as f: with open(errs_filename, "w") as f:
wer = write_error_stats( wer = write_error_stats(
f, f"{test_set_name}-{key}", results, enable_log=True f, f"{test_set_name}-{key}", results, enable_log=True
@ -762,9 +758,7 @@ def save_results(
logging.info("Wrote detailed error stats to {}".format(errs_filename)) logging.info("Wrote detailed error stats to {}".format(errs_filename))
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
errs_info = ( errs_info = params.res_dir / f"wer-summary-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_info, "w") as f: with open(errs_info, "w") as f:
print("settings\tWER", file=f) print("settings\tWER", file=f)
for key, val in test_set_wers: for key, val in test_set_wers:

View File

@ -702,18 +702,14 @@ def save_results(
): ):
test_set_wers = dict() test_set_wers = dict()
for key, results in results_dict.items(): for key, results in results_dict.items():
recog_path = ( recog_path = params.res_dir / f"recogs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
)
results = sorted(results) results = sorted(results)
store_transcripts(filename=recog_path, texts=results) store_transcripts(filename=recog_path, texts=results)
logging.info(f"The transcripts are stored in {recog_path}") logging.info(f"The transcripts are stored in {recog_path}")
# The following prints out WERs, per-word error statistics and aligned # The following prints out WERs, per-word error statistics and aligned
# ref/hyp pairs. # ref/hyp pairs.
errs_filename = ( errs_filename = params.res_dir / f"errs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_filename, "w") as f: with open(errs_filename, "w") as f:
wer = write_error_stats( wer = write_error_stats(
f, f"{test_set_name}-{key}", results, enable_log=True f, f"{test_set_name}-{key}", results, enable_log=True
@ -723,9 +719,7 @@ def save_results(
logging.info("Wrote detailed error stats to {}".format(errs_filename)) logging.info("Wrote detailed error stats to {}".format(errs_filename))
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
errs_info = ( errs_info = params.res_dir / f"wer-summary-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_info, "w") as f: with open(errs_info, "w") as f:
print("settings\tWER", file=f) print("settings\tWER", file=f)
for key, val in test_set_wers: for key, val in test_set_wers:

View File

@ -611,18 +611,14 @@ def save_results(
test_set_wers = dict() test_set_wers = dict()
test_set_delays = dict() test_set_delays = dict()
for key, results in results_dict.items(): for key, results in results_dict.items():
recog_path = ( recog_path = params.res_dir / f"recogs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
)
results = sorted(results) results = sorted(results)
store_transcripts_and_timestamps(filename=recog_path, texts=results) store_transcripts_and_timestamps(filename=recog_path, texts=results)
logging.info(f"The transcripts are stored in {recog_path}") logging.info(f"The transcripts are stored in {recog_path}")
# The following prints out WERs, per-word error statistics and aligned # The following prints out WERs, per-word error statistics and aligned
# ref/hyp pairs. # ref/hyp pairs.
errs_filename = ( errs_filename = params.res_dir / f"errs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_filename, "w") as f: with open(errs_filename, "w") as f:
wer, mean_delay, var_delay = write_error_stats_with_timestamps( wer, mean_delay, var_delay = write_error_stats_with_timestamps(
f, f"{test_set_name}-{key}", results, enable_log=True f, f"{test_set_name}-{key}", results, enable_log=True
@ -633,9 +629,7 @@ def save_results(
logging.info("Wrote detailed error stats to {}".format(errs_filename)) logging.info("Wrote detailed error stats to {}".format(errs_filename))
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
errs_info = ( errs_info = params.res_dir / f"wer-summary-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_info, "w") as f: with open(errs_info, "w") as f:
print("settings\tWER", file=f) print("settings\tWER", file=f)
for key, val in test_set_wers: for key, val in test_set_wers:
@ -643,8 +637,7 @@ def save_results(
test_set_delays = sorted(test_set_delays.items(), key=lambda x: x[1][0]) test_set_delays = sorted(test_set_delays.items(), key=lambda x: x[1][0])
delays_info = ( delays_info = (
params.res_dir params.res_dir / f"symbol-delay-summary-{test_set_name}-{params.suffix}.txt"
/ f"symbol-delay-summary-{test_set_name}-{key}-{params.suffix}.txt"
) )
with open(delays_info, "w") as f: with open(delays_info, "w") as f:
print("settings\tsymbol-delay", file=f) print("settings\tsymbol-delay", file=f)

View File

@ -742,17 +742,13 @@ def save_results(
): ):
test_set_wers = dict() test_set_wers = dict()
for key, results in results_dict.items(): for key, results in results_dict.items():
recog_path = ( recog_path = params.res_dir / f"recogs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
)
store_transcripts(filename=recog_path, texts=sorted(results)) store_transcripts(filename=recog_path, texts=sorted(results))
logging.info(f"The transcripts are stored in {recog_path}") logging.info(f"The transcripts are stored in {recog_path}")
# The following prints out WERs, per-word error statistics and aligned # The following prints out WERs, per-word error statistics and aligned
# ref/hyp pairs. # ref/hyp pairs.
errs_filename = ( errs_filename = params.res_dir / f"errs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_filename, "w") as f: with open(errs_filename, "w") as f:
wer = write_error_stats( wer = write_error_stats(
f, f"{test_set_name}-{key}", results, enable_log=True f, f"{test_set_name}-{key}", results, enable_log=True
@ -762,9 +758,7 @@ def save_results(
logging.info("Wrote detailed error stats to {}".format(errs_filename)) logging.info("Wrote detailed error stats to {}".format(errs_filename))
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
errs_info = ( errs_info = params.res_dir / f"wer-summary-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_info, "w") as f: with open(errs_info, "w") as f:
print("settings\tWER", file=f) print("settings\tWER", file=f)
for key, val in test_set_wers: for key, val in test_set_wers:

View File

@ -386,17 +386,13 @@ def save_results(
): ):
test_set_wers = dict() test_set_wers = dict()
for key, results in results_dict.items(): for key, results in results_dict.items():
recog_path = ( recog_path = params.res_dir / f"recogs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
)
store_transcripts(filename=recog_path, texts=results) store_transcripts(filename=recog_path, texts=results)
logging.info(f"The transcripts are stored in {recog_path}") logging.info(f"The transcripts are stored in {recog_path}")
# The following prints out WERs, per-word error statistics and aligned # The following prints out WERs, per-word error statistics and aligned
# ref/hyp pairs. # ref/hyp pairs.
errs_filename = ( errs_filename = params.res_dir / f"errs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_filename, "w") as f: with open(errs_filename, "w") as f:
wer = write_error_stats( wer = write_error_stats(
f, f"{test_set_name}-{key}", results, enable_log=True f, f"{test_set_name}-{key}", results, enable_log=True
@ -406,9 +402,7 @@ def save_results(
logging.info("Wrote detailed error stats to {}".format(errs_filename)) logging.info("Wrote detailed error stats to {}".format(errs_filename))
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
errs_info = ( errs_info = params.res_dir / f"wer-summary-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_info, "w") as f: with open(errs_info, "w") as f:
print("settings\tWER", file=f) print("settings\tWER", file=f)
for key, val in test_set_wers: for key, val in test_set_wers:

View File

@ -420,18 +420,14 @@ def save_results(
): ):
test_set_wers = dict() test_set_wers = dict()
for key, results in results_dict.items(): for key, results in results_dict.items():
recog_path = ( recog_path = params.res_dir / f"recogs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
)
results = sorted(results) results = sorted(results)
store_transcripts(filename=recog_path, texts=results) store_transcripts(filename=recog_path, texts=results)
logging.info(f"The transcripts are stored in {recog_path}") logging.info(f"The transcripts are stored in {recog_path}")
# The following prints out WERs, per-word error statistics and aligned # The following prints out WERs, per-word error statistics and aligned
# ref/hyp pairs. # ref/hyp pairs.
errs_filename = ( errs_filename = params.res_dir / f"errs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_filename, "w") as f: with open(errs_filename, "w") as f:
wer = write_error_stats( wer = write_error_stats(
f, f"{test_set_name}-{key}", results, enable_log=True f, f"{test_set_name}-{key}", results, enable_log=True
@ -441,9 +437,7 @@ def save_results(
logging.info("Wrote detailed error stats to {}".format(errs_filename)) logging.info("Wrote detailed error stats to {}".format(errs_filename))
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
errs_info = ( errs_info = params.res_dir / f"wer-summary-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_info, "w") as f: with open(errs_info, "w") as f:
print("settings\tWER", file=f) print("settings\tWER", file=f)
for key, val in test_set_wers: for key, val in test_set_wers:

View File

@ -585,18 +585,14 @@ def save_results(
): ):
test_set_wers = dict() test_set_wers = dict()
for key, results in results_dict.items(): for key, results in results_dict.items():
recog_path = ( recog_path = params.res_dir / f"recogs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
)
results = sorted(results) results = sorted(results)
store_transcripts(filename=recog_path, texts=results) store_transcripts(filename=recog_path, texts=results)
logging.info(f"The transcripts are stored in {recog_path}") logging.info(f"The transcripts are stored in {recog_path}")
# The following prints out WERs, per-word error statistics and aligned # The following prints out WERs, per-word error statistics and aligned
# ref/hyp pairs. # ref/hyp pairs.
errs_filename = ( errs_filename = params.res_dir / f"errs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_filename, "w") as f: with open(errs_filename, "w") as f:
wer = write_error_stats( wer = write_error_stats(
f, f"{test_set_name}-{key}", results, enable_log=True f, f"{test_set_name}-{key}", results, enable_log=True
@ -606,9 +602,7 @@ def save_results(
logging.info("Wrote detailed error stats to {}".format(errs_filename)) logging.info("Wrote detailed error stats to {}".format(errs_filename))
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
errs_info = ( errs_info = params.res_dir / f"wer-summary-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_info, "w") as f: with open(errs_info, "w") as f:
print("settings\tWER", file=f) print("settings\tWER", file=f)
for key, val in test_set_wers: for key, val in test_set_wers:

View File

@ -58,7 +58,6 @@ class Decoder(nn.Module):
self.embedding = nn.Embedding( self.embedding = nn.Embedding(
num_embeddings=vocab_size, num_embeddings=vocab_size,
embedding_dim=embedding_dim, embedding_dim=embedding_dim,
padding_idx=blank_id,
) )
self.blank_id = blank_id self.blank_id = blank_id
self.unk_id = unk_id self.unk_id = unk_id

View File

@ -423,9 +423,7 @@ def save_results(
): ):
test_set_wers = dict() test_set_wers = dict()
for key, results in results_dict.items(): for key, results in results_dict.items():
recog_path = ( recog_path = params.res_dir / f"recogs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
)
# sort results so we can easily compare the difference between two # sort results so we can easily compare the difference between two
# recognition results # recognition results
results = sorted(results) results = sorted(results)
@ -434,9 +432,7 @@ def save_results(
# The following prints out WERs, per-word error statistics and aligned # The following prints out WERs, per-word error statistics and aligned
# ref/hyp pairs. # ref/hyp pairs.
errs_filename = ( errs_filename = params.res_dir / f"errs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_filename, "w") as f: with open(errs_filename, "w") as f:
wer = write_error_stats( wer = write_error_stats(
f, f"{test_set_name}-{key}", results, enable_log=True f, f"{test_set_name}-{key}", results, enable_log=True
@ -446,9 +442,7 @@ def save_results(
logging.info("Wrote detailed error stats to {}".format(errs_filename)) logging.info("Wrote detailed error stats to {}".format(errs_filename))
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
errs_info = ( errs_info = params.res_dir / f"wer-summary-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_info, "w") as f: with open(errs_info, "w") as f:
print("settings\tWER", file=f) print("settings\tWER", file=f)
for key, val in test_set_wers: for key, val in test_set_wers:

View File

@ -609,18 +609,14 @@ def save_results(
): ):
test_set_wers = dict() test_set_wers = dict()
for key, results in results_dict.items(): for key, results in results_dict.items():
recog_path = ( recog_path = params.res_dir / f"recogs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
)
results = sorted(results) results = sorted(results)
store_transcripts(filename=recog_path, texts=results) store_transcripts(filename=recog_path, texts=results)
logging.info(f"The transcripts are stored in {recog_path}") logging.info(f"The transcripts are stored in {recog_path}")
# The following prints out WERs, per-word error statistics and aligned # The following prints out WERs, per-word error statistics and aligned
# ref/hyp pairs. # ref/hyp pairs.
errs_filename = ( errs_filename = params.res_dir / f"errs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_filename, "w") as f: with open(errs_filename, "w") as f:
wer = write_error_stats( wer = write_error_stats(
f, f"{test_set_name}-{key}", results, enable_log=True f, f"{test_set_name}-{key}", results, enable_log=True
@ -630,9 +626,7 @@ def save_results(
logging.info("Wrote detailed error stats to {}".format(errs_filename)) logging.info("Wrote detailed error stats to {}".format(errs_filename))
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
errs_info = ( errs_info = params.res_dir / f"wer-summary-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_info, "w") as f: with open(errs_info, "w") as f:
print("settings\tWER", file=f) print("settings\tWER", file=f)
for key, val in test_set_wers: for key, val in test_set_wers:

View File

@ -59,7 +59,6 @@ class Decoder(nn.Module):
self.embedding = ScaledEmbedding( self.embedding = ScaledEmbedding(
num_embeddings=vocab_size, num_embeddings=vocab_size,
embedding_dim=decoder_dim, embedding_dim=decoder_dim,
padding_idx=blank_id,
) )
self.blank_id = blank_id self.blank_id = blank_id

View File

@ -425,9 +425,7 @@ def save_results(
): ):
test_set_wers = dict() test_set_wers = dict()
for key, results in results_dict.items(): for key, results in results_dict.items():
recog_path = ( recog_path = params.res_dir / f"recogs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
)
# sort results so we can easily compare the difference between two # sort results so we can easily compare the difference between two
# recognition results # recognition results
results = sorted(results) results = sorted(results)
@ -436,9 +434,7 @@ def save_results(
# The following prints out WERs, per-word error statistics and aligned # The following prints out WERs, per-word error statistics and aligned
# ref/hyp pairs. # ref/hyp pairs.
errs_filename = ( errs_filename = params.res_dir / f"errs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_filename, "w") as f: with open(errs_filename, "w") as f:
wer = write_error_stats( wer = write_error_stats(
f, f"{test_set_name}-{key}", results, enable_log=True f, f"{test_set_name}-{key}", results, enable_log=True
@ -448,9 +444,7 @@ def save_results(
logging.info("Wrote detailed error stats to {}".format(errs_filename)) logging.info("Wrote detailed error stats to {}".format(errs_filename))
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
errs_info = ( errs_info = params.res_dir / f"wer-summary-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_info, "w") as f: with open(errs_info, "w") as f:
print("settings\tWER", file=f) print("settings\tWER", file=f)
for key, val in test_set_wers: for key, val in test_set_wers:

View File

@ -869,18 +869,14 @@ def save_results(
): ):
test_set_wers = dict() test_set_wers = dict()
for key, results in results_dict.items(): for key, results in results_dict.items():
recog_path = ( recog_path = params.res_dir / f"recogs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
)
results = sorted(results) results = sorted(results)
store_transcripts(filename=recog_path, texts=results) store_transcripts(filename=recog_path, texts=results)
logging.info(f"The transcripts are stored in {recog_path}") logging.info(f"The transcripts are stored in {recog_path}")
# The following prints out WERs, per-word error statistics and aligned # The following prints out WERs, per-word error statistics and aligned
# ref/hyp pairs. # ref/hyp pairs.
errs_filename = ( errs_filename = params.res_dir / f"errs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_filename, "w") as f: with open(errs_filename, "w") as f:
wer = write_error_stats( wer = write_error_stats(
f, f"{test_set_name}-{key}", results, enable_log=True f, f"{test_set_name}-{key}", results, enable_log=True
@ -890,9 +886,7 @@ def save_results(
logging.info("Wrote detailed error stats to {}".format(errs_filename)) logging.info("Wrote detailed error stats to {}".format(errs_filename))
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
errs_info = ( errs_info = params.res_dir / f"wer-summary-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_info, "w") as f: with open(errs_info, "w") as f:
print("settings\tWER", file=f) print("settings\tWER", file=f)
for key, val in test_set_wers: for key, val in test_set_wers:

View File

@ -426,18 +426,14 @@ def save_results(
): ):
test_set_wers = dict() test_set_wers = dict()
for key, results in results_dict.items(): for key, results in results_dict.items():
recog_path = ( recog_path = params.res_dir / f"recogs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
)
results = sorted(results) results = sorted(results)
store_transcripts(filename=recog_path, texts=results) store_transcripts(filename=recog_path, texts=results)
logging.info(f"The transcripts are stored in {recog_path}") logging.info(f"The transcripts are stored in {recog_path}")
# The following prints out WERs, per-word error statistics and aligned # The following prints out WERs, per-word error statistics and aligned
# ref/hyp pairs. # ref/hyp pairs.
errs_filename = ( errs_filename = params.res_dir / f"errs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_filename, "w") as f: with open(errs_filename, "w") as f:
wer = write_error_stats( wer = write_error_stats(
f, f"{test_set_name}-{key}", results, enable_log=True f, f"{test_set_name}-{key}", results, enable_log=True
@ -447,9 +443,7 @@ def save_results(
logging.info("Wrote detailed error stats to {}".format(errs_filename)) logging.info("Wrote detailed error stats to {}".format(errs_filename))
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
errs_info = ( errs_info = params.res_dir / f"wer-summary-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_info, "w") as f: with open(errs_info, "w") as f:
print("settings\tWER", file=f) print("settings\tWER", file=f)
for key, val in test_set_wers: for key, val in test_set_wers:

View File

@ -676,18 +676,14 @@ def save_results(
test_set_wers = dict() test_set_wers = dict()
test_set_delays = dict() test_set_delays = dict()
for key, results in results_dict.items(): for key, results in results_dict.items():
recog_path = ( recog_path = params.res_dir / f"recogs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
)
results = sorted(results) results = sorted(results)
store_transcripts_and_timestamps(filename=recog_path, texts=results) store_transcripts_and_timestamps(filename=recog_path, texts=results)
logging.info(f"The transcripts are stored in {recog_path}") logging.info(f"The transcripts are stored in {recog_path}")
# The following prints out WERs, per-word error statistics and aligned # The following prints out WERs, per-word error statistics and aligned
# ref/hyp pairs. # ref/hyp pairs.
errs_filename = ( errs_filename = params.res_dir / f"errs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_filename, "w") as f: with open(errs_filename, "w") as f:
wer, mean_delay, var_delay = write_error_stats_with_timestamps( wer, mean_delay, var_delay = write_error_stats_with_timestamps(
f, f"{test_set_name}-{key}", results, enable_log=True f, f"{test_set_name}-{key}", results, enable_log=True
@ -698,9 +694,7 @@ def save_results(
logging.info("Wrote detailed error stats to {}".format(errs_filename)) logging.info("Wrote detailed error stats to {}".format(errs_filename))
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
errs_info = ( errs_info = params.res_dir / f"wer-summary-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_info, "w") as f: with open(errs_info, "w") as f:
print("settings\tWER", file=f) print("settings\tWER", file=f)
for key, val in test_set_wers: for key, val in test_set_wers:
@ -708,8 +702,7 @@ def save_results(
test_set_delays = sorted(test_set_delays.items(), key=lambda x: x[1][0]) test_set_delays = sorted(test_set_delays.items(), key=lambda x: x[1][0])
delays_info = ( delays_info = (
params.res_dir params.res_dir / f"symbol-delay-summary-{test_set_name}-{params.suffix}.txt"
/ f"symbol-delay-summary-{test_set_name}-{key}-{params.suffix}.txt"
) )
with open(delays_info, "w") as f: with open(delays_info, "w") as f:
print("settings\tsymbol-delay", file=f) print("settings\tsymbol-delay", file=f)

View File

@ -442,18 +442,14 @@ def save_results(
): ):
test_set_wers = dict() test_set_wers = dict()
for key, results in results_dict.items(): for key, results in results_dict.items():
recog_path = ( recog_path = params.res_dir / f"recogs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
)
results = sorted(results) results = sorted(results)
store_transcripts(filename=recog_path, texts=results) store_transcripts(filename=recog_path, texts=results)
logging.info(f"The transcripts are stored in {recog_path}") logging.info(f"The transcripts are stored in {recog_path}")
# The following prints out WERs, per-word error statistics and aligned # The following prints out WERs, per-word error statistics and aligned
# ref/hyp pairs. # ref/hyp pairs.
errs_filename = ( errs_filename = params.res_dir / f"errs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_filename, "w") as f: with open(errs_filename, "w") as f:
wer = write_error_stats( wer = write_error_stats(
f, f"{test_set_name}-{key}", results, enable_log=True f, f"{test_set_name}-{key}", results, enable_log=True
@ -463,9 +459,7 @@ def save_results(
logging.info("Wrote detailed error stats to {}".format(errs_filename)) logging.info("Wrote detailed error stats to {}".format(errs_filename))
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
errs_info = ( errs_info = params.res_dir / f"wer-summary-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_info, "w") as f: with open(errs_info, "w") as f:
print("settings\tWER", file=f) print("settings\tWER", file=f)
for key, val in test_set_wers: for key, val in test_set_wers:

View File

@ -735,18 +735,14 @@ def save_results(
): ):
test_set_wers = dict() test_set_wers = dict()
for key, results in results_dict.items(): for key, results in results_dict.items():
recog_path = ( recog_path = params.res_dir / f"recogs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
)
results = sorted(results) results = sorted(results)
store_transcripts(filename=recog_path, texts=results) store_transcripts(filename=recog_path, texts=results)
logging.info(f"The transcripts are stored in {recog_path}") logging.info(f"The transcripts are stored in {recog_path}")
# The following prints out WERs, per-word error statistics and aligned # The following prints out WERs, per-word error statistics and aligned
# ref/hyp pairs. # ref/hyp pairs.
errs_filename = ( errs_filename = params.res_dir / f"errs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_filename, "w") as f: with open(errs_filename, "w") as f:
wer = write_error_stats( wer = write_error_stats(
f, f"{test_set_name}-{key}", results, enable_log=True f, f"{test_set_name}-{key}", results, enable_log=True
@ -756,9 +752,7 @@ def save_results(
logging.info("Wrote detailed error stats to {}".format(errs_filename)) logging.info("Wrote detailed error stats to {}".format(errs_filename))
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
errs_info = ( errs_info = params.res_dir / f"wer-summary-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_info, "w") as f: with open(errs_info, "w") as f:
print("settings\tWER", file=f) print("settings\tWER", file=f)
for key, val in test_set_wers: for key, val in test_set_wers:

View File

@ -442,18 +442,14 @@ def save_results(
): ):
test_set_wers = dict() test_set_wers = dict()
for key, results in results_dict.items(): for key, results in results_dict.items():
recog_path = ( recog_path = params.res_dir / f"recogs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
)
results = sorted(results) results = sorted(results)
store_transcripts(filename=recog_path, texts=results) store_transcripts(filename=recog_path, texts=results)
logging.info(f"The transcripts are stored in {recog_path}") logging.info(f"The transcripts are stored in {recog_path}")
# The following prints out WERs, per-word error statistics and aligned # The following prints out WERs, per-word error statistics and aligned
# ref/hyp pairs. # ref/hyp pairs.
errs_filename = ( errs_filename = params.res_dir / f"errs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_filename, "w") as f: with open(errs_filename, "w") as f:
wer = write_error_stats( wer = write_error_stats(
f, f"{test_set_name}-{key}", results, enable_log=True f, f"{test_set_name}-{key}", results, enable_log=True
@ -463,9 +459,7 @@ def save_results(
logging.info("Wrote detailed error stats to {}".format(errs_filename)) logging.info("Wrote detailed error stats to {}".format(errs_filename))
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
errs_info = ( errs_info = params.res_dir / f"wer-summary-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_info, "w") as f: with open(errs_info, "w") as f:
print("settings\tWER", file=f) print("settings\tWER", file=f)
for key, val in test_set_wers: for key, val in test_set_wers:

View File

@ -416,18 +416,14 @@ def save_results(
): ):
test_set_wers = dict() test_set_wers = dict()
for key, results in results_dict.items(): for key, results in results_dict.items():
recog_path = ( recog_path = params.res_dir / f"recogs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
)
results = sorted(results) results = sorted(results)
store_transcripts(filename=recog_path, texts=results) store_transcripts(filename=recog_path, texts=results)
logging.info(f"The transcripts are stored in {recog_path}") logging.info(f"The transcripts are stored in {recog_path}")
# The following prints out WERs, per-word error statistics and aligned # The following prints out WERs, per-word error statistics and aligned
# ref/hyp pairs. # ref/hyp pairs.
errs_filename = ( errs_filename = params.res_dir / f"errs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_filename, "w") as f: with open(errs_filename, "w") as f:
wer = write_error_stats( wer = write_error_stats(
f, f"{test_set_name}-{key}", results, enable_log=True f, f"{test_set_name}-{key}", results, enable_log=True
@ -437,9 +433,7 @@ def save_results(
logging.info("Wrote detailed error stats to {}".format(errs_filename)) logging.info("Wrote detailed error stats to {}".format(errs_filename))
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
errs_info = ( errs_info = params.res_dir / f"wer-summary-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_info, "w") as f: with open(errs_info, "w") as f:
print("settings\tWER", file=f) print("settings\tWER", file=f)
for key, val in test_set_wers: for key, val in test_set_wers:

View File

@ -722,18 +722,14 @@ def save_results(
): ):
test_set_wers = dict() test_set_wers = dict()
for key, results in results_dict.items(): for key, results in results_dict.items():
recog_path = ( recog_path = params.res_dir / f"recogs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
)
results = sorted(results) results = sorted(results)
store_transcripts(filename=recog_path, texts=results) store_transcripts(filename=recog_path, texts=results)
logging.info(f"The transcripts are stored in {recog_path}") logging.info(f"The transcripts are stored in {recog_path}")
# The following prints out WERs, per-word error statistics and aligned # The following prints out WERs, per-word error statistics and aligned
# ref/hyp pairs. # ref/hyp pairs.
errs_filename = ( errs_filename = params.res_dir / f"errs-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_filename, "w") as f: with open(errs_filename, "w") as f:
wer = write_error_stats( wer = write_error_stats(
f, f"{test_set_name}-{key}", results, enable_log=True f, f"{test_set_name}-{key}", results, enable_log=True
@ -743,9 +739,7 @@ def save_results(
logging.info("Wrote detailed error stats to {}".format(errs_filename)) logging.info("Wrote detailed error stats to {}".format(errs_filename))
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
errs_info = ( errs_info = params.res_dir / f"wer-summary-{test_set_name}-{params.suffix}.txt"
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_info, "w") as f: with open(errs_info, "w") as f:
print("settings\tWER", file=f) print("settings\tWER", file=f)
for key, val in test_set_wers: for key, val in test_set_wers:

View File

@ -0,0 +1,861 @@
#!/usr/bin/env python3
#
# Copyright 2021-2022 Xiaomi Corporation (Author: Fangjun Kuang,
# Zengwei Yao,
# Xiaoyu Yang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Usage:
(1) greedy search
./pruned_transducer_stateless7/decode.py \
--epoch 28 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless7/exp \
--max-duration 600 \
--decoding-method greedy_search
(2) beam search (not recommended)
./pruned_transducer_stateless7/decode.py \
--epoch 28 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless7/exp \
--max-duration 600 \
--decoding-method beam_search \
--beam-size 4
(3) modified beam search
./pruned_transducer_stateless7/decode.py \
--epoch 28 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless7/exp \
--max-duration 600 \
--decoding-method modified_beam_search \
--beam-size 4
(4) fast beam search (one best)
./pruned_transducer_stateless7/decode.py \
--epoch 28 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless7/exp \
--max-duration 600 \
--decoding-method fast_beam_search \
--beam 20.0 \
--max-contexts 8 \
--max-states 64
(5) fast beam search (nbest)
./pruned_transducer_stateless7/decode.py \
--epoch 28 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless7/exp \
--max-duration 600 \
--decoding-method fast_beam_search_nbest \
--beam 20.0 \
--max-contexts 8 \
--max-states 64 \
--num-paths 200 \
--nbest-scale 0.5
(6) fast beam search (nbest oracle WER)
./pruned_transducer_stateless7/decode.py \
--epoch 28 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless7/exp \
--max-duration 600 \
--decoding-method fast_beam_search_nbest_oracle \
--beam 20.0 \
--max-contexts 8 \
--max-states 64 \
--num-paths 200 \
--nbest-scale 0.5
(7) fast beam search (with LG)
./pruned_transducer_stateless7/decode.py \
--epoch 28 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless7/exp \
--max-duration 600 \
--decoding-method fast_beam_search_nbest_LG \
--beam 20.0 \
--max-contexts 8 \
--max-states 64
"""
import argparse
import logging
import math
from collections import defaultdict
from pathlib import Path
from typing import Dict, List, Optional, Tuple
import k2
import sentencepiece as spm
import torch
import torch.nn as nn
# from asr_datamodule import LibriSpeechAsrDataModule
from gigaspeech import GigaSpeechAsrDataModule
from beam_search import (
beam_search,
fast_beam_search_nbest,
fast_beam_search_nbest_LG,
fast_beam_search_nbest_oracle,
fast_beam_search_one_best,
greedy_search,
greedy_search_batch,
modified_beam_search,
)
from gigaspeech_scoring import asr_text_post_processing
from train import add_model_arguments, get_params, get_transducer_model
from icefall.checkpoint import (
average_checkpoints,
average_checkpoints_with_averaged_model,
find_checkpoints,
load_checkpoint,
)
from icefall.lexicon import Lexicon
from icefall.utils import (
AttributeDict,
setup_logger,
store_transcripts,
str2bool,
write_error_stats,
)
LOG_EPS = math.log(1e-10)
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--epoch",
type=int,
default=30,
help="""It specifies the checkpoint to use for decoding.
Note: Epoch counts from 1.
You can specify --avg to use more checkpoints for model averaging.""",
)
parser.add_argument(
"--iter",
type=int,
default=0,
help="""If positive, --epoch is ignored and it
will use the checkpoint exp_dir/checkpoint-iter.pt.
You can specify --avg to use more checkpoints for model averaging.
""",
)
parser.add_argument(
"--avg",
type=int,
default=9,
help="Number of checkpoints to average. Automatically select "
"consecutive checkpoints before the checkpoint specified by "
"'--epoch' and '--iter'",
)
parser.add_argument(
"--use-averaged-model",
type=str2bool,
default=True,
help="Whether to load averaged model. Currently it only supports "
"using --epoch. If True, it would decode with the averaged model "
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
"Actually only the models with epoch number of `epoch-avg` and "
"`epoch` are loaded for averaging. ",
)
parser.add_argument(
"--exp-dir",
type=str,
default="pruned_transducer_stateless7/exp",
help="The experiment dir",
)
parser.add_argument(
"--bpe-model",
type=str,
default="data/lang_bpe_500/bpe.model",
help="Path to the BPE model",
)
parser.add_argument(
"--lang-dir",
type=Path,
default="data/lang_bpe_500",
help="The lang dir containing word table and LG graph",
)
parser.add_argument(
"--decoding-method",
type=str,
default="greedy_search",
help="""Possible values are:
- greedy_search
- beam_search
- modified_beam_search
- fast_beam_search
- fast_beam_search_nbest
- fast_beam_search_nbest_oracle
- fast_beam_search_nbest_LG
If you use fast_beam_search_nbest_LG, you have to specify
`--lang-dir`, which should contain `LG.pt`.
""",
)
parser.add_argument(
"--beam-size",
type=int,
default=4,
help="""An integer indicating how many candidates we will keep for each
frame. Used only when --decoding-method is beam_search or
modified_beam_search.""",
)
parser.add_argument(
"--beam",
type=float,
default=20.0,
help="""A floating point value to calculate the cutoff score during beam
search (i.e., `cutoff = max-score - beam`), which is the same as the
`beam` in Kaldi.
Used only when --decoding-method is fast_beam_search,
fast_beam_search_nbest, fast_beam_search_nbest_LG,
and fast_beam_search_nbest_oracle
""",
)
parser.add_argument(
"--ngram-lm-scale",
type=float,
default=0.01,
help="""
Used only when --decoding_method is fast_beam_search_nbest_LG.
It specifies the scale for n-gram LM scores.
""",
)
parser.add_argument(
"--max-contexts",
type=int,
default=8,
help="""Used only when --decoding-method is
fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG,
and fast_beam_search_nbest_oracle""",
)
parser.add_argument(
"--max-states",
type=int,
default=64,
help="""Used only when --decoding-method is
fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG,
and fast_beam_search_nbest_oracle""",
)
parser.add_argument(
"--context-size",
type=int,
default=2,
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
)
parser.add_argument(
"--max-sym-per-frame",
type=int,
default=1,
help="""Maximum number of symbols per frame.
Used only when --decoding_method is greedy_search""",
)
parser.add_argument(
"--num-paths",
type=int,
default=200,
help="""Number of paths for nbest decoding.
Used only when the decoding method is fast_beam_search_nbest,
fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""",
)
parser.add_argument(
"--nbest-scale",
type=float,
default=0.5,
help="""Scale applied to lattice scores when computing nbest paths.
Used only when the decoding method is fast_beam_search_nbest,
fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""",
)
parser.add_argument(
"--simulate-streaming",
type=str2bool,
default=False,
help="""Whether to simulate streaming in decoding, this is a good way to
test a streaming model.
""",
)
parser.add_argument(
"--decode-chunk-size",
type=int,
default=16,
help="The chunk size for decoding (in frames after subsampling)",
)
parser.add_argument(
"--left-context",
type=int,
default=64,
help="left context can be seen during decoding (in frames after subsampling)",
)
add_model_arguments(parser)
return parser
def post_processing(
results: List[Tuple[str, List[str], List[str]]],
) -> List[Tuple[str, List[str], List[str]]]:
new_results = []
for key, ref, hyp in results:
new_ref = asr_text_post_processing(" ".join(ref)).split()
new_hyp = asr_text_post_processing(" ".join(hyp)).split()
new_results.append((key, new_ref, new_hyp))
return new_results
def decode_one_batch(
params: AttributeDict,
model: nn.Module,
sp: spm.SentencePieceProcessor,
batch: dict,
word_table: Optional[k2.SymbolTable] = None,
decoding_graph: Optional[k2.Fsa] = None,
) -> Dict[str, List[List[str]]]:
"""Decode one batch and return the result in a dict. The dict has the
following format:
- key: It indicates the setting used for decoding. For example,
if greedy_search is used, it would be "greedy_search"
If beam search with a beam size of 7 is used, it would be
"beam_7"
- value: It contains the decoding result. `len(value)` equals to
batch size. `value[i]` is the decoding result for the i-th
utterance in the given batch.
Args:
params:
It's the return value of :func:`get_params`.
model:
The neural model.
sp:
The BPE model.
batch:
It is the return value from iterating
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
for the format of the `batch`.
word_table:
The word symbol table.
decoding_graph:
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
only when --decoding_method is fast_beam_search, fast_beam_search_nbest,
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
Returns:
Return the decoding result. See above description for the format of
the returned dict.
"""
device = next(model.parameters()).device
feature = batch["inputs"]
assert feature.ndim == 3
feature = feature.to(device)
# at entry, feature is (N, T, C)
supervisions = batch["supervisions"]
feature_lens = supervisions["num_frames"].to(device)
if params.simulate_streaming:
feature_lens += params.left_context
feature = torch.nn.functional.pad(
feature,
pad=(0, 0, 0, params.left_context),
value=LOG_EPS,
)
encoder_out, encoder_out_lens, _ = model.encoder.streaming_forward(
x=feature,
x_lens=feature_lens,
chunk_size=params.decode_chunk_size,
left_context=params.left_context,
simulate_streaming=True,
)
else:
encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens)
hyps = []
if params.decoding_method == "fast_beam_search":
hyp_tokens = fast_beam_search_one_best(
model=model,
decoding_graph=decoding_graph,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam,
max_contexts=params.max_contexts,
max_states=params.max_states,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
elif params.decoding_method == "fast_beam_search_nbest_LG":
hyp_tokens = fast_beam_search_nbest_LG(
model=model,
decoding_graph=decoding_graph,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam,
max_contexts=params.max_contexts,
max_states=params.max_states,
num_paths=params.num_paths,
nbest_scale=params.nbest_scale,
)
for hyp in hyp_tokens:
hyps.append([word_table[i] for i in hyp])
elif params.decoding_method == "fast_beam_search_nbest":
hyp_tokens = fast_beam_search_nbest(
model=model,
decoding_graph=decoding_graph,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam,
max_contexts=params.max_contexts,
max_states=params.max_states,
num_paths=params.num_paths,
nbest_scale=params.nbest_scale,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
elif params.decoding_method == "fast_beam_search_nbest_oracle":
hyp_tokens = fast_beam_search_nbest_oracle(
model=model,
decoding_graph=decoding_graph,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam,
max_contexts=params.max_contexts,
max_states=params.max_states,
num_paths=params.num_paths,
ref_texts=sp.encode(supervisions["text"]),
nbest_scale=params.nbest_scale,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1:
hyp_tokens = greedy_search_batch(
model=model,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
elif params.decoding_method == "modified_beam_search":
hyp_tokens = modified_beam_search(
model=model,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam_size,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
else:
batch_size = encoder_out.size(0)
for i in range(batch_size):
# fmt: off
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
# fmt: on
if params.decoding_method == "greedy_search":
hyp = greedy_search(
model=model,
encoder_out=encoder_out_i,
max_sym_per_frame=params.max_sym_per_frame,
)
elif params.decoding_method == "beam_search":
hyp = beam_search(
model=model,
encoder_out=encoder_out_i,
beam=params.beam_size,
)
else:
raise ValueError(
f"Unsupported decoding method: {params.decoding_method}"
)
hyps.append(sp.decode(hyp).split())
if params.decoding_method == "greedy_search":
return {"greedy_search": hyps}
elif "fast_beam_search" in params.decoding_method:
key = f"beam_{params.beam}_"
key += f"max_contexts_{params.max_contexts}_"
key += f"max_states_{params.max_states}"
if "nbest" in params.decoding_method:
key += f"_num_paths_{params.num_paths}_"
key += f"nbest_scale_{params.nbest_scale}"
if "LG" in params.decoding_method:
key += f"_ngram_lm_scale_{params.ngram_lm_scale}"
return {key: hyps}
else:
return {f"beam_size_{params.beam_size}": hyps}
def decode_dataset(
dl: torch.utils.data.DataLoader,
params: AttributeDict,
model: nn.Module,
sp: spm.SentencePieceProcessor,
word_table: Optional[k2.SymbolTable] = None,
decoding_graph: Optional[k2.Fsa] = None,
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
"""Decode dataset.
Args:
dl:
PyTorch's dataloader containing the dataset to decode.
params:
It is returned by :func:`get_params`.
model:
The neural model.
sp:
The BPE model.
word_table:
The word symbol table.
decoding_graph:
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
only when --decoding_method is fast_beam_search, fast_beam_search_nbest,
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
Returns:
Return a dict, whose key may be "greedy_search" if greedy search
is used, or it may be "beam_7" if beam size of 7 is used.
Its value is a list of tuples. Each tuple contains two elements:
The first is the reference transcript, and the second is the
predicted result.
"""
num_cuts = 0
try:
num_batches = len(dl)
except TypeError:
num_batches = "?"
if params.decoding_method == "greedy_search":
log_interval = 50
else:
log_interval = 20
results = defaultdict(list)
for batch_idx, batch in enumerate(dl):
texts = batch["supervisions"]["text"]
cut_ids = [cut.id for cut in batch["supervisions"]["cut"]]
hyps_dict = decode_one_batch(
params=params,
model=model,
sp=sp,
decoding_graph=decoding_graph,
word_table=word_table,
batch=batch,
)
for name, hyps in hyps_dict.items():
this_batch = []
assert len(hyps) == len(texts)
for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts):
ref_words = ref_text.split()
this_batch.append((cut_id, ref_words, hyp_words))
results[name].extend(this_batch)
num_cuts += len(texts)
if batch_idx % log_interval == 0:
batch_str = f"{batch_idx}/{num_batches}"
logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}")
return results
def save_results(
params: AttributeDict,
test_set_name: str,
results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]],
):
test_set_wers = dict()
for key, results in results_dict.items():
recog_path = (
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
)
results = post_processing(results)
results = sorted(results)
store_transcripts(filename=recog_path, texts=results)
logging.info(f"The transcripts are stored in {recog_path}")
# The following prints out WERs, per-word error statistics and aligned
# ref/hyp pairs.
errs_filename = (
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_filename, "w") as f:
wer = write_error_stats(
f, f"{test_set_name}-{key}", results, enable_log=True
)
test_set_wers[key] = wer
logging.info("Wrote detailed error stats to {}".format(errs_filename))
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
errs_info = (
params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_info, "w") as f:
print("settings\tWER", file=f)
for key, val in test_set_wers:
print("{}\t{}".format(key, val), file=f)
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
note = "\tbest for {}".format(test_set_name)
for key, val in test_set_wers:
s += "{}\t{}{}\n".format(key, val, note)
note = ""
logging.info(s)
@torch.no_grad()
def main():
"""
This scripts test a libri model with libri BPE
on Gigaspeech.
"""
parser = get_parser()
GigaSpeechAsrDataModule.add_arguments(parser)
args = parser.parse_args()
args.exp_dir = Path(args.exp_dir)
params = get_params()
params.update(vars(args))
assert params.decoding_method in (
"greedy_search",
"beam_search",
"fast_beam_search",
"fast_beam_search_nbest",
"fast_beam_search_nbest_LG",
"fast_beam_search_nbest_oracle",
"modified_beam_search",
)
params.res_dir = params.exp_dir / (params.decoding_method + "_gigaspeech")
if params.iter > 0:
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
else:
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
if params.simulate_streaming:
params.suffix += f"-streaming-chunk-size-{params.decode_chunk_size}"
params.suffix += f"-left-context-{params.left_context}"
if "fast_beam_search" in params.decoding_method:
params.suffix += f"-beam-{params.beam}"
params.suffix += f"-max-contexts-{params.max_contexts}"
params.suffix += f"-max-states-{params.max_states}"
if "nbest" in params.decoding_method:
params.suffix += f"-nbest-scale-{params.nbest_scale}"
params.suffix += f"-num-paths-{params.num_paths}"
if "LG" in params.decoding_method:
params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}"
elif "beam_search" in params.decoding_method:
params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}"
else:
params.suffix += f"-context-{params.context_size}"
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
if params.use_averaged_model:
params.suffix += "-use-averaged-model"
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
logging.info("Decoding started")
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"Device: {device}")
sp = spm.SentencePieceProcessor()
sp.load(params.bpe_model)
# <blk> and <unk> are defined in local/train_bpe_model.py
params.blank_id = sp.piece_to_id("<blk>")
params.unk_id = sp.piece_to_id("<unk>")
params.vocab_size = sp.get_piece_size()
if params.simulate_streaming:
assert (
params.causal_convolution
), "Decoding in streaming requires causal convolution"
logging.info(params)
logging.info("About to create model")
model = get_transducer_model(params)
if not params.use_averaged_model:
if params.iter > 0:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
elif params.avg == 1:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
else:
start = params.epoch - params.avg + 1
filenames = []
for i in range(start, params.epoch + 1):
if i >= 1:
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
else:
if params.iter > 0:
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg + 1
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg + 1:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
filename_start = filenames[-1]
filename_end = filenames[0]
logging.info(
"Calculating the averaged model over iteration checkpoints"
f" from {filename_start} (excluded) to {filename_end}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
else:
assert params.avg > 0, params.avg
start = params.epoch - params.avg
assert start >= 1, start
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
logging.info(
f"Calculating the averaged model over epoch range from "
f"{start} (excluded) to {params.epoch}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
model.to(device)
model.eval()
if "fast_beam_search" in params.decoding_method:
if params.decoding_method == "fast_beam_search_nbest_LG":
lexicon = Lexicon(params.lang_dir)
word_table = lexicon.word_table
lg_filename = params.lang_dir / "LG.pt"
logging.info(f"Loading {lg_filename}")
decoding_graph = k2.Fsa.from_dict(
torch.load(lg_filename, map_location=device)
)
decoding_graph.scores *= params.ngram_lm_scale
else:
word_table = None
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
else:
decoding_graph = None
word_table = None
num_param = sum([p.numel() for p in model.parameters()])
logging.info(f"Number of model parameters: {num_param}")
# we need cut ids to display recognition results.
args.return_cuts = True
gigaspeech = GigaSpeechAsrDataModule(args)
dev_cuts = gigaspeech.dev_cuts()
test_cuts = gigaspeech.test_cuts()
dev_dl = gigaspeech.test_dataloaders(dev_cuts)
test_dl = gigaspeech.test_dataloaders(test_cuts)
test_sets = ["dev", "test"]
test_dls = [dev_dl, test_dl]
for test_set, test_dl in zip(test_sets, test_dls):
results_dict = decode_dataset(
dl=test_dl,
params=params,
model=model,
sp=sp,
word_table=word_table,
decoding_graph=decoding_graph,
)
save_results(
params=params,
test_set_name=test_set,
results_dict=results_dict,
)
logging.info("Done!")
if __name__ == "__main__":
main()

Some files were not shown because too many files have changed in this diff Show More