sovle conflicts

This commit is contained in:
luomingshuang 2022-05-23 20:10:24 +08:00
commit 4e94bf7407
57 changed files with 8489 additions and 104 deletions

View File

@ -4,6 +4,7 @@ statistics=true
max-line-length = 80
per-file-ignores =
# line too long
icefall/diagnostics.py: E501
egs/*/ASR/*/conformer.py: E501,
egs/*/ASR/pruned_transducer_stateless*/*.py: E501,
egs/*/ASR/*/optim.py: E501,

View File

@ -0,0 +1,92 @@
#!/usr/bin/env bash
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
cd egs/librispeech/ASR
repo_url=https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless5-2022-05-13
log "Downloading pre-trained model from $repo_url"
git lfs install
git clone $repo_url
repo=$(basename $repo_url)
log "Display test files"
tree $repo/
soxi $repo/test_wavs/*.wav
ls -lh $repo/test_wavs/*.wav
pushd $repo/exp
ln -s pretrained-epoch-39-avg-7.pt pretrained.pt
popd
for sym in 1 2 3; do
log "Greedy search with --max-sym-per-frame $sym"
./pruned_transducer_stateless5/pretrained.py \
--method greedy_search \
--max-sym-per-frame $sym \
--checkpoint $repo/exp/pretrained.pt \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
$repo/test_wavs/1089-134686-0001.wav \
$repo/test_wavs/1221-135766-0001.wav \
$repo/test_wavs/1221-135766-0002.wav
done
for method in modified_beam_search beam_search fast_beam_search; do
log "$method"
./pruned_transducer_stateless5/pretrained.py \
--method $method \
--beam-size 4 \
--checkpoint $repo/exp/pretrained.pt \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
$repo/test_wavs/1089-134686-0001.wav \
$repo/test_wavs/1221-135766-0001.wav \
$repo/test_wavs/1221-135766-0002.wav \
--num-encoder-layers 18 \
--dim-feedforward 2048 \
--nhead 8 \
--encoder-dim 512 \
--decoder-dim 512 \
--joiner-dim 512
done
echo "GITHUB_EVENT_NAME: ${GITHUB_EVENT_NAME}"
echo "GITHUB_EVENT_LABEL_NAME: ${GITHUB_EVENT_LABEL_NAME}"
if [[ x"${GITHUB_EVENT_NAME}" == x"schedule" || x"${GITHUB_EVENT_LABEL_NAME}" == x"run-decode" ]]; then
mkdir -p pruned_transducer_stateless5/exp
ln -s $PWD/$repo/exp/pretrained-epoch-39-avg-7.pt pruned_transducer_stateless5/exp/epoch-999.pt
ln -s $PWD/$repo/data/lang_bpe_500 data/
ls -lh data
ls -lh pruned_transducer_stateless5/exp
log "Decoding test-clean and test-other"
# use a small value for decoding with CPU
max_duration=100
for method in greedy_search fast_beam_search modified_beam_search; do
log "Decoding with $method"
./pruned_transducer_stateless5/decode.py \
--decoding-method $method \
--epoch 999 \
--avg 1 \
--max-duration $max_duration \
--exp-dir pruned_transducer_stateless5/exp \
--num-encoder-layers 18 \
--dim-feedforward 2048 \
--nhead 8 \
--encoder-dim 512 \
--decoder-dim 512 \
--joiner-dim 512
done
rm pruned_transducer_stateless5/exp/*.pt
fi

View File

@ -0,0 +1,153 @@
# Copyright 2022 Fangjun Kuang (csukuangfj@gmail.com)
# See ../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
name: run-librispeech-2022-05-13
# stateless transducer + k2 pruned rnnt-loss + deeper model
on:
push:
branches:
- master
pull_request:
types: [labeled]
schedule:
# minute (0-59)
# hour (0-23)
# day of the month (1-31)
# month (1-12)
# day of the week (0-6)
# nightly build at 15:50 UTC time every day
- cron: "50 15 * * *"
jobs:
run_librispeech_2022_05_13:
if: github.event.label.name == 'ready' || github.event.label.name == 'run-decode' || github.event_name == 'push' || github.event_name == 'schedule'
runs-on: ${{ matrix.os }}
strategy:
matrix:
os: [ubuntu-18.04]
python-version: [3.7, 3.8, 3.9]
fail-fast: false
steps:
- uses: actions/checkout@v2
with:
fetch-depth: 0
- name: Setup Python ${{ matrix.python-version }}
uses: actions/setup-python@v2
with:
python-version: ${{ matrix.python-version }}
cache: 'pip'
cache-dependency-path: '**/requirements-ci.txt'
- name: Install Python dependencies
run: |
grep -v '^#' ./requirements-ci.txt | xargs -n 1 -L 1 pip install
- name: Cache kaldifeat
id: my-cache
uses: actions/cache@v2
with:
path: |
~/tmp/kaldifeat
key: cache-tmp-${{ matrix.python-version }}
- name: Install kaldifeat
if: steps.my-cache.outputs.cache-hit != 'true'
shell: bash
run: |
.github/scripts/install-kaldifeat.sh
- name: Cache LibriSpeech test-clean and test-other datasets
id: libri-test-clean-and-test-other-data
uses: actions/cache@v2
with:
path: |
~/tmp/download
key: cache-libri-test-clean-and-test-other
- name: Download LibriSpeech test-clean and test-other
if: steps.libri-test-clean-and-test-other-data.outputs.cache-hit != 'true'
shell: bash
run: |
.github/scripts/download-librispeech-test-clean-and-test-other-dataset.sh
- name: Prepare manifests for LibriSpeech test-clean and test-other
shell: bash
run: |
.github/scripts/prepare-librispeech-test-clean-and-test-other-manifests.sh
- name: Cache LibriSpeech test-clean and test-other fbank features
id: libri-test-clean-and-test-other-fbank
uses: actions/cache@v2
with:
path: |
~/tmp/fbank-libri
key: cache-libri-fbank-test-clean-and-test-other
- name: Compute fbank for LibriSpeech test-clean and test-other
if: steps.libri-test-clean-and-test-other-fbank.outputs.cache-hit != 'true'
shell: bash
run: |
.github/scripts/compute-fbank-librispeech-test-clean-and-test-other.sh
- name: Inference with pre-trained model
shell: bash
env:
GITHUB_EVENT_NAME: ${{ github.event_name }}
GITHUB_EVENT_LABEL_NAME: ${{ github.event.label.name }}
run: |
mkdir -p egs/librispeech/ASR/data
ln -sfv ~/tmp/fbank-libri egs/librispeech/ASR/data/fbank
ls -lh egs/librispeech/ASR/data/*
sudo apt-get -qq install git-lfs tree sox
export PYTHONPATH=$PWD:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/kaldifeat/python:$PYTHONPATH
export PYTHONPATH=~/tmp/kaldifeat/build/lib:$PYTHONPATH
.github/scripts/run-librispeech-pruned-transducer-stateless5-2022-05-13.sh
- name: Display decoding results for librispeech pruned_transducer_stateless5
if: github.event_name == 'schedule' || github.event.label.name == 'run-decode'
shell: bash
run: |
cd egs/librispeech/ASR/
tree ./pruned_transducer_stateless5/exp
cd pruned_transducer_stateless5
echo "results for pruned_transducer_stateless5"
echo "===greedy search==="
find exp/greedy_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
find exp/greedy_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
echo "===fast_beam_search==="
find exp/fast_beam_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
find exp/fast_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
echo "===modified beam search==="
find exp/modified_beam_search -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
find exp/modified_beam_search -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
- name: Upload decoding results for librispeech pruned_transducer_stateless5
uses: actions/upload-artifact@v2
if: github.event_name == 'schedule' || github.event.label.name == 'run-decode'
with:
name: torch-${{ matrix.torch }}-python-${{ matrix.python-version }}-ubuntu-18.04-cpu-pruned_transducer_stateless5-2022-05-13
path: egs/librispeech/ASR/pruned_transducer_stateless5/exp/

View File

@ -21,6 +21,7 @@ We provide 6 recipes at present:
- [TED-LIUM3][tedlium3]
- [GigaSpeech][gigaspeech]
- [Aidatatang_200zh][aidatatang_200zh]
- [WenetSpeech][wenetspeech]
### yesno
@ -232,6 +233,20 @@ We provide one model for this recipe: [Pruned stateless RNN-T: Conformer encoder
We provide a Colab notebook to run a pre-trained Pruned Transducer Stateless model: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1wNSnSj3T5oOctbh5IGCa393gKOoQw2GH?usp=sharing)
### WenetSpeech
We provide one model for this recipe: [Pruned stateless RNN-T: Conformer encoder + Embedding decoder + k2 pruned RNN-T loss][WenetSpeech_pruned_transducer_stateless2].
#### Pruned stateless RNN-T: Conformer encoder + Embedding decoder + k2 pruned RNN-T loss (trained with L subset)
| | Dev | Test-Net | Test-Meeting |
|----------------------|-------|----------|--------------|
| greedy search | 7.80 | 8.75 | 13.49 |
| fast beam search | 7.94 | 8.74 | 13.80 |
| modified beam search | 7.76 | 8.71 | 13.41 |
We provide a Colab notebook to run a pre-trained Pruned Transducer Stateless model: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1EV4e1CHa1GZgEF-bZgizqI9RyFFehIiN?usp=sharing)
## Deployment with C++
Once you have trained a model in icefall, you may want to deploy it with C++,
@ -258,6 +273,7 @@ Please see: [![Open In Colab](https://colab.research.google.com/assets/colab-bad
[GigaSpeech_conformer_ctc]: egs/gigaspeech/ASR/conformer_ctc
[GigaSpeech_pruned_transducer_stateless2]: egs/gigaspeech/ASR/pruned_transducer_stateless2
[Aidatatang_200zh_pruned_transducer_stateless2]: egs/aidatatang_200zh/ASR/pruned_transducer_stateless2
[WenetSpeech_pruned_transducer_stateless2]: egs/wenetspeech/ASR/pruned_transducer_stateless2
[yesno]: egs/yesno/ASR
[librispeech]: egs/librispeech/ASR
[aishell]: egs/aishell/ASR
@ -265,4 +281,5 @@ Please see: [![Open In Colab](https://colab.research.google.com/assets/colab-bad
[tedlium3]: egs/tedlium3/ASR
[gigaspeech]: egs/gigaspeech/ASR
[aidatatang_200zh]: egs/aidatatang_200zh/ASR
[wenetspeech]: egs/wenetspeech/ASR
[k2]: https://github.com/k2-fsa/k2

View File

@ -19,6 +19,8 @@ The following table lists the differences among them.
| `pruned_transducer_stateless` | Conformer | Embedding + Conv1d | Using k2 pruned RNN-T loss |
| `pruned_transducer_stateless2` | Conformer(modified) | Embedding + Conv1d | Using k2 pruned RNN-T loss |
| `pruned_transducer_stateless3` | Conformer(modified) | Embedding + Conv1d | Using k2 pruned RNN-T loss + using GigaSpeech as extra training data |
| `pruned_transducer_stateless4` | Conformer(modified) | Embedding + Conv1d | same as pruned_transducer_stateless2 + save averaged models periodically during training |
| `pruned_transducer_stateless5` | Conformer(modified) | Embedding + Conv1d | same as pruned_transducer_stateless4 + more layers + random combiner|
The decoder in `transducer_stateless` is modified from the paper

View File

@ -1,9 +1,202 @@
## Results
### LibriSpeech BPE training results (Pruned Transducer 3, 2022-04-29)
### LibriSpeech BPE training results (Pruned Stateless Transducer 5)
[pruned_transducer_stateless5](./pruned_transducer_stateless5)
Same as `Pruned Stateless Transducer 2` but with more layers.
See <https://github.com/k2-fsa/icefall/pull/330>
Note that models in `pruned_transducer_stateless` and `pruned_transducer_stateless2`
have about 80 M parameters.
The notations `large` and `medium` below are from the [Conformer](https://arxiv.org/pdf/2005.08100.pdf)
paper, where the large model has about 118 M parameters and the medium model
has 30.8 M parameters.
#### Large
Number of model parameters 118129516 (i.e, 118.13 M).
| | test-clean | test-other | comment |
|-------------------------------------|------------|------------|----------------------------------------|
| greedy search (max sym per frame 1) | 2.39 | 5.57 | --epoch 39 --avg 7 --max-duration 600 |
| modified beam search | 2.35 | 5.50 | --epoch 39 --avg 7 --max-duration 600 |
| fast beam search | 2.38 | 5.50 | --epoch 39 --avg 7 --max-duration 600 |
The training commands are:
```bash
export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
./pruned_transducer_stateless5/train.py \
--world-size 8 \
--num-epochs 40 \
--start-epoch 0 \
--full-libri 1 \
--exp-dir pruned_transducer_stateless5/exp-L \
--max-duration 300 \
--use-fp16 0 \
--num-encoder-layers 18 \
--dim-feedforward 2048 \
--nhead 8 \
--encoder-dim 512 \
--decoder-dim 512 \
--joiner-dim 512
```
The tensorboard log can be found at
<https://tensorboard.dev/experiment/Zq0h3KpnQ2igWbeR4U82Pw/>
The decoding commands are:
```bash
for method in greedy_search modified_beam_search fast_beam_search; do
./pruned_transducer_stateless5/decode.py \
--epoch 39 \
--avg 7 \
--exp-dir ./pruned_transducer_stateless5/exp-L \
--max-duration 600 \
--decoding-method $method \
--max-sym-per-frame 1 \
--num-encoder-layers 18 \
--dim-feedforward 2048 \
--nhead 8 \
--encoder-dim 512 \
--decoder-dim 512 \
--joiner-dim 512
done
```
You can find a pretrained model, training logs, decoding logs, and decoding
results at:
<https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless5-2022-05-13>
#### Medium
Number of model parameters 30896748 (i.e, 30.9 M).
| | test-clean | test-other | comment |
|-------------------------------------|------------|------------|-----------------------------------------|
| greedy search (max sym per frame 1) | 2.88 | 6.69 | --epoch 39 --avg 17 --max-duration 600 |
| modified beam search | 2.83 | 6.59 | --epoch 39 --avg 17 --max-duration 600 |
| fast beam search | 2.83 | 6.61 | --epoch 39 --avg 17 --max-duration 600 |
The training commands are:
```bash
export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
./pruned_transducer_stateless5/train.py \
--world-size 8 \
--num-epochs 40 \
--start-epoch 0 \
--full-libri 1 \
--exp-dir pruned_transducer_stateless5/exp-M \
--max-duration 300 \
--use-fp16 0 \
--num-encoder-layers 18 \
--dim-feedforward 1024 \
--nhead 4 \
--encoder-dim 256 \
--decoder-dim 512 \
--joiner-dim 512
```
The tensorboard log can be found at
<https://tensorboard.dev/experiment/bOQvULPsQ1iL7xpdI0VbXw/>
The decoding commands are:
```bash
for method in greedy_search modified_beam_search fast_beam_search; do
./pruned_transducer_stateless5/decode.py \
--epoch 39 \
--avg 17 \
--exp-dir ./pruned_transducer_stateless5/exp-M \
--max-duration 600 \
--decoding-method $method \
--max-sym-per-frame 1 \
--num-encoder-layers 18 \
--dim-feedforward 1024 \
--nhead 4 \
--encoder-dim 256 \
--decoder-dim 512 \
--joiner-dim 512
done
```
You can find a pretrained model, training logs, decoding logs, and decoding
results at:
<https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless5-M-2022-05-13>
#### Baseline-2
It has 88.98 M parameters. Compared to the model in pruned_transducer_stateless2, its has more
layers (24 v.s 12) but a narrower model (1536 feedforward dim and 384 encoder dim vs 2048 feed forward dim and 512 encoder dim).
| | test-clean | test-other | comment |
|-------------------------------------|------------|------------|-----------------------------------------|
| greedy search (max sym per frame 1) | 2.41 | 5.70 | --epoch 31 --avg 17 --max-duration 600 |
| modified beam search | 2.41 | 5.69 | --epoch 31 --avg 17 --max-duration 600 |
| fast beam search | 2.41 | 5.69 | --epoch 31 --avg 17 --max-duration 600 |
```bash
export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
./pruned_transducer_stateless5/train.py \
--world-size 8 \
--num-epochs 40 \
--start-epoch 0 \
--full-libri 1 \
--exp-dir pruned_transducer_stateless5/exp \
--max-duration 300 \
--use-fp16 0 \
--num-encoder-layers 24 \
--dim-feedforward 1536 \
--nhead 8 \
--encoder-dim 384 \
--decoder-dim 512 \
--joiner-dim 512
```
The tensorboard log can be found at
<https://tensorboard.dev/experiment/73oY9U1mQiq0tbbcovZplw/>
**Caution**: The training script is updated so that epochs are counted from 1
after the training.
The decoding commands are:
```bash
for method in greedy_search modified_beam_search fast_beam_search; do
./pruned_transducer_stateless5/decode.py \
--epoch 31 \
--avg 17 \
--exp-dir ./pruned_transducer_stateless5/exp-M \
--max-duration 600 \
--decoding-method $method \
--max-sym-per-frame 1 \
--num-encoder-layers 24 \
--dim-feedforward 1536 \
--nhead 8 \
--encoder-dim 384 \
--decoder-dim 512 \
--joiner-dim 512
done
```
You can find a pretrained model, training logs, decoding logs, and decoding
results at:
<https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless5-narrower-2022-05-13>
### LibriSpeech BPE training results (Pruned Stateless Transducer 3, 2022-04-29)
[pruned_transducer_stateless3](./pruned_transducer_stateless3)
Same as `Pruned Transducer 2` but using the XL subset from
Same as `Pruned Stateless Transducer 2` but using the XL subset from
[GigaSpeech](https://github.com/SpeechColab/GigaSpeech) as extra training data.
During training, it selects either a batch from GigaSpeech with prob `giga_prob`
@ -104,6 +297,7 @@ done
The following table shows the
[Nbest oracle WER](http://kaldi-asr.org/doc/lattices.html#lattices_operations_oracle)
for fast beam search.
| epoch | avg | num_paths | nbest_scale | test-clean | test-other |
|-------|-----|-----------|-------------|------------|------------|
| 27 | 10 | 50 | 0.5 | 0.91 | 2.74 |

View File

@ -19,40 +19,40 @@
Usage:
(1) greedy search
./pruned_transducer_stateless2/decode.py \
--epoch 28 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless2/exp \
--max-duration 600 \
--decoding-method greedy_search
--epoch 28 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless2/exp \
--max-duration 600 \
--decoding-method greedy_search
(2) beam search (not recommended)
./pruned_transducer_stateless2/decode.py \
--epoch 28 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless2/exp \
--max-duration 600 \
--decoding-method beam_search \
--beam-size 4
--epoch 28 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless2/exp \
--max-duration 600 \
--decoding-method beam_search \
--beam-size 4
(3) modified beam search
./pruned_transducer_stateless2/decode.py \
--epoch 28 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless2/exp \
--max-duration 600 \
--decoding-method modified_beam_search \
--beam-size 4
--epoch 28 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless2/exp \
--max-duration 600 \
--decoding-method modified_beam_search \
--beam-size 4
(4) fast beam search
./pruned_transducer_stateless2/decode.py \
--epoch 28 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless2/exp \
--max-duration 600 \
--decoding-method fast_beam_search \
--beam 4 \
--max-contexts 4 \
--max-states 8
--epoch 28 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless2/exp \
--max-duration 600 \
--decoding-method fast_beam_search \
--beam 4 \
--max-contexts 4 \
--max-states 8
"""
@ -485,7 +485,7 @@ def main():
sp = spm.SentencePieceProcessor()
sp.load(params.bpe_model)
# <blk> and <unk> is defined in local/train_bpe_model.py
# <blk> and <unk> are defined in local/train_bpe_model.py
params.blank_id = sp.piece_to_id("<blk>")
params.unk_id = sp.piece_to_id("<unk>")
params.vocab_size = sp.get_piece_size()

View File

@ -51,9 +51,10 @@ class Transducer(nn.Module):
is (N, U) and its output shape is (N, U, decoder_dim).
It should contain one attribute: `blank_id`.
joiner:
It has two inputs with shapes: (N, T, encoder_dim) and (N, U, decoder_dim).
Its output shape is (N, T, U, vocab_size). Note that its output contains
unnormalized probs, i.e., not processed by log-softmax.
It has two inputs with shapes: (N, T, encoder_dim) and
(N, U, decoder_dim).
Its output shape is (N, T, U, vocab_size). Note that its output
contains unnormalized probs, i.e., not processed by log-softmax.
"""
super().__init__()
assert isinstance(encoder, EncoderInterface), type(encoder)

View File

@ -20,40 +20,40 @@
Usage:
(1) greedy search
./pruned_transducer_stateless4/decode.py \
--epoch 30 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless4/exp \
--max-duration 600 \
--decoding-method greedy_search
--epoch 30 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless4/exp \
--max-duration 600 \
--decoding-method greedy_search
(2) beam search (not recommended)
./pruned_transducer_stateless4/decode.py \
--epoch 30 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless4/exp \
--max-duration 600 \
--decoding-method beam_search \
--beam-size 4
--epoch 30 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless4/exp \
--max-duration 600 \
--decoding-method beam_search \
--beam-size 4
(3) modified beam search
./pruned_transducer_stateless4/decode.py \
--epoch 30 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless4/exp \
--max-duration 600 \
--decoding-method modified_beam_search \
--beam-size 4
--epoch 30 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless4/exp \
--max-duration 600 \
--decoding-method modified_beam_search \
--beam-size 4
(4) fast beam search
./pruned_transducer_stateless4/decode.py \
--epoch 30 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless4/exp \
--max-duration 600 \
--decoding-method fast_beam_search \
--beam 4 \
--max-contexts 4 \
--max-states 8
--epoch 30 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless4/exp \
--max-duration 600 \
--decoding-method fast_beam_search \
--beam 4 \
--max-contexts 4 \
--max-states 8
"""
@ -502,7 +502,7 @@ def main():
sp = spm.SentencePieceProcessor()
sp.load(params.bpe_model)
# <blk> and <unk> is defined in local/train_bpe_model.py
# <blk> and <unk> are defined in local/train_bpe_model.py
params.blank_id = sp.piece_to_id("<blk>")
params.unk_id = sp.piece_to_id("<unk>")
params.vocab_size = sp.get_piece_size()
@ -571,9 +571,9 @@ def main():
)
)
else:
assert params.avg > 0
assert params.avg > 0, params.avg
start = params.epoch - params.avg
assert start >= 1
assert start >= 1, start
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
logging.info(

View File

@ -0,0 +1 @@
../pruned_transducer_stateless2/asr_datamodule.py

View File

@ -0,0 +1 @@
../pruned_transducer_stateless2/beam_search.py

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,635 @@
#!/usr/bin/env python3
#
# Copyright 2021-2022 Xiaomi Corporation (Author: Fangjun Kuang,
# Zengwei Yao)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Usage:
(1) greedy search
./pruned_transducer_stateless5/decode.py \
--epoch 28 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless5/exp \
--max-duration 600 \
--decoding-method greedy_search
(2) beam search (not recommended)
./pruned_transducer_stateless5/decode.py \
--epoch 28 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless5/exp \
--max-duration 600 \
--decoding-method beam_search \
--beam-size 4
(3) modified beam search
./pruned_transducer_stateless5/decode.py \
--epoch 28 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless5/exp \
--max-duration 600 \
--decoding-method modified_beam_search \
--beam-size 4
(4) fast beam search
./pruned_transducer_stateless5/decode.py \
--epoch 28 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless5/exp \
--max-duration 600 \
--decoding-method fast_beam_search \
--beam 4 \
--max-contexts 4 \
--max-states 8
"""
import argparse
import logging
from collections import defaultdict
from pathlib import Path
from typing import Dict, List, Optional, Tuple
import k2
import sentencepiece as spm
import torch
import torch.nn as nn
from asr_datamodule import LibriSpeechAsrDataModule
from beam_search import (
beam_search,
fast_beam_search_one_best,
greedy_search,
greedy_search_batch,
modified_beam_search,
)
from train import add_model_arguments, get_params, get_transducer_model
from icefall.checkpoint import (
average_checkpoints,
average_checkpoints_with_averaged_model,
find_checkpoints,
load_checkpoint,
)
from icefall.utils import (
AttributeDict,
setup_logger,
store_transcripts,
str2bool,
write_error_stats,
)
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--epoch",
type=int,
default=30,
help="""It specifies the checkpoint to use for decoding.
Note: Epoch counts from 1.
You can specify --avg to use more checkpoints for model averaging.""",
)
parser.add_argument(
"--iter",
type=int,
default=0,
help="""If positive, --epoch is ignored and it
will use the checkpoint exp_dir/checkpoint-iter.pt.
You can specify --avg to use more checkpoints for model averaging.
""",
)
parser.add_argument(
"--avg",
type=int,
default=15,
help="Number of checkpoints to average. Automatically select "
"consecutive checkpoints before the checkpoint specified by "
"'--epoch' and '--iter'",
)
parser.add_argument(
"--use-averaged-model",
type=str2bool,
default=False,
help="Whether to load averaged model. Currently it only supports "
"using --epoch. If True, it would decode with the averaged model "
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
"Actually only the models with epoch number of `epoch-avg` and "
"`epoch` are loaded for averaging. ",
)
parser.add_argument(
"--exp-dir",
type=str,
default="pruned_transducer_stateless5/exp",
help="The experiment dir",
)
parser.add_argument(
"--bpe-model",
type=str,
default="data/lang_bpe_500/bpe.model",
help="Path to the BPE model",
)
parser.add_argument(
"--decoding-method",
type=str,
default="greedy_search",
help="""Possible values are:
- greedy_search
- beam_search
- modified_beam_search
- fast_beam_search
""",
)
parser.add_argument(
"--beam-size",
type=int,
default=4,
help="""An integer indicating how many candidates we will keep for each
frame. Used only when --decoding-method is beam_search or
modified_beam_search.""",
)
parser.add_argument(
"--beam",
type=float,
default=4,
help="""A floating point value to calculate the cutoff score during beam
search (i.e., `cutoff = max-score - beam`), which is the same as the
`beam` in Kaldi.
Used only when --decoding-method is fast_beam_search""",
)
parser.add_argument(
"--max-contexts",
type=int,
default=4,
help="""Used only when --decoding-method is
fast_beam_search""",
)
parser.add_argument(
"--max-states",
type=int,
default=8,
help="""Used only when --decoding-method is
fast_beam_search""",
)
parser.add_argument(
"--context-size",
type=int,
default=2,
help="The context size in the decoder. 1 means bigram; "
"2 means tri-gram",
)
parser.add_argument(
"--max-sym-per-frame",
type=int,
default=1,
help="""Maximum number of symbols per frame.
Used only when --decoding_method is greedy_search""",
)
add_model_arguments(parser)
return parser
def decode_one_batch(
params: AttributeDict,
model: nn.Module,
sp: spm.SentencePieceProcessor,
batch: dict,
decoding_graph: Optional[k2.Fsa] = None,
) -> Dict[str, List[List[str]]]:
"""Decode one batch and return the result in a dict. The dict has the
following format:
- key: It indicates the setting used for decoding. For example,
if greedy_search is used, it would be "greedy_search"
If beam search with a beam size of 7 is used, it would be
"beam_7"
- value: It contains the decoding result. `len(value)` equals to
batch size. `value[i]` is the decoding result for the i-th
utterance in the given batch.
Args:
params:
It's the return value of :func:`get_params`.
model:
The neural model.
sp:
The BPE model.
batch:
It is the return value from iterating
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
for the format of the `batch`.
decoding_graph:
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
only when --decoding_method is fast_beam_search.
Returns:
Return the decoding result. See above description for the format of
the returned dict.
"""
device = next(model.parameters()).device
feature = batch["inputs"]
assert feature.ndim == 3
feature = feature.to(device)
# at entry, feature is (N, T, C)
supervisions = batch["supervisions"]
feature_lens = supervisions["num_frames"].to(device)
encoder_out, encoder_out_lens = model.encoder(
x=feature, x_lens=feature_lens
)
hyps = []
if params.decoding_method == "fast_beam_search":
hyp_tokens = fast_beam_search_one_best(
model=model,
decoding_graph=decoding_graph,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam,
max_contexts=params.max_contexts,
max_states=params.max_states,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
elif (
params.decoding_method == "greedy_search"
and params.max_sym_per_frame == 1
):
hyp_tokens = greedy_search_batch(
model=model,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
elif params.decoding_method == "modified_beam_search":
hyp_tokens = modified_beam_search(
model=model,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam_size,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
else:
batch_size = encoder_out.size(0)
for i in range(batch_size):
# fmt: off
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
# fmt: on
if params.decoding_method == "greedy_search":
hyp = greedy_search(
model=model,
encoder_out=encoder_out_i,
max_sym_per_frame=params.max_sym_per_frame,
)
elif params.decoding_method == "beam_search":
hyp = beam_search(
model=model,
encoder_out=encoder_out_i,
beam=params.beam_size,
)
else:
raise ValueError(
f"Unsupported decoding method: {params.decoding_method}"
)
hyps.append(sp.decode(hyp).split())
if params.decoding_method == "greedy_search":
return {"greedy_search": hyps}
elif params.decoding_method == "fast_beam_search":
return {
(
f"beam_{params.beam}_"
f"max_contexts_{params.max_contexts}_"
f"max_states_{params.max_states}"
): hyps
}
else:
return {f"beam_size_{params.beam_size}": hyps}
def decode_dataset(
dl: torch.utils.data.DataLoader,
params: AttributeDict,
model: nn.Module,
sp: spm.SentencePieceProcessor,
decoding_graph: Optional[k2.Fsa] = None,
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
"""Decode dataset.
Args:
dl:
PyTorch's dataloader containing the dataset to decode.
params:
It is returned by :func:`get_params`.
model:
The neural model.
sp:
The BPE model.
decoding_graph:
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
only when --decoding_method is fast_beam_search.
Returns:
Return a dict, whose key may be "greedy_search" if greedy search
is used, or it may be "beam_7" if beam size of 7 is used.
Its value is a list of tuples. Each tuple contains two elements:
The first is the reference transcript, and the second is the
predicted result.
"""
num_cuts = 0
try:
num_batches = len(dl)
except TypeError:
num_batches = "?"
if params.decoding_method == "greedy_search":
log_interval = 50
else:
log_interval = 20
results = defaultdict(list)
for batch_idx, batch in enumerate(dl):
texts = batch["supervisions"]["text"]
hyps_dict = decode_one_batch(
params=params,
model=model,
sp=sp,
decoding_graph=decoding_graph,
batch=batch,
)
for name, hyps in hyps_dict.items():
this_batch = []
assert len(hyps) == len(texts)
for hyp_words, ref_text in zip(hyps, texts):
ref_words = ref_text.split()
this_batch.append((ref_words, hyp_words))
results[name].extend(this_batch)
num_cuts += len(texts)
if batch_idx % log_interval == 0:
batch_str = f"{batch_idx}/{num_batches}"
logging.info(
f"batch {batch_str}, cuts processed until now is {num_cuts}"
)
return results
def save_results(
params: AttributeDict,
test_set_name: str,
results_dict: Dict[str, List[Tuple[List[int], List[int]]]],
):
test_set_wers = dict()
for key, results in results_dict.items():
recog_path = (
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
)
store_transcripts(filename=recog_path, texts=results)
logging.info(f"The transcripts are stored in {recog_path}")
# The following prints out WERs, per-word error statistics and aligned
# ref/hyp pairs.
errs_filename = (
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_filename, "w") as f:
wer = write_error_stats(
f, f"{test_set_name}-{key}", results, enable_log=True
)
test_set_wers[key] = wer
logging.info("Wrote detailed error stats to {}".format(errs_filename))
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
errs_info = (
params.res_dir
/ f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_info, "w") as f:
print("settings\tWER", file=f)
for key, val in test_set_wers:
print("{}\t{}".format(key, val), file=f)
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
note = "\tbest for {}".format(test_set_name)
for key, val in test_set_wers:
s += "{}\t{}{}\n".format(key, val, note)
note = ""
logging.info(s)
@torch.no_grad()
def main():
parser = get_parser()
LibriSpeechAsrDataModule.add_arguments(parser)
args = parser.parse_args()
args.exp_dir = Path(args.exp_dir)
params = get_params()
params.update(vars(args))
assert params.decoding_method in (
"greedy_search",
"beam_search",
"fast_beam_search",
"modified_beam_search",
)
params.res_dir = params.exp_dir / params.decoding_method
if params.iter > 0:
params.suffix = f"iter-{params.iter}-avg-{params.avg}"
else:
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
if "fast_beam_search" in params.decoding_method:
params.suffix += f"-beam-{params.beam}"
params.suffix += f"-max-contexts-{params.max_contexts}"
params.suffix += f"-max-states-{params.max_states}"
elif "beam_search" in params.decoding_method:
params.suffix += (
f"-{params.decoding_method}-beam-size-{params.beam_size}"
)
else:
params.suffix += f"-context-{params.context_size}"
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
if params.use_averaged_model:
params.suffix += "-use-averaged-model"
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
logging.info("Decoding started")
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"Device: {device}")
sp = spm.SentencePieceProcessor()
sp.load(params.bpe_model)
# <blk> and <unk> are defined in local/train_bpe_model.py
params.blank_id = sp.piece_to_id("<blk>")
params.unk_id = sp.piece_to_id("<unk>")
params.vocab_size = sp.get_piece_size()
logging.info(params)
logging.info("About to create model")
model = get_transducer_model(params)
if not params.use_averaged_model:
if params.iter > 0:
filenames = find_checkpoints(
params.exp_dir, iteration=-params.iter
)[: params.avg]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
elif params.avg == 1:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
else:
start = params.epoch - params.avg + 1
filenames = []
for i in range(start, params.epoch + 1):
if i >= 1:
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
else:
if params.iter > 0:
filenames = find_checkpoints(
params.exp_dir, iteration=-params.iter
)[: params.avg + 1]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg + 1:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
filename_start = filenames[-1]
filename_end = filenames[0]
logging.info(
"Calculating the averaged model over iteration checkpoints"
f" from {filename_start} (excluded) to {filename_end}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
else:
assert params.avg > 0, params.avg
start = params.epoch - params.avg
assert start >= 1, start
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
logging.info(
f"Calculating the averaged model over epoch range from "
f"{start} (excluded) to {params.epoch}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
model.to(device)
model.eval()
if params.decoding_method == "fast_beam_search":
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
else:
decoding_graph = None
num_param = sum([p.numel() for p in model.parameters()])
logging.info(f"Number of model parameters: {num_param}")
librispeech = LibriSpeechAsrDataModule(args)
test_clean_cuts = librispeech.test_clean_cuts()
test_other_cuts = librispeech.test_other_cuts()
test_clean_dl = librispeech.test_dataloaders(test_clean_cuts)
test_other_dl = librispeech.test_dataloaders(test_other_cuts)
test_sets = ["test-clean", "test-other"]
test_dl = [test_clean_dl, test_other_dl]
for test_set, test_dl in zip(test_sets, test_dl):
results_dict = decode_dataset(
dl=test_dl,
params=params,
model=model,
sp=sp,
decoding_graph=decoding_graph,
)
save_results(
params=params,
test_set_name=test_set,
results_dict=results_dict,
)
logging.info("Done!")
if __name__ == "__main__":
main()

View File

@ -0,0 +1 @@
../pruned_transducer_stateless2/decoder.py

View File

@ -0,0 +1 @@
../pruned_transducer_stateless2/encoder_interface.py

View File

@ -0,0 +1,275 @@
#!/usr/bin/env python3
#
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This script converts several saved checkpoints
# to a single one using model averaging.
"""
Usage:
./pruned_transducer_stateless5/export.py \
--exp-dir ./pruned_transducer_stateless5/exp \
--bpe-model data/lang_bpe_500/bpe.model \
--epoch 20 \
--avg 10
It will generate a file exp_dir/pretrained.pt
To use the generated file with `pruned_transducer_stateless5/decode.py`,
you can do:
cd /path/to/exp_dir
ln -s pretrained.pt epoch-9999.pt
cd /path/to/egs/librispeech/ASR
./pruned_transducer_stateless5/decode.py \
--exp-dir ./pruned_transducer_stateless5/exp \
--epoch 9999 \
--avg 1 \
--max-duration 600 \
--decoding-method greedy_search \
--bpe-model data/lang_bpe_500/bpe.model
"""
import argparse
import logging
from pathlib import Path
import sentencepiece as spm
import torch
from train import add_model_arguments, get_params, get_transducer_model
from icefall.checkpoint import (
average_checkpoints,
average_checkpoints_with_averaged_model,
find_checkpoints,
load_checkpoint,
)
from icefall.utils import str2bool
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--epoch",
type=int,
default=28,
help="""It specifies the checkpoint to use for averaging.
Note: Epoch counts from 1.
You can specify --avg to use more checkpoints for model averaging.""",
)
parser.add_argument(
"--iter",
type=int,
default=0,
help="""If positive, --epoch is ignored and it
will use the checkpoint exp_dir/checkpoint-iter.pt.
You can specify --avg to use more checkpoints for model averaging.
""",
)
parser.add_argument(
"--avg",
type=int,
default=15,
help="Number of checkpoints to average. Automatically select "
"consecutive checkpoints before the checkpoint specified by "
"'--epoch' and '--iter'",
)
parser.add_argument(
"--use-averaged-model",
type=str2bool,
default=False,
help="Whether to load averaged model. Currently it only supports "
"using --epoch. If True, it would decode with the averaged model "
"over the epoch range from `epoch-avg` (excluded) to `epoch`."
"Actually only the models with epoch number of `epoch-avg` and "
"`epoch` are loaded for averaging. ",
)
parser.add_argument(
"--exp-dir",
type=str,
default="pruned_transducer_stateless5/exp",
help="""It specifies the directory where all training related
files, e.g., checkpoints, log, etc, are saved
""",
)
parser.add_argument(
"--bpe-model",
type=str,
default="data/lang_bpe_500/bpe.model",
help="Path to the BPE model",
)
parser.add_argument(
"--jit",
type=str2bool,
default=False,
help="""True to save a model after applying torch.jit.script.
""",
)
parser.add_argument(
"--context-size",
type=int,
default=2,
help="The context size in the decoder. 1 means bigram; "
"2 means tri-gram",
)
add_model_arguments(parser)
return parser
def main():
args = get_parser().parse_args()
args.exp_dir = Path(args.exp_dir)
assert args.jit is False, "Support torchscript will be added later"
params = get_params()
params.update(vars(args))
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"device: {device}")
sp = spm.SentencePieceProcessor()
sp.load(params.bpe_model)
# <blk> is defined in local/train_bpe_model.py
params.blank_id = sp.piece_to_id("<blk>")
params.vocab_size = sp.get_piece_size()
logging.info(params)
logging.info("About to create model")
model = get_transducer_model(params)
if not params.use_averaged_model:
if params.iter > 0:
filenames = find_checkpoints(
params.exp_dir, iteration=-params.iter
)[: params.avg]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
elif params.avg == 1:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
else:
start = params.epoch - params.avg + 1
filenames = []
for i in range(start, params.epoch + 1):
if i >= 1:
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
else:
if params.iter > 0:
filenames = find_checkpoints(
params.exp_dir, iteration=-params.iter
)[: params.avg + 1]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for"
f" --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg + 1:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
filename_start = filenames[-1]
filename_end = filenames[0]
logging.info(
"Calculating the averaged model over iteration checkpoints"
f" from {filename_start} (excluded) to {filename_end}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
else:
assert params.avg > 0, params.avg
start = params.epoch - params.avg
assert start >= 1, start
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
logging.info(
f"Calculating the averaged model over epoch range from "
f"{start} (excluded) to {params.epoch}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
model.eval()
model.to("cpu")
model.eval()
if params.jit:
logging.info("Using torch.jit.script")
model = torch.jit.script(model)
filename = params.exp_dir / "cpu_jit.pt"
model.save(str(filename))
logging.info(f"Saved to {filename}")
else:
logging.info("Not using torch.jit.script")
# Save it using a format so that it can be loaded
# by :func:`load_checkpoint`
filename = params.exp_dir / "pretrained.pt"
torch.save({"model": model.state_dict()}, str(filename))
logging.info(f"Saved to {filename}")
if __name__ == "__main__":
formatter = (
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
)
logging.basicConfig(format=formatter, level=logging.INFO)
main()

View File

@ -0,0 +1 @@
../pruned_transducer_stateless2/joiner.py

View File

@ -0,0 +1 @@
../pruned_transducer_stateless2/model.py

View File

@ -0,0 +1 @@
../pruned_transducer_stateless2/optim.py

View File

@ -0,0 +1,352 @@
#!/usr/bin/env python3
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Usage:
(1) greedy search
./pruned_transducer_stateless5/pretrained.py \
--checkpoint ./pruned_transducer_stateless5/exp/pretrained.pt \
--bpe-model ./data/lang_bpe_500/bpe.model \
--method greedy_search \
/path/to/foo.wav \
/path/to/bar.wav
(2) beam search
./pruned_transducer_stateless5/pretrained.py \
--checkpoint ./pruned_transducer_stateless5/exp/pretrained.pt \
--bpe-model ./data/lang_bpe_500/bpe.model \
--method beam_search \
--beam-size 4 \
/path/to/foo.wav \
/path/to/bar.wav
(3) modified beam search
./pruned_transducer_stateless5/pretrained.py \
--checkpoint ./pruned_transducer_stateless5/exp/pretrained.pt \
--bpe-model ./data/lang_bpe_500/bpe.model \
--method modified_beam_search \
--beam-size 4 \
/path/to/foo.wav \
/path/to/bar.wav
(4) fast beam search
./pruned_transducer_stateless5/pretrained.py \
--checkpoint ./pruned_transducer_stateless5/exp/pretrained.pt \
--bpe-model ./data/lang_bpe_500/bpe.model \
--method fast_beam_search \
--beam-size 4 \
/path/to/foo.wav \
/path/to/bar.wav
You can also use `./pruned_transducer_stateless5/exp/epoch-xx.pt`.
Note: ./pruned_transducer_stateless5/exp/pretrained.pt is generated by
./pruned_transducer_stateless5/export.py
"""
import argparse
import logging
import math
from typing import List
import k2
import kaldifeat
import sentencepiece as spm
import torch
import torchaudio
from beam_search import (
beam_search,
fast_beam_search_one_best,
greedy_search,
greedy_search_batch,
modified_beam_search,
)
from torch.nn.utils.rnn import pad_sequence
from train import add_model_arguments, get_params, get_transducer_model
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--checkpoint",
type=str,
required=True,
help="Path to the checkpoint. "
"The checkpoint is assumed to be saved by "
"icefall.checkpoint.save_checkpoint().",
)
parser.add_argument(
"--bpe-model",
type=str,
help="""Path to bpe.model.""",
)
parser.add_argument(
"--method",
type=str,
default="greedy_search",
help="""Possible values are:
- greedy_search
- beam_search
- modified_beam_search
- fast_beam_search
""",
)
parser.add_argument(
"sound_files",
type=str,
nargs="+",
help="The input sound file(s) to transcribe. "
"Supported formats are those supported by torchaudio.load(). "
"For example, wav and flac are supported. "
"The sample rate has to be 16kHz.",
)
parser.add_argument(
"--sample-rate",
type=int,
default=16000,
help="The sample rate of the input sound file",
)
parser.add_argument(
"--beam-size",
type=int,
default=4,
help="""An integer indicating how many candidates we will keep for each
frame. Used only when --method is beam_search or
modified_beam_search.""",
)
parser.add_argument(
"--beam",
type=float,
default=4,
help="""A floating point value to calculate the cutoff score during beam
search (i.e., `cutoff = max-score - beam`), which is the same as the
`beam` in Kaldi.
Used only when --method is fast_beam_search""",
)
parser.add_argument(
"--max-contexts",
type=int,
default=4,
help="""Used only when --method is fast_beam_search""",
)
parser.add_argument(
"--max-states",
type=int,
default=8,
help="""Used only when --method is fast_beam_search""",
)
parser.add_argument(
"--context-size",
type=int,
default=2,
help="The context size in the decoder. 1 means bigram; "
"2 means tri-gram",
)
parser.add_argument(
"--max-sym-per-frame",
type=int,
default=1,
help="""Maximum number of symbols per frame. Used only when
--method is greedy_search.
""",
)
add_model_arguments(parser)
return parser
def read_sound_files(
filenames: List[str], expected_sample_rate: float
) -> List[torch.Tensor]:
"""Read a list of sound files into a list 1-D float32 torch tensors.
Args:
filenames:
A list of sound filenames.
expected_sample_rate:
The expected sample rate of the sound files.
Returns:
Return a list of 1-D float32 torch tensors.
"""
ans = []
for f in filenames:
wave, sample_rate = torchaudio.load(f)
assert sample_rate == expected_sample_rate, (
f"expected sample rate: {expected_sample_rate}. "
f"Given: {sample_rate}"
)
# We use only the first channel
ans.append(wave[0])
return ans
@torch.no_grad()
def main():
parser = get_parser()
args = parser.parse_args()
params = get_params()
params.update(vars(args))
sp = spm.SentencePieceProcessor()
sp.load(params.bpe_model)
# <blk> is defined in local/train_bpe_model.py
params.blank_id = sp.piece_to_id("<blk>")
params.unk_id = sp.piece_to_id("<unk>")
params.vocab_size = sp.get_piece_size()
logging.info(f"{params}")
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"device: {device}")
logging.info("Creating model")
model = get_transducer_model(params)
num_param = sum([p.numel() for p in model.parameters()])
logging.info(f"Number of model parameters: {num_param}")
checkpoint = torch.load(args.checkpoint, map_location="cpu")
model.load_state_dict(checkpoint["model"], strict=False)
model.to(device)
model.eval()
model.device = device
logging.info("Constructing Fbank computer")
opts = kaldifeat.FbankOptions()
opts.device = device
opts.frame_opts.dither = 0
opts.frame_opts.snip_edges = False
opts.frame_opts.samp_freq = params.sample_rate
opts.mel_opts.num_bins = params.feature_dim
fbank = kaldifeat.Fbank(opts)
logging.info(f"Reading sound files: {params.sound_files}")
waves = read_sound_files(
filenames=params.sound_files, expected_sample_rate=params.sample_rate
)
waves = [w.to(device) for w in waves]
logging.info("Decoding started")
features = fbank(waves)
feature_lengths = [f.size(0) for f in features]
features = pad_sequence(
features, batch_first=True, padding_value=math.log(1e-10)
)
feature_lengths = torch.tensor(feature_lengths, device=device)
encoder_out, encoder_out_lens = model.encoder(
x=features, x_lens=feature_lengths
)
num_waves = encoder_out.size(0)
hyps = []
msg = f"Using {params.method}"
if params.method == "beam_search":
msg += f" with beam size {params.beam_size}"
logging.info(msg)
if params.method == "fast_beam_search":
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
hyp_tokens = fast_beam_search_one_best(
model=model,
decoding_graph=decoding_graph,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam,
max_contexts=params.max_contexts,
max_states=params.max_states,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
elif params.method == "modified_beam_search":
hyp_tokens = modified_beam_search(
model=model,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam_size,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
elif params.method == "greedy_search" and params.max_sym_per_frame == 1:
hyp_tokens = greedy_search_batch(
model=model,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
else:
for i in range(num_waves):
# fmt: off
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
# fmt: on
if params.method == "greedy_search":
hyp = greedy_search(
model=model,
encoder_out=encoder_out_i,
max_sym_per_frame=params.max_sym_per_frame,
)
elif params.method == "beam_search":
hyp = beam_search(
model=model,
encoder_out=encoder_out_i,
beam=params.beam_size,
)
else:
raise ValueError(f"Unsupported method: {params.method}")
hyps.append(sp.decode(hyp).split())
s = "\n"
for filename, hyp in zip(params.sound_files, hyps):
words = " ".join(hyp)
s += f"{filename}:\n{words}\n\n"
logging.info(s)
logging.info("Decoding Done")
if __name__ == "__main__":
formatter = (
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
)
logging.basicConfig(format=formatter, level=logging.INFO)
main()

View File

@ -0,0 +1 @@
../pruned_transducer_stateless2/scaling.py

View File

@ -0,0 +1,65 @@
#!/usr/bin/env python3
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
To run this file, do:
cd icefall/egs/librispeech/ASR
python ./pruned_transducer_stateless4/test_model.py
"""
from train import get_params, get_transducer_model
def test_model_1():
params = get_params()
params.vocab_size = 500
params.blank_id = 0
params.context_size = 2
params.num_encoder_layers = 24
params.dim_feedforward = 1536 # 384 * 4
params.encoder_dim = 384
model = get_transducer_model(params)
num_param = sum([p.numel() for p in model.parameters()])
print(f"Number of model parameters: {num_param}")
# See Table 1 from https://arxiv.org/pdf/2005.08100.pdf
def test_model_M():
params = get_params()
params.vocab_size = 500
params.blank_id = 0
params.context_size = 2
params.num_encoder_layers = 18
params.dim_feedforward = 1024
params.encoder_dim = 256
params.nhead = 4
params.decoder_dim = 512
params.joiner_dim = 512
model = get_transducer_model(params)
num_param = sum([p.numel() for p in model.parameters()])
print(f"Number of model parameters: {num_param}")
def main():
# test_model_1()
test_model_M()
if __name__ == "__main__":
main()

File diff suppressed because it is too large Load Diff

View File

@ -27,17 +27,15 @@ import logging
from pathlib import Path
import torch
from lhotse import LilcomChunkyWriter, CutSet, combine
from lhotse import CutSet, LilcomChunkyWriter, combine
from lhotse.features.kaldifeat import (
KaldifeatFbank,
KaldifeatFbankConfig,
KaldifeatMelOptions,
KaldifeatFrameOptions,
KaldifeatMelOptions,
)
from lhotse.recipes.utils import read_manifests_if_cached
from icefall.utils import get_executor
# Torch's multithreaded behavior needs to be disabled or
# it wastes a lot of CPU and slow things down.
# Do this outside of main() in case it needs to take effect
@ -82,23 +80,28 @@ def compute_fbank_musan():
# create chunks of Musan with duration 5 - 10 seconds
musan_cuts = (
CutSet.from_manifests(
recordings=combine(part["recordings"] for part in manifests.values())
recordings=combine(
part["recordings"] for part in manifests.values()
)
)
.cut_into_windows(10.0)
.filter(lambda c: c.duration > 5)
.compute_and_store_features_batch(
extractor=extractor,
storage_path=output_dir / f"feats_musan",
manifest_path=src_dir / f"cuts_musan.jsonl.gz",
storage_path=output_dir / "feats_musan",
batch_duration=500,
num_workers=4,
storage_type=LilcomChunkyWriter,
)
)
logging.info(f"Saving to {musan_cuts_path}")
musan_cuts.to_file(musan_cuts_path)
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
formatter = (
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
)
logging.basicConfig(format=formatter, level=logging.INFO)
compute_fbank_musan()

View File

@ -25,17 +25,15 @@ The generated fbank features are saved in data/fbank.
import argparse
import logging
from pathlib import Path
from tqdm import tqdm
import torch
from lhotse import load_manifest_lazy, LilcomChunkyWriter
from lhotse import LilcomChunkyWriter, load_manifest_lazy
from lhotse.features.kaldifeat import (
KaldifeatFbank,
KaldifeatFbankConfig,
KaldifeatMelOptions,
KaldifeatFrameOptions,
KaldifeatMelOptions,
)
from lhotse.manipulation import combine
# Torch's multithreaded behavior needs to be disabled or
# it wastes a lot of CPU and slow things down.
@ -97,27 +95,32 @@ def compute_fbank_spgispeech(args):
)
if args.train:
logging.info(f"Processing train")
cut_set = load_manifest_lazy(src_dir / f"cuts_train_raw.jsonl.gz")
logging.info("Processing train")
cut_set = load_manifest_lazy(src_dir / "cuts_train_raw.jsonl.gz")
chunk_size = len(cut_set) // args.num_splits
cut_sets = cut_set.split_lazy(
output_dir=src_dir / f"cuts_train_raw_split{args.num_splits}",
chunk_size=chunk_size,
)
start = args.start
stop = min(args.stop, args.num_splits) if args.stop > 0 else args.num_splits
stop = (
min(args.stop, args.num_splits)
if args.stop > 0
else args.num_splits
)
num_digits = len(str(args.num_splits))
for i in range(start, stop):
idx = f"{i + 1}".zfill(num_digits)
cuts_train_idx_path = src_dir / f"cuts_train_{idx}.jsonl.gz"
logging.info(f"Processing train split {i}")
cs = cut_sets[i].compute_and_store_features_batch(
extractor=extractor,
storage_path=output_dir / f"feats_train_{idx}",
manifest_path=src_dir / f"cuts_train_{idx}.jsonl.gz",
batch_duration=500,
num_workers=4,
storage_type=LilcomChunkyWriter,
)
cs.to_file(cuts_train_idx_path)
if args.test:
for partition in ["dev", "val"]:
@ -125,7 +128,9 @@ def compute_fbank_spgispeech(args):
logging.info(f"{partition} already exists - skipping.")
continue
logging.info(f"Processing {partition}")
cut_set = load_manifest_lazy(src_dir / f"cuts_{partition}_raw.jsonl.gz")
cut_set = load_manifest_lazy(
src_dir / f"cuts_{partition}_raw.jsonl.gz"
)
cut_set = cut_set.compute_and_store_features_batch(
extractor=extractor,
storage_path=output_dir / f"feats_{partition}",
@ -137,8 +142,9 @@ def compute_fbank_spgispeech(args):
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
formatter = (
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
)
logging.basicConfig(format=formatter, level=logging.INFO)
args = get_args()

View File

@ -24,7 +24,6 @@ from pathlib import Path
import torch
from lhotse import CutSet
from lhotse.recipes.utils import read_manifests_if_cached
# Torch's multithreaded behavior needs to be disabled or
@ -56,7 +55,9 @@ def split_spgispeech_train():
# Add speed perturbation
train_cuts = (
train_cuts + train_cuts.perturb_speed(0.9) + train_cuts.perturb_speed(1.1)
train_cuts
+ train_cuts.perturb_speed(0.9)
+ train_cuts.perturb_speed(1.1)
)
# Write the manifests to disk.
@ -72,8 +73,9 @@ def split_spgispeech_train():
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
formatter = (
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
)
logging.basicConfig(format=formatter, level=logging.INFO)
split_spgispeech_train()

View File

@ -0,0 +1,19 @@
# Introduction
This recipe includes some different ASR models trained with WenetSpeech.
[./RESULTS.md](./RESULTS.md) contains the latest results.
# Transducers
There are various folders containing the name `transducer` in this folder.
The following table lists the differences among them.
| | Encoder | Decoder | Comment |
|---------------------------------------|---------------------|--------------------|-----------------------------|
| `pruned_transducer_stateless2` | Conformer(modified) | Embedding + Conv1d | Using k2 pruned RNN-T loss | |
The decoder in `transducer_stateless` is modified from the paper
[Rnn-Transducer with Stateless Prediction Network](https://ieeexplore.ieee.org/document/9054419/).
We place an additional Conv1d layer right after the input embedding layer.

View File

@ -0,0 +1,93 @@
## Results
### WenetSpeech char-based training results (Pruned Transducer 2)
#### 2022-05-19
Using the codes from this PR https://github.com/k2-fsa/icefall/pull/349.
When training with the L subset, the WERs are
| | dev | test-net | test-meeting | comment |
|------------------------------------|-------|----------|--------------|------------------------------------------|
| greedy search | 7.80 | 8.75 | 13.49 | --epoch 10, --avg 2, --max-duration 100 |
| modified beam search (beam size 4) | 7.76 | 8.71 | 13.41 | --epoch 10, --avg 2, --max-duration 100 |
| fast beam search (set as default) | 7.94 | 8.74 | 13.80 | --epoch 10, --avg 2, --max-duration 1500 |
The training command for reproducing is given below:
```
export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
./pruned_transducer_stateless2/train.py \
--lang-dir data/lang_char \
--exp-dir pruned_transducer_stateless2/exp \
--world-size 8 \
--num-epochs 15 \
--start-epoch 0 \
--max-duration 180 \
--valid-interval 3000 \
--model-warm-step 3000 \
--save-every-n 8000 \
--training-subset L
```
The tensorboard training log can be found at
https://tensorboard.dev/experiment/wM4ZUNtASRavJx79EOYYcg/#scalars
The decoding command is:
```
epoch=10
avg=2
## greedy search
./pruned_transducer_stateless2/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir ./pruned_transducer_stateless2/exp \
--lang-dir data/lang_char \
--max-duration 100 \
--decoding-method greedy_search
## modified beam search
./pruned_transducer_stateless2/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir ./pruned_transducer_stateless2/exp \
--lang-dir data/lang_char \
--max-duration 100 \
--decoding-method modified_beam_search \
--beam-size 4
## fast beam search
./pruned_transducer_stateless2/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir ./pruned_transducer_stateless2/exp \
--lang-dir data/lang_char \
--max-duration 1500 \
--decoding-method fast_beam_search \
--beam 4 \
--max-contexts 4 \
--max-states 8
```
When training with the M subset, the WERs are
| | dev | test-net | test-meeting | comment |
|------------------------------------|--------|-----------|---------------|-------------------------------------------|
| greedy search | 10.40 | 11.31 | 19.64 | --epoch 29, --avg 11, --max-duration 100 |
| modified beam search (beam size 4) | 9.85 | 11.04 | 18.20 | --epoch 29, --avg 11, --max-duration 100 |
| fast beam search (set as default) | 10.18 | 11.10 | 19.32 | --epoch 29, --avg 11, --max-duration 1500 |
When training with the S subset, the WERs are
| | dev | test-net | test-meeting | comment |
|------------------------------------|--------|-----------|---------------|-------------------------------------------|
| greedy search | 19.92 | 25.20 | 35.35 | --epoch 29, --avg 24, --max-duration 100 |
| modified beam search (beam size 4) | 18.62 | 23.88 | 33.80 | --epoch 29, --avg 24, --max-duration 100 |
| fast beam search (set as default) | 19.31 | 24.41 | 34.87 | --epoch 29, --avg 24, --max-duration 1500 |
A pre-trained model and decoding logs can be found at <https://huggingface.co/luomingshuang/icefall_asr_wenetspeech_pruned_transducer_stateless2>

View File

@ -0,0 +1 @@
../../../librispeech/ASR/local/compute_fbank_musan.py

View File

@ -0,0 +1,93 @@
#!/usr/bin/env python3
# Copyright 2021 Johns Hopkins University (Piotr Żelasko)
# Copyright 2021 Xiaomi Corp. (Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
from pathlib import Path
import torch
from lhotse import (
CutSet,
KaldifeatFbank,
KaldifeatFbankConfig,
LilcomHdf5Writer,
)
# Torch's multithreaded behavior needs to be disabled or
# it wastes a lot of CPU and slow things down.
# Do this outside of main() in case it needs to take effect
# even when we are not invoking the main (e.g. when spawning subprocesses).
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
def compute_fbank_wenetspeech_dev_test():
in_out_dir = Path("data/fbank")
# number of workers in dataloader
num_workers = 42
# number of seconds in a batch
batch_duration = 600
subsets = ("S", "M", "DEV", "TEST_NET", "TEST_MEETING")
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
extractor = KaldifeatFbank(KaldifeatFbankConfig(device=device))
logging.info(f"device: {device}")
for partition in subsets:
cuts_path = in_out_dir / f"cuts_{partition}.jsonl.gz"
if cuts_path.is_file():
logging.info(f"{cuts_path} exists - skipping")
continue
raw_cuts_path = in_out_dir / f"cuts_{partition}_raw.jsonl.gz"
logging.info(f"Loading {raw_cuts_path}")
cut_set = CutSet.from_file(raw_cuts_path)
logging.info("Computing features")
cut_set = cut_set.compute_and_store_features_batch(
extractor=extractor,
storage_path=f"{in_out_dir}/feats_{partition}",
num_workers=num_workers,
batch_duration=batch_duration,
storage_type=LilcomHdf5Writer,
)
cut_set = cut_set.trim_to_supervisions(
keep_overlapping=False, min_duration=None
)
logging.info(f"Saving to {cuts_path}")
cut_set.to_file(cuts_path)
def main():
formatter = (
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
)
logging.basicConfig(format=formatter, level=logging.INFO)
compute_fbank_wenetspeech_dev_test()
if __name__ == "__main__":
main()

View File

@ -0,0 +1,181 @@
#!/usr/bin/env python3
# Copyright 2021 Johns Hopkins University (Piotr Żelasko)
# Copyright 2021 Xiaomi Corp. (Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import logging
from datetime import datetime
from pathlib import Path
import torch
from lhotse import (
ChunkedLilcomHdf5Writer,
CutSet,
KaldifeatFbank,
KaldifeatFbankConfig,
set_audio_duration_mismatch_tolerance,
set_caching_enabled,
)
# Torch's multithreaded behavior needs to be disabled or
# it wastes a lot of CPU and slow things down.
# Do this outside of main() in case it needs to take effect
# even when we are not invoking the main (e.g. when spawning subprocesses).
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--training-subset",
type=str,
default="L",
help="The training subset for computing fbank feature.",
)
parser.add_argument(
"--num-workers",
type=int,
default=20,
help="Number of dataloading workers used for reading the audio.",
)
parser.add_argument(
"--batch-duration",
type=float,
default=600.0,
help="The maximum number of audio seconds in a batch."
"Determines batch size dynamically.",
)
parser.add_argument(
"--num-splits",
type=int,
required=True,
help="The number of splits of the L subset",
)
parser.add_argument(
"--start",
type=int,
default=0,
help="Process pieces starting from this number (inclusive).",
)
parser.add_argument(
"--stop",
type=int,
default=-1,
help="Stop processing pieces until this number (exclusive).",
)
return parser
def compute_fbank_wenetspeech_splits(args):
subset = args.training_subset
subset = str(subset)
num_splits = args.num_splits
output_dir = f"data/fbank/{subset}_split_{num_splits}"
output_dir = Path(output_dir)
assert output_dir.exists(), f"{output_dir} does not exist!"
num_digits = len(str(num_splits))
start = args.start
stop = args.stop
if stop < start:
stop = num_splits
stop = min(stop, num_splits)
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
extractor = KaldifeatFbank(KaldifeatFbankConfig(device=device))
logging.info(f"device: {device}")
set_audio_duration_mismatch_tolerance(0.01) # 10ms tolerance
set_caching_enabled(False)
for i in range(start, stop):
idx = f"{i + 1}".zfill(num_digits)
logging.info(f"Processing {idx}/{num_splits}")
cuts_path = output_dir / f"cuts_{subset}.{idx}.jsonl.gz"
if cuts_path.is_file():
logging.info(f"{cuts_path} exists - skipping")
continue
raw_cuts_path = output_dir / f"cuts_{subset}_raw.{idx}.jsonl.gz"
logging.info(f"Loading {raw_cuts_path}")
cut_set = CutSet.from_file(raw_cuts_path)
logging.info("Computing features")
cut_set = cut_set.compute_and_store_features_batch(
extractor=extractor,
storage_path=f"{output_dir}/feats_{subset}_{idx}",
num_workers=args.num_workers,
batch_duration=args.batch_duration,
storage_type=ChunkedLilcomHdf5Writer,
)
logging.info("About to split cuts into smaller chunks.")
cut_set = cut_set.trim_to_supervisions(
keep_overlapping=False, min_duration=None
)
logging.info(f"Saving to {cuts_path}")
cut_set.to_file(cuts_path)
logging.info(f"Saved to {cuts_path}")
def main():
now = datetime.now()
date_time = now.strftime("%Y-%m-%d-%H-%M-%S")
log_filename = "log-compute_fbank_wenetspeech_splits"
formatter = (
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
)
log_filename = f"{log_filename}-{date_time}"
logging.basicConfig(
filename=log_filename,
format=formatter,
level=logging.INFO,
filemode="w",
)
console = logging.StreamHandler()
console.setLevel(logging.INFO)
console.setFormatter(logging.Formatter(formatter))
logging.getLogger("").addHandler(console)
parser = get_parser()
args = parser.parse_args()
logging.info(vars(args))
compute_fbank_wenetspeech_splits(args)
if __name__ == "__main__":
main()

View File

@ -0,0 +1,132 @@
#!/usr/bin/env python3
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang
# Mingshuang Luo)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This file displays duration statistics of utterances in a manifest.
You can use the displayed value to choose minimum/maximum duration
to remove short and long utterances during the training.
See the function `remove_short_and_long_utt()`
in ../../../librispeech/ASR/transducer/train.py
for usage.
"""
from lhotse import load_manifest
def main():
paths = [
"./data/fbank/cuts_S.jsonl.gz",
"./data/fbank/cuts_M.jsonl.gz",
"./data/fbank/cuts_DEV.jsonl.gz",
"./data/fbank/cuts_TEST_NET.jsonl.gz",
"./data/fbank/cuts_TEST_MEETING.jsonl.gz",
]
for path in paths:
print(f"Starting display the statistics for {path}")
cuts = load_manifest(path)
cuts.describe()
if __name__ == "__main__":
main()
"""
Starting display the statistics for ./data/fbank/cuts_S.jsonl.gz
Duration statistics (seconds):
mean 2.4
std 1.8
min 0.2
25% 1.4
50% 2.0
75% 2.9
99% 8.0
99.5% 8.7
99.9% 11.9
max 405.1
Starting display the statistics for ./data/fbank/cuts_M.jsonl.gz
Cuts count: 4543341
Total duration (hours): 3021.1
Speech duration (hours): 3021.1 (100.0%)
***
Duration statistics (seconds):
mean 2.4
std 1.6
min 0.2
25% 1.4
50% 2.0
75% 2.9
99% 8.0
99.5% 8.8
99.9% 12.1
max 405.1
Starting display the statistics for ./data/fbank/cuts_DEV.jsonl.gz
Cuts count: 13825
Total duration (hours): 20.0
Speech duration (hours): 20.0 (100.0%)
***
Duration statistics (seconds):
mean 5.2
std 2.2
min 1.0
25% 3.3
50% 4.9
75% 7.0
99% 9.6
99.5% 9.8
99.9% 10.0
max 10.0
Starting display the statistics for ./data/fbank/cuts_TEST_NET.jsonl.gz
Cuts count: 24774
Total duration (hours): 23.1
Speech duration (hours): 23.1 (100.0%)
***
Duration statistics (seconds):
mean 3.4
std 2.6
min 0.1
25% 1.4
50% 2.4
75% 4.8
99% 13.1
99.5% 14.5
99.9% 18.5
max 33.3
Starting display the statistics for ./data/fbank/cuts_TEST_MEETING.jsonl.gz
Cuts count: 8370
Total duration (hours): 15.2
Speech duration (hours): 15.2 (100.0%)
***
Duration statistics (seconds):
mean 6.5
std 3.5
min 0.8
25% 3.7
50% 5.8
75% 8.8
99% 15.2
99.5% 16.0
99.9% 18.8
max 24.6
"""

View File

@ -0,0 +1,246 @@
#!/usr/bin/env python3
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang,
# Wei Kang,
# Mingshuang Luo)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script takes as input `lang_dir`, which should contain::
- lang_dir/text,
- lang_dir/words.txt
and generates the following files in the directory `lang_dir`:
- lexicon.txt
- lexicon_disambig.txt
- L.pt
- L_disambig.pt
- tokens.txt
"""
import argparse
import re
from pathlib import Path
from typing import Dict, List
import k2
import torch
from prepare_lang import (
Lexicon,
add_disambig_symbols,
add_self_loops,
write_lexicon,
write_mapping,
)
def lexicon_to_fst_no_sil(
lexicon: Lexicon,
token2id: Dict[str, int],
word2id: Dict[str, int],
need_self_loops: bool = False,
) -> k2.Fsa:
"""Convert a lexicon to an FST (in k2 format).
Args:
lexicon:
The input lexicon. See also :func:`read_lexicon`
token2id:
A dict mapping tokens to IDs.
word2id:
A dict mapping words to IDs.
need_self_loops:
If True, add self-loop to states with non-epsilon output symbols
on at least one arc out of the state. The input label for this
self loop is `token2id["#0"]` and the output label is `word2id["#0"]`.
Returns:
Return an instance of `k2.Fsa` representing the given lexicon.
"""
loop_state = 0 # words enter and leave from here
next_state = 1 # the next un-allocated state, will be incremented as we go
arcs = []
# The blank symbol <blk> is defined in local/train_bpe_model.py
assert token2id["<blk>"] == 0
assert word2id["<eps>"] == 0
eps = 0
for word, pieces in lexicon:
assert len(pieces) > 0, f"{word} has no pronunciations"
cur_state = loop_state
word = word2id[word]
pieces = [
token2id[i] if i in token2id else token2id["<unk>"] for i in pieces
]
for i in range(len(pieces) - 1):
w = word if i == 0 else eps
arcs.append([cur_state, next_state, pieces[i], w, 0])
cur_state = next_state
next_state += 1
# now for the last piece of this word
i = len(pieces) - 1
w = word if i == 0 else eps
arcs.append([cur_state, loop_state, pieces[i], w, 0])
if need_self_loops:
disambig_token = token2id["#0"]
disambig_word = word2id["#0"]
arcs = add_self_loops(
arcs,
disambig_token=disambig_token,
disambig_word=disambig_word,
)
final_state = next_state
arcs.append([loop_state, final_state, -1, -1, 0])
arcs.append([final_state])
arcs = sorted(arcs, key=lambda arc: arc[0])
arcs = [[str(i) for i in arc] for arc in arcs]
arcs = [" ".join(arc) for arc in arcs]
arcs = "\n".join(arcs)
fsa = k2.Fsa.from_str(arcs, acceptor=False)
return fsa
def contain_oov(token_sym_table: Dict[str, int], tokens: List[str]) -> bool:
"""Check if all the given tokens are in token symbol table.
Args:
token_sym_table:
Token symbol table that contains all the valid tokens.
tokens:
A list of tokens.
Returns:
Return True if there is any token not in the token_sym_table,
otherwise False.
"""
for tok in tokens:
if tok not in token_sym_table:
return True
return False
def generate_lexicon(
token_sym_table: Dict[str, int], words: List[str]
) -> Lexicon:
"""Generate a lexicon from a word list and token_sym_table.
Args:
token_sym_table:
Token symbol table that mapping token to token ids.
words:
A list of strings representing words.
Returns:
Return a dict whose keys are words and values are the corresponding
tokens.
"""
lexicon = []
for word in words:
chars = list(word.strip(" \t"))
if contain_oov(token_sym_table, chars):
continue
lexicon.append((word, chars))
# The OOV word is <UNK>
lexicon.append(("<UNK>", ["<unk>"]))
return lexicon
def generate_tokens(text_file: str) -> Dict[str, int]:
"""Generate tokens from the given text file.
Args:
text_file:
A file that contains text lines to generate tokens.
Returns:
Return a dict whose keys are tokens and values are token ids ranged
from 0 to len(keys) - 1.
"""
tokens: Dict[str, int] = dict()
tokens["<blk>"] = 0
tokens["<sos/eos>"] = 1
tokens["<unk>"] = 2
whitespace = re.compile(r"([ \t\r\n]+)")
with open(text_file, "r", encoding="utf-8") as f:
for line in f:
line = re.sub(whitespace, "", line)
tokens_list = list(line)
for token in tokens_list:
if token not in tokens:
tokens[token] = len(tokens)
return tokens
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--lang-dir", type=str, help="The lang directory.")
args = parser.parse_args()
lang_dir = Path(args.lang_dir)
text_file = lang_dir / "text"
word_sym_table = k2.SymbolTable.from_file(lang_dir / "words.txt")
words = word_sym_table.symbols
excluded = ["<eps>", "!SIL", "<SPOKEN_NOISE>", "<UNK>", "#0", "<s>", "</s>"]
for w in excluded:
if w in words:
words.remove(w)
token_sym_table = generate_tokens(text_file)
lexicon = generate_lexicon(token_sym_table, words)
lexicon_disambig, max_disambig = add_disambig_symbols(lexicon)
next_token_id = max(token_sym_table.values()) + 1
for i in range(max_disambig + 1):
disambig = f"#{i}"
assert disambig not in token_sym_table
token_sym_table[disambig] = next_token_id
next_token_id += 1
word_sym_table.add("#0")
word_sym_table.add("<s>")
word_sym_table.add("</s>")
write_mapping(lang_dir / "tokens.txt", token_sym_table)
write_lexicon(lang_dir / "lexicon.txt", lexicon)
write_lexicon(lang_dir / "lexicon_disambig.txt", lexicon_disambig)
L = lexicon_to_fst_no_sil(
lexicon,
token2id=token_sym_table,
word2id=word_sym_table,
)
L_disambig = lexicon_to_fst_no_sil(
lexicon_disambig,
token2id=token_sym_table,
word2id=word_sym_table,
need_self_loops=True,
)
torch.save(L.as_dict(), lang_dir / "L.pt")
torch.save(L_disambig.as_dict(), lang_dir / "L_disambig.pt")
if __name__ == "__main__":
main()

View File

@ -0,0 +1 @@
../../../librispeech/ASR/local/prepare_lang.py

View File

@ -0,0 +1,84 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright 2021 Xiaomi Corp. (authors: Mingshuang Luo)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script takes as input words.txt without ids:
- words_no_ids.txt
and generates the new words.txt with related ids.
- words.txt
"""
import argparse
import logging
from tqdm import tqdm
def get_parser():
parser = argparse.ArgumentParser(
description="Prepare words.txt",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"--input-file",
default="data/lang_char/words_no_ids.txt",
type=str,
help="the words file without ids for WenetSpeech",
)
parser.add_argument(
"--output-file",
default="data/lang_char/words.txt",
type=str,
help="the words file with ids for WenetSpeech",
)
return parser
def main():
parser = get_parser()
args = parser.parse_args()
input_file = args.input_file
output_file = args.output_file
f = open(input_file, "r", encoding="utf-8")
lines = f.readlines()
new_lines = []
add_words = ["<eps> 0", "!SIL 1", "<SPOKEN_NOISE> 2", "<UNK> 3"]
new_lines.extend(add_words)
logging.info("Starting reading the input file")
for i in tqdm(range(len(lines))):
x = lines[i]
idx = 4 + i
new_line = str(x.strip("\n")) + " " + str(idx)
new_lines.append(new_line)
logging.info("Starting writing the words.txt")
f_out = open(output_file, "w", encoding="utf-8")
for line in new_lines:
f_out.write(line)
f_out.write("\n")
if __name__ == "__main__":
main()

View File

@ -0,0 +1,120 @@
#!/usr/bin/env python3
# Copyright 2021 Johns Hopkins University (Piotr Żelasko)
# Copyright 2021 Xiaomi Corp. (Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import re
from pathlib import Path
from lhotse import CutSet, SupervisionSegment
from lhotse.recipes.utils import read_manifests_if_cached
# Similar text filtering and normalization procedure as in:
# https://github.com/SpeechColab/WenetSpeech/blob/main/toolkits/kaldi/wenetspeech_data_prep.sh
def normalize_text(
utt: str,
# punct_pattern=re.compile(r"<(COMMA|PERIOD|QUESTIONMARK|EXCLAMATIONPOINT)>"),
punct_pattern=re.compile(r"<(PERIOD|QUESTIONMARK|EXCLAMATIONPOINT)>"),
whitespace_pattern=re.compile(r"\s\s+"),
) -> str:
return whitespace_pattern.sub(" ", punct_pattern.sub("", utt))
def has_no_oov(
sup: SupervisionSegment,
oov_pattern=re.compile(r"<(SIL|MUSIC|NOISE|OTHER)>"),
) -> bool:
return oov_pattern.search(sup.text) is None
def preprocess_wenet_speech():
src_dir = Path("data/manifests")
output_dir = Path("data/fbank")
output_dir.mkdir(exist_ok=True)
dataset_parts = (
"L",
"M",
"S",
"DEV",
"TEST_NET",
"TEST_MEETING",
)
logging.info("Loading manifest (may take 10 minutes)")
manifests = read_manifests_if_cached(
dataset_parts=dataset_parts,
output_dir=src_dir,
suffix="jsonl.gz",
)
assert manifests is not None
for partition, m in manifests.items():
logging.info(f"Processing {partition}")
raw_cuts_path = output_dir / f"cuts_{partition}_raw.jsonl.gz"
if raw_cuts_path.is_file():
logging.info(f"{partition} already exists - skipping")
continue
# Note this step makes the recipe different than LibriSpeech:
# We must filter out some utterances and remove punctuation
# to be consistent with Kaldi.
logging.info("Filtering OOV utterances from supervisions")
m["supervisions"] = m["supervisions"].filter(has_no_oov)
logging.info(f"Normalizing text in {partition}")
for sup in m["supervisions"]:
text = str(sup.text)
logging.info(f"Original text: {text}")
sup.text = normalize_text(sup.text)
text = str(sup.text)
logging.info(f"Normalize text: {text}")
# Create long-recording cut manifests.
logging.info(f"Processing {partition}")
cut_set = CutSet.from_manifests(
recordings=m["recordings"],
supervisions=m["supervisions"],
)
# Run data augmentation that needs to be done in the
# time domain.
if partition not in ["DEV", "TEST_NET", "TEST_MEETING"]:
logging.info(
f"Speed perturb for {partition} with factors 0.9 and 1.1 "
"(Perturbing may take 8 minutes and saving may take 20 minutes)"
)
cut_set = (
cut_set
+ cut_set.perturb_speed(0.9)
+ cut_set.perturb_speed(1.1)
)
logging.info(f"Saving to {raw_cuts_path}")
cut_set.to_file(raw_cuts_path)
def main():
formatter = (
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
)
logging.basicConfig(format=formatter, level=logging.INFO)
preprocess_wenet_speech()
if __name__ == "__main__":
main()

View File

@ -0,0 +1,83 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright 2021 Xiaomi Corp. (authors: Mingshuang Luo)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script takes as input "text", which refers to the transcript file for
WenetSpeech:
- text
and generates the output file text_word_segmentation which is implemented
with word segmenting:
- text_words_segmentation
"""
import argparse
import jieba
from tqdm import tqdm
jieba.enable_paddle()
def get_parser():
parser = argparse.ArgumentParser(
description="Chinese Word Segmentation for text",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"--input-file",
default="data/lang_char/text",
type=str,
help="the input text file for WenetSpeech",
)
parser.add_argument(
"--output-file",
default="data/lang_char/text_words_segmentation",
type=str,
help="the text implemented with words segmenting for WenetSpeech",
)
return parser
def main():
parser = get_parser()
args = parser.parse_args()
input_file = args.input
output_file = args.output
f = open(input_file, "r", encoding="utf-8")
lines = f.readlines()
new_lines = []
for i in tqdm(range(len(lines))):
x = lines[i].rstrip()
seg_list = jieba.cut(x, use_paddle=True)
new_line = " ".join(seg_list)
new_lines.append(new_line)
f_new = open(output_file, "w", encoding="utf-8")
for line in new_lines:
f_new.write(line)
f_new.write("\n")
if __name__ == "__main__":
main()

View File

@ -0,0 +1,196 @@
#!/usr/bin/env python3
# Copyright 2017 Johns Hopkins University (authors: Shinji Watanabe)
# 2022 Xiaomi Corp. (authors: Mingshuang Luo)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import codecs
import re
import sys
from typing import List
from pypinyin import lazy_pinyin, pinyin
is_python2 = sys.version_info[0] == 2
def exist_or_not(i, match_pos):
start_pos = None
end_pos = None
for pos in match_pos:
if pos[0] <= i < pos[1]:
start_pos = pos[0]
end_pos = pos[1]
break
return start_pos, end_pos
def get_parser():
parser = argparse.ArgumentParser(
description="convert raw text to tokenized text",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"--nchar",
"-n",
default=1,
type=int,
help="number of characters to split, i.e., \
aabb -> a a b b with -n 1 and aa bb with -n 2",
)
parser.add_argument(
"--skip-ncols", "-s", default=0, type=int, help="skip first n columns"
)
parser.add_argument(
"--space", default="<space>", type=str, help="space symbol"
)
parser.add_argument(
"--non-lang-syms",
"-l",
default=None,
type=str,
help="list of non-linguistic symobles, e.g., <NOISE> etc.",
)
parser.add_argument(
"text", type=str, default=False, nargs="?", help="input text"
)
parser.add_argument(
"--trans_type",
"-t",
type=str,
default="char",
choices=["char", "pinyin", "lazy_pinyin"],
help="""Transcript type. char/pinyin/lazy_pinyin""",
)
return parser
def token2id(
texts, token_table, token_type: str = "lazy_pinyin", oov: str = "<unk>"
) -> List[List[int]]:
"""Convert token to id.
Args:
texts:
The input texts, it refers to the chinese text here.
token_table:
The token table is built based on "data/lang_xxx/token.txt"
token_type:
The type of token, such as "pinyin" and "lazy_pinyin".
oov:
Out of vocabulary token. When a word(token) in the transcript
does not exist in the token list, it is replaced with `oov`.
Returns:
The list of ids for the input texts.
"""
if texts is None:
raise ValueError("texts can't be None!")
else:
oov_id = token_table[oov]
ids: List[List[int]] = []
for text in texts:
chars_list = list(str(text))
if token_type == "lazy_pinyin":
text = lazy_pinyin(chars_list)
sub_ids = [
token_table[txt] if txt in token_table else oov_id
for txt in text
]
ids.append(sub_ids)
else: # token_type = "pinyin"
text = pinyin(chars_list)
sub_ids = [
token_table[txt[0]] if txt[0] in token_table else oov_id
for txt in text
]
ids.append(sub_ids)
return ids
def main():
parser = get_parser()
args = parser.parse_args()
rs = []
if args.non_lang_syms is not None:
with codecs.open(args.non_lang_syms, "r", encoding="utf-8") as f:
nls = [x.rstrip() for x in f.readlines()]
rs = [re.compile(re.escape(x)) for x in nls]
if args.text:
f = codecs.open(args.text, encoding="utf-8")
else:
f = codecs.getreader("utf-8")(
sys.stdin if is_python2 else sys.stdin.buffer
)
sys.stdout = codecs.getwriter("utf-8")(
sys.stdout if is_python2 else sys.stdout.buffer
)
line = f.readline()
n = args.nchar
while line:
x = line.split()
print(" ".join(x[: args.skip_ncols]), end=" ")
a = " ".join(x[args.skip_ncols :]) # noqa E203
# get all matched positions
match_pos = []
for r in rs:
i = 0
while i >= 0:
m = r.search(a, i)
if m:
match_pos.append([m.start(), m.end()])
i = m.end()
else:
break
if len(match_pos) > 0:
chars = []
i = 0
while i < len(a):
start_pos, end_pos = exist_or_not(i, match_pos)
if start_pos is not None:
chars.append(a[start_pos:end_pos])
i = end_pos
else:
chars.append(a[i])
i += 1
a = chars
if args.trans_type == "pinyin":
a = pinyin(list(str(a)))
a = [one[0] for one in a]
if args.trans_type == "lazy_pinyin":
a = lazy_pinyin(list(str(a)))
a = [a[j : j + n] for j in range(0, len(a), n)] # noqa E203
a_flat = []
for z in a:
a_flat.append("".join(z))
a_chars = [z.replace(" ", args.space) for z in a_flat]
print("".join(a_chars))
line = f.readline()
if __name__ == "__main__":
main()

225
egs/wenetspeech/ASR/prepare.sh Executable file
View File

@ -0,0 +1,225 @@
#!/usr/bin/env bash
set -eou pipefail
nj=15
stage=0
stop_stage=100
# Split L subset to this number of pieces
# This is to avoid OOM during feature extraction.
num_splits=1000
# We assume dl_dir (download dir) contains the following
# directories and files. If not, they will be downloaded
# by this script automatically.
#
# - $dl_dir/WenetSpeech
# You can find audio, WenetSpeech.json inside it.
# You can apply for the download credentials by following
# https://github.com/wenet-e2e/WenetSpeech#download
#
# - $dl_dir/musan
# This directory contains the following directories downloaded from
# http://www.openslr.org/17/
#
# - music
# - noise
# - speech
dl_dir=$PWD/download
. shared/parse_options.sh || exit 1
# All files generated by this script are saved in "data".
# You can safely remove "data" and rerun this script to regenerate it.
mkdir -p data
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
log "dl_dir: $dl_dir"
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
log "Stage 0: Download data"
[ ! -e $dl_dir/WenetSpeech ] && mkdir -p $dl_dir/WenetSpeech
# If you have pre-downloaded it to /path/to/WenetSpeech,
# you can create a symlink
#
# ln -sfv /path/to/WenetSpeech $dl_dir/WenetSpeech
#
if [ ! -d $dl_dir/WenetSpeech/wenet_speech ] && [ ! -f $dl_dir/WenetSpeech/metadata/v1.list ]; then
log "Stage 0: should download WenetSpeech first"
exit 1;
fi
# If you have pre-downloaded it to /path/to/musan,
# you can create a symlink
#
#ln -sfv /path/to/musan $dl_dir/musan
if [ ! -d $dl_dir/musan ]; then
lhotse download musan $dl_dir
fi
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
log "Stage 1: Prepare WenetSpeech manifest"
# We assume that you have downloaded the WenetSpeech corpus
# to $dl_dir/WenetSpeech
mkdir -p data/manifests
lhotse prepare wenet-speech $dl_dir/WenetSpeech data/manifests -j $nj
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Prepare musan manifest"
# We assume that you have downloaded the musan corpus
# to data/musan
mkdir -p data/manifests
lhotse prepare musan $dl_dir/musan data/manifests
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Preprocess WenetSpeech manifest"
if [ ! -f data/fbank/.preprocess_complete ]; then
python3 ./local/preprocess_wenetspeech.py
touch data/fbank/.preprocess_complete
fi
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Compute features for DEV and TEST subsets of WenetSpeech (may take 2 minutes)"
python3 ./local/compute_fbank_wenetspeech_dev_test.py
fi
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "Stage 5: Split S subset into ${num_splits} pieces"
split_dir=data/fbank/S_split_${num_splits}_test
if [ ! -f $split_dir/.split_completed ]; then
lhotse split $num_splits ./data/fbank/cuts_S_raw.jsonl.gz $split_dir
touch $split_dir/.split_completed
fi
fi
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
log "Stage 6: Split M subset into ${num_splits} piece"
split_dir=data/fbank/M_split_${num_splits}
if [ ! -f $split_dir/.split_completed ]; then
lhotse split $num_splits ./data/fbank/cuts_M_raw.jsonl.gz $split_dir
touch $split_dir/.split_completed
fi
fi
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
log "Stage 7: Split L subset into ${num_splits} pieces"
split_dir=data/fbank/L_split_${num_splits}
if [ ! -f $split_dir/.split_completed ]; then
lhotse split $num_splits ./data/fbank/cuts_L_raw.jsonl.gz $split_dir
touch $split_dir/.split_completed
fi
fi
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
log "Stage 8: Compute features for S"
python3 ./local/compute_fbank_wenetspeech_splits.py \
--training-subset S \
--num-workers 20 \
--batch-duration 600 \
--start 0 \
--num-splits $num_splits
fi
if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
log "Stage 9: Compute features for M"
python3 ./local/compute_fbank_wenetspeech_splits.py \
--training-subset M \
--num-workers 20 \
--batch-duration 600 \
--start 0 \
--num-splits $num_splits
fi
if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then
log "Stage 10: Compute features for L"
python3 ./local/compute_fbank_wenetspeech_splits.py \
--training-subset L \
--num-workers 20 \
--batch-duration 600 \
--start 0 \
--num-splits $num_splits
fi
if [ $stage -le 11 ] && [ $stop_stage -ge 11 ]; then
log "Stage 11: Combine features for S"
if [ ! -f data/fbank/cuts_S.jsonl.gz ]; then
pieces=$(find data/fbank/S_split_1000 -name "cuts_S.*.jsonl.gz")
lhotse combine $pieces data/fbank/cuts_S.jsonl.gz
fi
fi
if [ $stage -le 12 ] && [ $stop_stage -ge 12 ]; then
log "Stage 12: Combine features for M"
if [ ! -f data/fbank/cuts_M.jsonl.gz ]; then
pieces=$(find data/fbank/M_split_1000 -name "cuts_M.*.jsonl.gz")
lhotse combine $pieces data/fbank/cuts_M.jsonl.gz
fi
fi
if [ $stage -le 13 ] && [ $stop_stage -ge 13 ]; then
log "Stage 13: Combine features for L"
if [ ! -f data/fbank/cuts_L.jsonl.gz ]; then
pieces=$(find data/fbank/L_split_1000 -name "cuts_L.*.jsonl.gz")
lhotse combine $pieces data/fbank/cuts_L.jsonl.gz
fi
fi
if [ $stage -le 14 ] && [ $stop_stage -ge 14 ]; then
log "Stage 14: Compute fbank for musan"
mkdir -p data/fbank
./local/compute_fbank_musan.py
fi
if [ $stage -le 15 ] && [ $stop_stage -ge 15 ]; then
log "Stage 15: Prepare char based lang"
lang_char_dir=data/lang_char
mkdir -p $lang_char_dir
# Prepare text.
# Note: in Linux, you can install jq with the following command:
# wget -O jq https://github.com/stedolan/jq/release/download/jq-1.6/jq-linux64
if [ ! -f $lang_char_dir/text ]; then
gunzip -c data/manifests/supervisions_L.jsonl.gz \
| jq 'text' | sed 's/"//g' \
| ./local/text2token.py -t "char" > $lang_char_dir/text
fi
# The implementation of chinese word segmentation for text,
# and it will take about 15 minutes.
if [ ! -f $lang_char_dir/text_words_segmentation ]; then
python ./local/text2segments.py \
--input-file $lang_char_dir/text \
--output-file $lang_char_dir/text_words_segmentation
fi
cat $lang_char_dir/text_words_segmentation | sed 's/ /\n/g' \
| sort -u | sed '/^$/d' | uniq > $lang_char_dir/words_no_ids.txt
if [ ! -f $lang_char_dir/words.txt ]; then
python ./local/prepare_words.py \
--input-file $lang_char_dir/words_no_ids.txt \
--output-file $lang_char_dir/words.txt
fi
fi
if [ $stage -le 16 ] && [ $stop_stage -ge 16 ]; then
log "Stage 16: Prepare char based L_disambig.pt"
if [ ! -f data/lang_char/L_disambig.pt ]; then
python ./local/prepare_char.py \
--lang-dir data/lang_char
fi
fi

View File

@ -0,0 +1,450 @@
# Copyright 2021 Piotr Żelasko
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import inspect
import logging
from functools import lru_cache
from pathlib import Path
from typing import Any, Dict, List, Optional
import torch
from lhotse import (
CutSet,
Fbank,
FbankConfig,
load_manifest,
set_caching_enabled,
)
from lhotse.dataset import (
CutConcatenate,
CutMix,
DynamicBucketingSampler,
K2SpeechRecognitionDataset,
PrecomputedFeatures,
SingleCutSampler,
SpecAugment,
)
from lhotse.dataset.input_strategies import OnTheFlyFeatures
from lhotse.utils import fix_random_seed
from torch.utils.data import DataLoader
from icefall.utils import str2bool
set_caching_enabled(False)
torch.set_num_threads(1)
class _SeedWorkers:
def __init__(self, seed: int):
self.seed = seed
def __call__(self, worker_id: int):
fix_random_seed(self.seed + worker_id)
class WenetSpeechAsrDataModule:
"""
DataModule for k2 ASR experiments.
It assumes there is always one train and valid dataloader,
but there can be multiple test dataloaders (e.g. LibriSpeech test-clean
and test-other).
It contains all the common data pipeline modules used in ASR
experiments, e.g.:
- dynamic batch size,
- bucketing samplers,
- cut concatenation,
- augmentation,
- on-the-fly feature extraction
This class should be derived for specific corpora used in ASR tasks.
"""
def __init__(self, args: argparse.Namespace):
self.args = args
@classmethod
def add_arguments(cls, parser: argparse.ArgumentParser):
group = parser.add_argument_group(
title="ASR data related options",
description="These options are used for the preparation of "
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
"effective batch sizes, sampling strategies, applied data "
"augmentations, etc.",
)
group.add_argument(
"--manifest-dir",
type=Path,
default=Path("data/fbank"),
help="Path to directory with train/valid/test cuts.",
)
group.add_argument(
"--max-duration",
type=int,
default=200.0,
help="Maximum pooled recordings duration (seconds) in a "
"single batch. You can reduce it if it causes CUDA OOM.",
)
group.add_argument(
"--bucketing-sampler",
type=str2bool,
default=True,
help="When enabled, the batches will come from buckets of "
"similar duration (saves padding frames).",
)
group.add_argument(
"--num-buckets",
type=int,
default=300,
help="The number of buckets for the DynamicBucketingSampler"
"(you might want to increase it for larger datasets).",
)
group.add_argument(
"--concatenate-cuts",
type=str2bool,
default=False,
help="When enabled, utterances (cuts) will be concatenated "
"to minimize the amount of padding.",
)
group.add_argument(
"--duration-factor",
type=float,
default=1.0,
help="Determines the maximum duration of a concatenated cut "
"relative to the duration of the longest cut in a batch.",
)
group.add_argument(
"--gap",
type=float,
default=1.0,
help="The amount of padding (in seconds) inserted between "
"concatenated cuts. This padding is filled with noise when "
"noise augmentation is used.",
)
group.add_argument(
"--on-the-fly-feats",
type=str2bool,
default=False,
help="When enabled, use on-the-fly cut mixing and feature "
"extraction. Will drop existing precomputed feature manifests "
"if available.",
)
group.add_argument(
"--shuffle",
type=str2bool,
default=True,
help="When enabled (=default), the examples will be "
"shuffled for each epoch.",
)
group.add_argument(
"--return-cuts",
type=str2bool,
default=True,
help="When enabled, each batch will have the "
"field: batch['supervisions']['cut'] with the cuts that "
"were used to construct it.",
)
group.add_argument(
"--num-workers",
type=int,
default=2,
help="The number of training dataloader workers that "
"collect the batches.",
)
group.add_argument(
"--enable-spec-aug",
type=str2bool,
default=True,
help="When enabled, use SpecAugment for training dataset.",
)
group.add_argument(
"--spec-aug-time-warp-factor",
type=int,
default=80,
help="Used only when --enable-spec-aug is True. "
"It specifies the factor for time warping in SpecAugment. "
"Larger values mean more warping. "
"A value less than 1 means to disable time warp.",
)
group.add_argument(
"--enable-musan",
type=str2bool,
default=True,
help="When enabled, select noise from MUSAN and mix it"
"with training dataset. ",
)
group.add_argument(
"--lazy-load",
type=str2bool,
default=True,
help="lazily open CutSets to avoid OOM (for L|XL subset)",
)
group.add_argument(
"--training-subset",
type=str,
default="L",
help="The training subset for using",
)
def train_dataloaders(
self,
cuts_train: CutSet,
sampler_state_dict: Optional[Dict[str, Any]] = None,
) -> DataLoader:
"""
Args:
cuts_train:
CutSet for training.
sampler_state_dict:
The state dict for the training sampler.
"""
logging.info("About to get Musan cuts")
cuts_musan = load_manifest(
self.args.manifest_dir / "cuts_musan.json.gz"
)
transforms = []
if self.args.enable_musan:
logging.info("Enable MUSAN")
transforms.append(
CutMix(
cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True
)
)
else:
logging.info("Disable MUSAN")
if self.args.concatenate_cuts:
logging.info(
f"Using cut concatenation with duration factor "
f"{self.args.duration_factor} and gap {self.args.gap}."
)
# Cut concatenation should be the first transform in the list,
# so that if we e.g. mix noise in, it will fill the gaps between
# different utterances.
transforms = [
CutConcatenate(
duration_factor=self.args.duration_factor, gap=self.args.gap
)
] + transforms
input_transforms = []
if self.args.enable_spec_aug:
logging.info("Enable SpecAugment")
logging.info(
f"Time warp factor: {self.args.spec_aug_time_warp_factor}"
)
# Set the value of num_frame_masks according to Lhotse's version.
# In different Lhotse's versions, the default of num_frame_masks is
# different.
num_frame_masks = 10
num_frame_masks_parameter = inspect.signature(
SpecAugment.__init__
).parameters["num_frame_masks"]
if num_frame_masks_parameter.default == 1:
num_frame_masks = 2
logging.info(f"Num frame mask: {num_frame_masks}")
input_transforms.append(
SpecAugment(
time_warp_factor=self.args.spec_aug_time_warp_factor,
num_frame_masks=num_frame_masks,
features_mask_size=27,
num_feature_masks=2,
frames_mask_size=100,
)
)
else:
logging.info("Disable SpecAugment")
logging.info("About to create train dataset")
train = K2SpeechRecognitionDataset(
cut_transforms=transforms,
input_transforms=input_transforms,
return_cuts=self.args.return_cuts,
)
if self.args.on_the_fly_feats:
# NOTE: the PerturbSpeed transform should be added only if we
# remove it from data prep stage.
# Add on-the-fly speed perturbation; since originally it would
# have increased epoch size by 3, we will apply prob 2/3 and use
# 3x more epochs.
# Speed perturbation probably should come first before
# concatenation, but in principle the transforms order doesn't have
# to be strict (e.g. could be randomized)
# transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa
# Drop feats to be on the safe side.
train = K2SpeechRecognitionDataset(
cut_transforms=transforms,
input_strategy=OnTheFlyFeatures(
Fbank(FbankConfig(num_mel_bins=80))
),
input_transforms=input_transforms,
return_cuts=self.args.return_cuts,
)
if self.args.bucketing_sampler:
logging.info("Using DynamicBucketingSampler.")
train_sampler = DynamicBucketingSampler(
cuts_train,
max_duration=self.args.max_duration,
shuffle=self.args.shuffle,
num_buckets=self.args.num_buckets,
buffer_size=30000,
drop_last=True,
)
else:
logging.info("Using SingleCutSampler.")
train_sampler = SingleCutSampler(
cuts_train,
max_duration=self.args.max_duration,
shuffle=self.args.shuffle,
)
logging.info("About to create train dataloader")
# 'seed' is derived from the current random state, which will have
# previously been set in the main process.
seed = torch.randint(0, 100000, ()).item()
worker_init_fn = _SeedWorkers(seed)
train_dl = DataLoader(
train,
sampler=train_sampler,
batch_size=None,
num_workers=self.args.num_workers,
persistent_workers=False,
worker_init_fn=worker_init_fn,
)
if sampler_state_dict is not None:
logging.info("Loading sampler state dict")
train_dl.sampler.load_state_dict(sampler_state_dict)
return train_dl
def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader:
transforms = []
if self.args.concatenate_cuts:
transforms = [
CutConcatenate(
duration_factor=self.args.duration_factor, gap=self.args.gap
)
] + transforms
logging.info("About to create dev dataset")
if self.args.on_the_fly_feats:
validate = K2SpeechRecognitionDataset(
cut_transforms=transforms,
input_strategy=OnTheFlyFeatures(
Fbank(FbankConfig(num_mel_bins=80))
),
return_cuts=self.args.return_cuts,
)
else:
validate = K2SpeechRecognitionDataset(
cut_transforms=transforms,
return_cuts=self.args.return_cuts,
)
valid_sampler = DynamicBucketingSampler(
cuts_valid,
max_duration=self.args.max_duration,
rank=0,
world_size=1,
shuffle=False,
)
logging.info("About to create dev dataloader")
from lhotse.dataset.iterable_dataset import IterableDatasetWrapper
dev_iter_dataset = IterableDatasetWrapper(
dataset=validate,
sampler=valid_sampler,
)
valid_dl = DataLoader(
dev_iter_dataset,
batch_size=None,
num_workers=self.args.num_workers,
persistent_workers=False,
)
return valid_dl
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
logging.debug("About to create test dataset")
test = K2SpeechRecognitionDataset(
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
if self.args.on_the_fly_feats
else PrecomputedFeatures(),
return_cuts=self.args.return_cuts,
)
sampler = DynamicBucketingSampler(
cuts,
max_duration=self.args.max_duration,
rank=0,
world_size=1,
shuffle=False,
)
from lhotse.dataset.iterable_dataset import IterableDatasetWrapper
test_iter_dataset = IterableDatasetWrapper(
dataset=test,
sampler=sampler,
)
test_dl = DataLoader(
test_iter_dataset,
batch_size=None,
num_workers=self.args.num_workers,
)
return test_dl
@lru_cache()
def train_cuts(self) -> CutSet:
logging.info("About to get train cuts")
if self.args.lazy_load:
logging.info("use lazy cuts")
cuts_train = CutSet.from_jsonl_lazy(
self.args.manifest_dir
/ f"cuts_{self.args.training_subset}.jsonl.gz"
)
else:
cuts_train = CutSet.from_file(
self.args.manifest_dir
/ f"cuts_{self.args.training_subset}.jsonl.gz"
)
return cuts_train
@lru_cache()
def valid_cuts(self) -> CutSet:
logging.info("About to get dev cuts")
return load_manifest(self.args.manifest_dir / "cuts_DEV.jsonl.gz")
@lru_cache()
def test_net_cuts(self) -> List[CutSet]:
logging.info("About to get TEST_NET cuts")
return load_manifest(self.args.manifest_dir / "cuts_TEST_NET.jsonl.gz")
@lru_cache()
def test_meeting_cuts(self) -> List[CutSet]:
logging.info("About to get TEST_MEETING cuts")
return load_manifest(
self.args.manifest_dir / "cuts_TEST_MEETING.jsonl.gz"
)

View File

@ -0,0 +1 @@
../../../librispeech/ASR/pruned_transducer_stateless2/beam_search.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/pruned_transducer_stateless2/conformer.py

View File

@ -0,0 +1,623 @@
#!/usr/bin/env python3
#
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
# Copyright 2022 Xiaomi Corporation (Author: Mingshuang Luo)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
When training with the L subset, usage:
(1) greedy search
./pruned_transducer_stateless2/decode.py \
--epoch 10 \
--avg 2 \
--exp-dir ./pruned_transducer_stateless2/exp \
--lang-dir data/lang_char \
--max-duration 100 \
--decoding-method greedy_search
(2) modified beam search
./pruned_transducer_stateless2/decode.py \
--epoch 10 \
--avg 2 \
--exp-dir ./pruned_transducer_stateless2/exp \
--lang-dir data/lang_char \
--max-duration 100 \
--decoding-method modified_beam_search \
--beam-size 4
(3) fast beam search
./pruned_transducer_stateless2/decode.py \
--epoch 10 \
--avg 2 \
--exp-dir ./pruned_transducer_stateless2/exp \
--lang-dir data/lang_char \
--max-duration 1500 \
--decoding-method fast_beam_search \
--beam 4 \
--max-contexts 4 \
--max-states 8
"""
import argparse
import logging
from collections import defaultdict
from pathlib import Path
from typing import Dict, List, Optional, Tuple
import k2
import torch
import torch.nn as nn
from asr_datamodule import WenetSpeechAsrDataModule
from beam_search import (
beam_search,
fast_beam_search,
greedy_search,
greedy_search_batch,
modified_beam_search,
)
from train import get_params, get_transducer_model
from icefall.checkpoint import (
average_checkpoints,
find_checkpoints,
load_checkpoint,
)
from icefall.lexicon import Lexicon
from icefall.utils import (
AttributeDict,
setup_logger,
store_transcripts,
write_error_stats,
)
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--epoch",
type=int,
default=28,
help="It specifies the checkpoint to use for decoding."
"Note: Epoch counts from 0.",
)
parser.add_argument(
"--batch",
type=int,
default=None,
help="It specifies the batch checkpoint to use for decoding."
"Note: Epoch counts from 0.",
)
parser.add_argument(
"--avg",
type=int,
default=15,
help="Number of checkpoints to average. Automatically select "
"consecutive checkpoints before the checkpoint specified by "
"'--epoch'. ",
)
parser.add_argument(
"--avg-last-n",
type=int,
default=0,
help="""If positive, --epoch and --avg are ignored and it
will use the last n checkpoints exp_dir/checkpoint-xxx.pt
where xxx is the number of processed batches while
saving that checkpoint.
""",
)
parser.add_argument(
"--exp-dir",
type=str,
default="pruned_transducer_stateless2/exp",
help="The experiment dir",
)
parser.add_argument(
"--lang-dir",
type=str,
default="data/lang_char",
help="""The lang dir
It contains language related input files such as
"lexicon.txt"
""",
)
parser.add_argument(
"--decoding-method",
type=str,
default="greedy_search",
help="""Possible values are:
- greedy_search
- beam_search
- modified_beam_search
- fast_beam_search
""",
)
parser.add_argument(
"--beam-size",
type=int,
default=4,
help="""An interger indicating how many candidates we will keep for each
frame. Used only when --decoding-method is beam_search or
modified_beam_search.""",
)
parser.add_argument(
"--beam",
type=float,
default=4,
help="""A floating point value to calculate the cutoff score during beam
search (i.e., `cutoff = max-score - beam`), which is the same as the
`beam` in Kaldi.
Used only when --decoding-method is fast_beam_search""",
)
parser.add_argument(
"--max-contexts",
type=int,
default=4,
help="""Used only when --decoding-method is
fast_beam_search""",
)
parser.add_argument(
"--max-states",
type=int,
default=8,
help="""Used only when --decoding-method is
fast_beam_search""",
)
parser.add_argument(
"--context-size",
type=int,
default=2,
help="The context size in the decoder. 1 means bigram; "
"2 means tri-gram",
)
parser.add_argument(
"--max-sym-per-frame",
type=int,
default=1,
help="""Maximum number of symbols per frame.
Used only when --decoding_method is greedy_search""",
)
return parser
def decode_one_batch(
params: AttributeDict,
model: nn.Module,
lexicon: Lexicon,
batch: dict,
decoding_graph: Optional[k2.Fsa] = None,
) -> Dict[str, List[List[str]]]:
"""Decode one batch and return the result in a dict. The dict has the
following format:
- key: It indicates the setting used for decoding. For example,
if greedy_search is used, it would be "greedy_search"
If beam search with a beam size of 7 is used, it would be
"beam_7"
- value: It contains the decoding result. `len(value)` equals to
batch size. `value[i]` is the decoding result for the i-th
utterance in the given batch.
Args:
params:
It's the return value of :func:`get_params`.
model:
The neural model.
batch:
It is the return value from iterating
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
for the format of the `batch`.
decoding_graph:
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
only when --decoding_method is fast_beam_search.
Returns:
Return the decoding result. See above description for the format of
the returned dict.
"""
device = model.device
feature = batch["inputs"]
assert feature.ndim == 3
feature = feature.to(device)
# at entry, feature is (N, T, C)
supervisions = batch["supervisions"]
feature_lens = supervisions["num_frames"].to(device)
encoder_out, encoder_out_lens = model.encoder(
x=feature, x_lens=feature_lens
)
hyps = []
if params.decoding_method == "fast_beam_search":
hyp_tokens = fast_beam_search(
model=model,
decoding_graph=decoding_graph,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam,
max_contexts=params.max_contexts,
max_states=params.max_states,
)
for i in range(encoder_out.size(0)):
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
elif (
params.decoding_method == "greedy_search"
and params.max_sym_per_frame == 1
):
hyp_tokens = greedy_search_batch(
model=model,
encoder_out=encoder_out,
)
for i in range(encoder_out.size(0)):
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
elif params.decoding_method == "modified_beam_search":
hyp_tokens = modified_beam_search(
model=model,
encoder_out=encoder_out,
beam=params.beam_size,
)
for i in range(encoder_out.size(0)):
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
else:
batch_size = encoder_out.size(0)
for i in range(batch_size):
# fmt: off
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
# fmt: on
if params.decoding_method == "greedy_search":
hyp = greedy_search(
model=model,
encoder_out=encoder_out_i,
max_sym_per_frame=params.max_sym_per_frame,
)
elif params.decoding_method == "beam_search":
hyp = beam_search(
model=model,
encoder_out=encoder_out_i,
beam=params.beam_size,
)
else:
raise ValueError(
f"Unsupported decoding method: {params.decoding_method}"
)
hyps.append([lexicon.token_table[idx] for idx in hyp])
if params.decoding_method == "greedy_search":
return {"greedy_search": hyps}
elif params.decoding_method == "fast_beam_search":
return {
(
f"beam_{params.beam}_"
f"max_contexts_{params.max_contexts}_"
f"max_states_{params.max_states}"
): hyps
}
else:
return {f"beam_size_{params.beam_size}": hyps}
def decode_dataset(
dl: torch.utils.data.DataLoader,
params: AttributeDict,
model: nn.Module,
lexicon: Lexicon,
decoding_graph: Optional[k2.Fsa] = None,
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
"""Decode dataset.
Args:
dl:
PyTorch's dataloader containing the dataset to decode.
params:
It is returned by :func:`get_params`.
model:
The neural model.
decoding_graph:
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
only when --decoding_method is fast_beam_search.
Returns:
Return a dict, whose key may be "greedy_search" if greedy search
is used, or it may be "beam_7" if beam size of 7 is used.
Its value is a list of tuples. Each tuple contains two elements:
The first is the reference transcript, and the second is the
predicted result.
"""
num_cuts = 0
try:
num_batches = len(dl)
except TypeError:
num_batches = "?"
if params.decoding_method == "greedy_search":
log_interval = 100
else:
log_interval = 2
results = defaultdict(list)
for batch_idx, batch in enumerate(dl):
texts = batch["supervisions"]["text"]
texts = [list(str(text)) for text in texts]
hyps_dict = decode_one_batch(
params=params,
model=model,
lexicon=lexicon,
decoding_graph=decoding_graph,
batch=batch,
)
for name, hyps in hyps_dict.items():
this_batch = []
assert len(hyps) == len(texts)
for hyp_words, ref_text in zip(hyps, texts):
this_batch.append((ref_text, hyp_words))
results[name].extend(this_batch)
num_cuts += len(texts)
if batch_idx % log_interval == 0:
batch_str = f"{batch_idx}/{num_batches}"
logging.info(
f"batch {batch_str}, cuts processed until now is {num_cuts}"
)
return results
def save_results(
params: AttributeDict,
test_set_name: str,
results_dict: Dict[str, List[Tuple[List[int], List[int]]]],
):
test_set_wers = dict()
for key, results in results_dict.items():
recog_path = (
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
)
store_transcripts(filename=recog_path, texts=results)
logging.info(f"The transcripts are stored in {recog_path}")
# The following prints out WERs, per-word error statistics and aligned
# ref/hyp pairs.
errs_filename = (
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_filename, "w") as f:
wer = write_error_stats(
f, f"{test_set_name}-{key}", results, enable_log=True
)
test_set_wers[key] = wer
logging.info("Wrote detailed error stats to {}".format(errs_filename))
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
errs_info = (
params.res_dir
/ f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
)
with open(errs_info, "w") as f:
print("settings\tWER", file=f)
for key, val in test_set_wers:
print("{}\t{}".format(key, val), file=f)
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
note = "\tbest for {}".format(test_set_name)
for key, val in test_set_wers:
s += "{}\t{}{}\n".format(key, val, note)
note = ""
logging.info(s)
@torch.no_grad()
def main():
parser = get_parser()
WenetSpeechAsrDataModule.add_arguments(parser)
args = parser.parse_args()
args.exp_dir = Path(args.exp_dir)
params = get_params()
params.update(vars(args))
assert params.decoding_method in (
"greedy_search",
"beam_search",
"fast_beam_search",
"modified_beam_search",
)
params.res_dir = params.exp_dir / params.decoding_method
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
if "fast_beam_search" in params.decoding_method:
params.suffix += f"-beam-{params.beam}"
params.suffix += f"-max-contexts-{params.max_contexts}"
params.suffix += f"-max-states-{params.max_states}"
elif "beam_search" in params.decoding_method:
params.suffix += f"-beam-{params.beam_size}"
else:
params.suffix += f"-context-{params.context_size}"
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
logging.info("Decoding started")
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"Device: {device}")
lexicon = Lexicon(params.lang_dir)
params.blank_id = lexicon.token_table["<blk>"]
params.vocab_size = max(lexicon.tokens) + 1
logging.info(params)
logging.info("About to create model")
model = get_transducer_model(params)
if params.avg_last_n > 0:
filenames = find_checkpoints(params.exp_dir)[: params.avg_last_n]
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
elif params.avg == 1:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
elif params.batch is not None:
filenames = f"{params.exp_dir}/checkpoint-{params.batch}.pt"
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints([filenames], device=device))
else:
start = params.epoch - params.avg + 1
filenames = []
for i in range(start, params.epoch + 1):
if start >= 0:
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
model.to(device)
model.eval()
model.device = device
if params.decoding_method == "fast_beam_search":
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
else:
decoding_graph = None
num_param = sum([p.numel() for p in model.parameters()])
logging.info(f"Number of model parameters: {num_param}")
# Note: Please use "pip install webdataset==0.1.103"
# for installing the webdataset.
import glob
import os
from lhotse import CutSet
from lhotse.dataset.webdataset import export_to_webdataset
wenetspeech = WenetSpeechAsrDataModule(args)
dev = "dev"
test_net = "test_net"
test_meeting = "test_meeting"
if not os.path.exists(f"{dev}/shared-0.tar"):
os.makedirs(dev)
dev_cuts = wenetspeech.valid_cuts()
export_to_webdataset(
dev_cuts,
output_path=f"{dev}/shared-%d.tar",
shard_size=300,
)
if not os.path.exists(f"{test_net}/shared-0.tar"):
os.makedirs(test_net)
test_net_cuts = wenetspeech.test_net_cuts()
export_to_webdataset(
test_net_cuts,
output_path=f"{test_net}/shared-%d.tar",
shard_size=300,
)
if not os.path.exists(f"{test_meeting}/shared-0.tar"):
os.makedirs(test_meeting)
test_meeting_cuts = wenetspeech.test_meeting_cuts()
export_to_webdataset(
test_meeting_cuts,
output_path=f"{test_meeting}/shared-%d.tar",
shard_size=300,
)
dev_shards = [
str(path)
for path in sorted(glob.glob(os.path.join(dev, "shared-*.tar")))
]
cuts_dev_webdataset = CutSet.from_webdataset(
dev_shards,
split_by_worker=True,
split_by_node=True,
shuffle_shards=True,
)
test_net_shards = [
str(path)
for path in sorted(glob.glob(os.path.join(test_net, "shared-*.tar")))
]
cuts_test_net_webdataset = CutSet.from_webdataset(
test_net_shards,
split_by_worker=True,
split_by_node=True,
shuffle_shards=True,
)
test_meeting_shards = [
str(path)
for path in sorted(
glob.glob(os.path.join(test_meeting, "shared-*.tar"))
)
]
cuts_test_meeting_webdataset = CutSet.from_webdataset(
test_meeting_shards,
split_by_worker=True,
split_by_node=True,
shuffle_shards=True,
)
dev_dl = wenetspeech.valid_dataloaders(cuts_dev_webdataset)
test_net_dl = wenetspeech.test_dataloaders(cuts_test_net_webdataset)
test_meeting_dl = wenetspeech.test_dataloaders(cuts_test_meeting_webdataset)
test_sets = ["DEV", "TEST_NET", "TEST_MEETING"]
test_dl = [dev_dl, test_net_dl, test_meeting_dl]
for test_set, test_dl in zip(test_sets, test_dl):
results_dict = decode_dataset(
dl=test_dl,
params=params,
model=model,
lexicon=lexicon,
decoding_graph=decoding_graph,
)
save_results(
params=params,
test_set_name=test_set,
results_dict=results_dict,
)
logging.info("Done!")
if __name__ == "__main__":
main()

View File

@ -0,0 +1 @@
../../../librispeech/ASR/pruned_transducer_stateless2/decoder.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/transducer_stateless/encoder_interface.py

View File

@ -0,0 +1,178 @@
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This script converts several saved checkpoints
# to a single one using model averaging.
"""
Usage:
./pruned_transducer_stateless2/export.py \
--exp-dir ./pruned_transducer_stateless2/exp \
--lang-dir data/lang_char \
--epoch 10 \
--avg 2
It will generate a file exp_dir/pretrained.pt
To use the generated file with `pruned_transducer_stateless2/decode.py`,
you can do:
cd /path/to/exp_dir
ln -s pretrained.pt epoch-9999.pt
cd /path/to/egs/wenetspeech/ASR
./pruned_transducer_stateless2/decode.py \
--exp-dir ./pruned_transducer_stateless2/exp \
--epoch 10 \
--avg 2 \
--max-duration 100 \
--lang-dir data/lang_char
"""
import argparse
import logging
from pathlib import Path
import torch
from train import get_params, get_transducer_model
from icefall.checkpoint import average_checkpoints, load_checkpoint
from icefall.lexicon import Lexicon
from icefall.utils import str2bool
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--epoch",
type=int,
default=28,
help="It specifies the checkpoint to use for decoding."
"Note: Epoch counts from 0.",
)
parser.add_argument(
"--avg",
type=int,
default=15,
help="Number of checkpoints to average. Automatically select "
"consecutive checkpoints before the checkpoint specified by "
"'--epoch'. ",
)
parser.add_argument(
"--exp-dir",
type=str,
default="pruned_transducer_stateless2/exp",
help="""It specifies the directory where all training related
files, e.g., checkpoints, log, etc, are saved
""",
)
parser.add_argument(
"--lang-dir",
type=str,
default="data/lang_char",
help="The lang dir",
)
parser.add_argument(
"--jit",
type=str2bool,
default=False,
help="""True to save a model after applying torch.jit.script.
""",
)
parser.add_argument(
"--context-size",
type=int,
default=2,
help="The context size in the decoder. 1 means bigram; "
"2 means tri-gram",
)
return parser
def main():
args = get_parser().parse_args()
args.exp_dir = Path(args.exp_dir)
assert args.jit is False, "Support torchscript will be added later"
params = get_params()
params.update(vars(args))
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"device: {device}")
lexicon = Lexicon(params.lang_dir)
params.blank_id = 0
params.vocab_size = max(lexicon.tokens) + 1
logging.info(params)
logging.info("About to create model")
model = get_transducer_model(params)
model.to(device)
if params.avg == 1:
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
else:
start = params.epoch - params.avg + 1
filenames = []
for i in range(start, params.epoch + 1):
if start >= 0:
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
logging.info(f"averaging {filenames}")
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))
model.eval()
model.to("cpu")
model.eval()
if params.jit:
logging.info("Using torch.jit.script")
model = torch.jit.script(model)
filename = params.exp_dir / "cpu_jit.pt"
model.save(str(filename))
logging.info(f"Saved to {filename}")
else:
logging.info("Not using torch.jit.script")
# Save it using a format so that it can be loaded
# by :func:`load_checkpoint`
filename = params.exp_dir / "pretrained.pt"
torch.save({"model": model.state_dict()}, str(filename))
logging.info(f"Saved to {filename}")
if __name__ == "__main__":
formatter = (
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
)
logging.basicConfig(format=formatter, level=logging.INFO)
main()

View File

@ -0,0 +1 @@
../../../librispeech/ASR/pruned_transducer_stateless2/joiner.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/pruned_transducer_stateless2/model.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/pruned_transducer_stateless2/optim.py

View File

@ -0,0 +1,342 @@
#!/usr/bin/env python3
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
# 2022 Xiaomi Crop. (authors: Mingshuang Luo)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Usage:
(1) greedy search
./pruned_transducer_stateless2/pretrained.py \
--checkpoint ./pruned_transducer_stateless2/exp/pretrained.pt \
--lang-dir ./data/lang_char \
--method greedy_search \
--max-sym-per-frame 1 \
/path/to/foo.wav \
/path/to/bar.wav
(2) modified beam search
./pruned_transducer_stateless2/pretrained.py \
--checkpoint ./pruned_transducer_stateless2/exp/pretrained.pt \
--lang-dir ./data/lang_char \
--method modified_beam_search \
--beam-size 4 \
/path/to/foo.wav \
/path/to/bar.wav
(3) fast beam search
./pruned_transducer_stateless2/pretrained.py \
--checkpoint ./pruned_transducer_stateless/exp/pretrained.pt \
--lang-dir ./data/lang_char \
--method fast_beam_search \
--beam 4 \
--max-contexts 4 \
--max-states 8 \
/path/to/foo.wav \
/path/to/bar.wav
You can also use `./pruned_transducer_stateless2/exp/epoch-xx.pt`.
Note: ./pruned_transducer_stateless2/exp/pretrained.pt is generated by
./pruned_transducer_stateless2/export.py
"""
import argparse
import logging
import math
from typing import List
import k2
import kaldifeat
import torch
import torchaudio
from beam_search import (
beam_search,
fast_beam_search_one_best,
greedy_search,
greedy_search_batch,
modified_beam_search,
)
from torch.nn.utils.rnn import pad_sequence
from train import get_params, get_transducer_model
from icefall.lexicon import Lexicon
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--checkpoint",
type=str,
required=True,
help="Path to the checkpoint. "
"The checkpoint is assumed to be saved by "
"icefall.checkpoint.save_checkpoint().",
)
parser.add_argument(
"--lang-dir",
type=str,
help="""Path to lang.
""",
)
parser.add_argument(
"--decoding-method",
type=str,
default="greedy_search",
help="""Possible values are:
- greedy_search
- modified_beam_search
- fast_beam_search
""",
)
parser.add_argument(
"sound_files",
type=str,
nargs="+",
help="The input sound file(s) to transcribe. "
"Supported formats are those supported by torchaudio.load(). "
"For example, wav and flac are supported. "
"The sample rate has to be 16kHz.",
)
parser.add_argument(
"--sample-rate",
type=int,
default=48000,
help="The sample rate of the input sound file",
)
parser.add_argument(
"--beam-size",
type=int,
default=4,
help="Used only when --method is beam_search and modified_beam_search ",
)
parser.add_argument(
"--beam",
type=float,
default=4,
help="""A floating point value to calculate the cutoff score during beam
search (i.e., `cutoff = max-score - beam`), which is the same as the
`beam` in Kaldi.
Used only when --decoding-method is fast_beam_search""",
)
parser.add_argument(
"--max-contexts",
type=int,
default=4,
help="""Used only when --decoding-method is
fast_beam_search""",
)
parser.add_argument(
"--max-states",
type=int,
default=8,
help="""Used only when --decoding-method is
fast_beam_search""",
)
parser.add_argument(
"--context-size",
type=int,
default=2,
help="The context size in the decoder. 1 means bigram; "
"2 means tri-gram",
)
parser.add_argument(
"--max-sym-per-frame",
type=int,
default=1,
help="""Maximum number of symbols per frame. Used only when
--method is greedy_search.
""",
)
return parser
def read_sound_files(
filenames: List[str], expected_sample_rate: float
) -> List[torch.Tensor]:
"""Read a list of sound files into a list 1-D float32 torch tensors.
Args:
filenames:
A list of sound filenames.
expected_sample_rate:
The expected sample rate of the sound files.
Returns:
Return a list of 1-D float32 torch tensors.
"""
ans = []
for f in filenames:
wave, sample_rate = torchaudio.load(f)
assert sample_rate == expected_sample_rate, (
f"expected sample rate: {expected_sample_rate}. "
f"Given: {sample_rate}"
)
# We use only the first channel
ans.append(wave[0])
return ans
@torch.no_grad()
def main():
parser = get_parser()
args = parser.parse_args()
params = get_params()
params.update(vars(args))
lexicon = Lexicon(params.lang_dir)
params.blank_id = lexicon.token_table["<blk>"]
params.vocab_size = max(lexicon.tokens) + 1
logging.info(f"{params}")
device = torch.device("cpu")
if torch.cuda.is_available():
device = torch.device("cuda", 0)
logging.info(f"device: {device}")
logging.info("Creating model")
model = get_transducer_model(params)
checkpoint = torch.load(args.checkpoint, map_location="cpu")
model.load_state_dict(checkpoint["model"], strict=False)
model.to(device)
model.eval()
model.device = device
if params.decoding_method == "fast_beam_search":
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
else:
decoding_graph = None
logging.info("Constructing Fbank computer")
opts = kaldifeat.FbankOptions()
opts.device = device
opts.frame_opts.dither = 0
opts.frame_opts.snip_edges = False
opts.frame_opts.samp_freq = params.sample_rate
opts.mel_opts.num_bins = params.feature_dim
fbank = kaldifeat.Fbank(opts)
logging.info(f"Reading sound files: {params.sound_files}")
waves = read_sound_files(
filenames=params.sound_files, expected_sample_rate=params.sample_rate
)
waves = [w.to(device) for w in waves]
logging.info("Decoding started")
features = fbank(waves)
feature_lengths = [f.size(0) for f in features]
features = pad_sequence(
features, batch_first=True, padding_value=math.log(1e-10)
)
feature_lengths = torch.tensor(feature_lengths, device=device)
with torch.no_grad():
encoder_out, encoder_out_lens = model.encoder(
x=features, x_lens=feature_lengths
)
hyps = []
msg = f"Using {params.decoding_method}"
logging.info(msg)
if params.decoding_method == "fast_beam_search":
hyp_tokens = fast_beam_search_one_best(
model=model,
decoding_graph=decoding_graph,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam,
max_contexts=params.max_contexts,
max_states=params.max_states,
)
for i in range(encoder_out.size(0)):
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
elif (
params.decoding_method == "greedy_search"
and params.max_sym_per_frame == 1
):
hyp_tokens = greedy_search_batch(
model=model,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
)
for i in range(encoder_out.size(0)):
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
elif params.decoding_method == "modified_beam_search":
hyp_tokens = modified_beam_search(
model=model,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam_size,
)
for i in range(encoder_out.size(0)):
hyps.append([lexicon.token_table[idx] for idx in hyp_tokens[i]])
else:
batch_size = encoder_out.size(0)
for i in range(batch_size):
# fmt: off
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
# fmt: on
if params.decoding_method == "greedy_search":
hyp = greedy_search(
model=model,
encoder_out=encoder_out_i,
max_sym_per_frame=params.max_sym_per_frame,
)
elif params.decoding_method == "beam_search":
hyp = beam_search(
model=model,
encoder_out=encoder_out_i,
beam=params.beam_size,
)
else:
raise ValueError(
f"Unsupported decoding method: {params.decoding_method}"
)
hyps.append([lexicon.token_table[idx] for idx in hyp])
s = "\n"
for filename, hyp in zip(params.sound_files, hyps):
words = " ".join(hyp)
s += f"{filename}:\n{words}\n\n"
logging.info(s)
logging.info("Decoding Done")
if __name__ == "__main__":
formatter = (
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
)
logging.basicConfig(format=formatter, level=logging.INFO)
main()

View File

@ -0,0 +1 @@
../../../librispeech/ASR/pruned_transducer_stateless2/scaling.py

File diff suppressed because it is too large Load Diff

1
egs/wenetspeech/ASR/shared Symbolic link
View File

@ -0,0 +1 @@
../../librispeech/ASR/shared

View File

@ -38,7 +38,9 @@ def compute_fbank_yesno():
"test",
)
manifests = read_manifests_if_cached(
dataset_parts=dataset_parts, output_dir=src_dir
dataset_parts=dataset_parts,
output_dir=src_dir,
prefix="yesno",
)
assert manifests is not None

View File

@ -18,8 +18,9 @@
import random
from typing import List, Optional, Tuple
from dataclasses import dataclass
from typing import Optional, Tuple
import torch
from torch import Tensor, nn
@ -90,8 +91,6 @@ def get_tensor_stats(
return x, count
@dataclass
class TensorAndCount:
tensor: Tensor
@ -108,12 +107,12 @@ class TensorDiagnostic(object):
name:
The tensor name.
"""
def __init__(self, opts: TensorDiagnosticOptions, name: str):
self.name = name
self.opts = opts
self.stats = None # we'll later assign a list to this data member. It's a list of dict.
self.stats = None # we'll later assign a list to this data member. It's a list of dict.
# the keys into self.stats[dim] are strings, whose values can be
# "abs", "value", "positive", "rms", "value".
@ -125,7 +124,6 @@ class TensorDiagnostic(object):
# only adding a new element to the list if there was a different dim.
# if the string in the key is "eigs", if we detect a length mismatch we put None as the value.
def accumulate(self, x):
"""Accumulate tensors."""
if isinstance(x, Tuple):
@ -137,7 +135,7 @@ class TensorDiagnostic(object):
x = x.unsqueeze(0)
ndim = x.ndim
if self.stats is None:
self.stats = [ dict() for _ in range(ndim) ]
self.stats = [dict() for _ in range(ndim)]
for dim in range(ndim):
this_dim_stats = self.stats[dim]
@ -147,10 +145,10 @@ class TensorDiagnostic(object):
stats_types.append("eigs")
else:
stats_types = ["value", "abs"]
this_dict = self.stats[dim]
for stats_type in stats_types:
stats, count = get_tensor_stats(x, dim, stats_type)
if not stats_type in this_dim_stats:
if stats_type not in this_dim_stats:
this_dim_stats[stats_type] = [] # list of TensorAndCount
done = False
@ -166,13 +164,17 @@ class TensorDiagnostic(object):
done = True
break
if not done:
if this_dim_stats[stats_type] != [] and stats_type == "eigs":
if (
this_dim_stats[stats_type] != []
and stats_type == "eigs"
):
# >1 size encountered on this dim, e.g. it's a batch or time dimension,
# don't accumulat "eigs" stats type, it uses too much memory
this_dim_stats[stats_type] = None
else:
this_dim_stats[stats_type].append(TensorAndCount(stats, count))
this_dim_stats[stats_type].append(
TensorAndCount(stats, count)
)
def print_diagnostics(self):
"""Print diagnostics for each dimension of the tensor."""
@ -191,14 +193,18 @@ class TensorDiagnostic(object):
eigs, _ = torch.symeig(stats)
stats = eigs.abs().sqrt()
except: # noqa
print("Error getting eigenvalues, trying another method.")
print(
"Error getting eigenvalues, trying another method."
)
eigs = torch.linalg.eigvals(stats)
stats = eigs.abs().sqrt()
# sqrt so it reflects data magnitude, like stddev- not variance
elif len(stats_list) == 1:
stats = stats_list[0].tensor / stats_list[0].count
else:
stats = torch.cat([x.tensor / x.count for x in stats_list], dim=0)
stats = torch.cat(
[x.tensor / x.count for x in stats_list], dim=0
)
if stats_type == "rms":
# we stored the square; after aggregation we need to take sqrt.
@ -206,7 +212,9 @@ class TensorDiagnostic(object):
# if `summarize` we print percentiles of the stats; else,
# we print out individual elements.
summarize = (len(stats_list) > 1) or self.opts.dim_is_summarized(stats.numel())
summarize = (
len(stats_list) > 1
) or self.opts.dim_is_summarized(stats.numel())
if summarize: # usually `summarize` will be true
# print out percentiles.
stats = stats.sort()[0]
@ -238,9 +246,14 @@ class TensorDiagnostic(object):
# ans = "percentiles: [0.43 0.46 0.48 0.49 0.49 0.5 0.51 0.52 0.53 0.54 0.59], mean=0.5, rms=0.5"
sizes = [x.tensor.shape[0] for x in stats_list]
size_str = f"{sizes[0]}" if len(sizes) == 1 else f"{min(sizes)}..{max(sizes)}"
print(f"module={self.name}, dim={dim}, size={size_str}, {stats_type} {ans}")
size_str = (
f"{sizes[0]}"
if len(sizes) == 1
else f"{min(sizes)}..{max(sizes)}"
)
print(
f"module={self.name}, dim={dim}, size={size_str}, {stats_type} {ans}"
)
class ModelDiagnostic(object):
@ -272,7 +285,7 @@ class ModelDiagnostic(object):
def attach_diagnostics(
model: nn.Module, opts: TensorDiagnosticOptions
model: nn.Module, opts: Optional[TensorDiagnosticOptions] = None
) -> ModelDiagnostic:
"""Attach a ModelDiagnostic object to the model by
1) registering forward hook and backward hook on each module, to accumulate
@ -335,7 +348,7 @@ def attach_diagnostics(
def _test_tensor_diagnostic():
opts = TensorDiagnosticOptions(2 ** 20, 512)
opts = TensorDiagnosticOptions(512)
diagnostic = TensorDiagnostic(opts, "foo")