mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-13 12:02:21 +00:00
Remove unnecessary code and update docs
This commit is contained in:
parent
de42c0ebb5
commit
4de7f19e03
@ -1,3 +0,0 @@
|
|||||||
Please visit
|
|
||||||
<https://icefall.readthedocs.io/en/latest/recipes/aishell/conformer_ctc.html>
|
|
||||||
for how to run this recipe.
|
|
@ -40,6 +40,7 @@ class Conformer(Transformer):
|
|||||||
cnn_module_kernel (int): Kernel size of convolution module
|
cnn_module_kernel (int): Kernel size of convolution module
|
||||||
normalize_before (bool): whether to use layer_norm before the first block.
|
normalize_before (bool): whether to use layer_norm before the first block.
|
||||||
vgg_frontend (bool): whether to use vgg frontend.
|
vgg_frontend (bool): whether to use vgg frontend.
|
||||||
|
use_feat_batchnorm(bool): whether to use batch-normalize the input.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(
|
def __init__(
|
||||||
@ -56,8 +57,6 @@ class Conformer(Transformer):
|
|||||||
cnn_module_kernel: int = 31,
|
cnn_module_kernel: int = 31,
|
||||||
normalize_before: bool = True,
|
normalize_before: bool = True,
|
||||||
vgg_frontend: bool = False,
|
vgg_frontend: bool = False,
|
||||||
is_espnet_structure: bool = False,
|
|
||||||
mmi_loss: bool = True,
|
|
||||||
use_feat_batchnorm: bool = False,
|
use_feat_batchnorm: bool = False,
|
||||||
) -> None:
|
) -> None:
|
||||||
super(Conformer, self).__init__(
|
super(Conformer, self).__init__(
|
||||||
@ -72,7 +71,6 @@ class Conformer(Transformer):
|
|||||||
dropout=dropout,
|
dropout=dropout,
|
||||||
normalize_before=normalize_before,
|
normalize_before=normalize_before,
|
||||||
vgg_frontend=vgg_frontend,
|
vgg_frontend=vgg_frontend,
|
||||||
mmi_loss=mmi_loss,
|
|
||||||
use_feat_batchnorm=use_feat_batchnorm,
|
use_feat_batchnorm=use_feat_batchnorm,
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -85,12 +83,10 @@ class Conformer(Transformer):
|
|||||||
dropout,
|
dropout,
|
||||||
cnn_module_kernel,
|
cnn_module_kernel,
|
||||||
normalize_before,
|
normalize_before,
|
||||||
is_espnet_structure,
|
|
||||||
)
|
)
|
||||||
self.encoder = ConformerEncoder(encoder_layer, num_encoder_layers)
|
self.encoder = ConformerEncoder(encoder_layer, num_encoder_layers)
|
||||||
self.normalize_before = normalize_before
|
self.normalize_before = normalize_before
|
||||||
self.is_espnet_structure = is_espnet_structure
|
if self.normalize_before:
|
||||||
if self.normalize_before and self.is_espnet_structure:
|
|
||||||
self.after_norm = nn.LayerNorm(d_model)
|
self.after_norm = nn.LayerNorm(d_model)
|
||||||
else:
|
else:
|
||||||
# Note: TorchScript detects that self.after_norm could be used inside forward()
|
# Note: TorchScript detects that self.after_norm could be used inside forward()
|
||||||
@ -125,7 +121,7 @@ class Conformer(Transformer):
|
|||||||
mask = mask.to(x.device)
|
mask = mask.to(x.device)
|
||||||
x = self.encoder(x, pos_emb, src_key_padding_mask=mask) # (T, B, F)
|
x = self.encoder(x, pos_emb, src_key_padding_mask=mask) # (T, B, F)
|
||||||
|
|
||||||
if self.normalize_before and self.is_espnet_structure:
|
if self.normalize_before:
|
||||||
x = self.after_norm(x)
|
x = self.after_norm(x)
|
||||||
|
|
||||||
return x, mask
|
return x, mask
|
||||||
@ -159,11 +155,10 @@ class ConformerEncoderLayer(nn.Module):
|
|||||||
dropout: float = 0.1,
|
dropout: float = 0.1,
|
||||||
cnn_module_kernel: int = 31,
|
cnn_module_kernel: int = 31,
|
||||||
normalize_before: bool = True,
|
normalize_before: bool = True,
|
||||||
is_espnet_structure: bool = False,
|
|
||||||
) -> None:
|
) -> None:
|
||||||
super(ConformerEncoderLayer, self).__init__()
|
super(ConformerEncoderLayer, self).__init__()
|
||||||
self.self_attn = RelPositionMultiheadAttention(
|
self.self_attn = RelPositionMultiheadAttention(
|
||||||
d_model, nhead, dropout=0.0, is_espnet_structure=is_espnet_structure
|
d_model, nhead, dropout=0.0
|
||||||
)
|
)
|
||||||
|
|
||||||
self.feed_forward = nn.Sequential(
|
self.feed_forward = nn.Sequential(
|
||||||
@ -436,7 +431,6 @@ class RelPositionMultiheadAttention(nn.Module):
|
|||||||
embed_dim: int,
|
embed_dim: int,
|
||||||
num_heads: int,
|
num_heads: int,
|
||||||
dropout: float = 0.0,
|
dropout: float = 0.0,
|
||||||
is_espnet_structure: bool = False,
|
|
||||||
) -> None:
|
) -> None:
|
||||||
super(RelPositionMultiheadAttention, self).__init__()
|
super(RelPositionMultiheadAttention, self).__init__()
|
||||||
self.embed_dim = embed_dim
|
self.embed_dim = embed_dim
|
||||||
@ -459,7 +453,6 @@ class RelPositionMultiheadAttention(nn.Module):
|
|||||||
|
|
||||||
self._reset_parameters()
|
self._reset_parameters()
|
||||||
|
|
||||||
self.is_espnet_structure = is_espnet_structure
|
|
||||||
|
|
||||||
def _reset_parameters(self) -> None:
|
def _reset_parameters(self) -> None:
|
||||||
nn.init.xavier_uniform_(self.in_proj.weight)
|
nn.init.xavier_uniform_(self.in_proj.weight)
|
||||||
@ -690,8 +683,6 @@ class RelPositionMultiheadAttention(nn.Module):
|
|||||||
_b = _b[_start:]
|
_b = _b[_start:]
|
||||||
v = nn.functional.linear(value, _w, _b)
|
v = nn.functional.linear(value, _w, _b)
|
||||||
|
|
||||||
if not self.is_espnet_structure:
|
|
||||||
q = q * scaling
|
|
||||||
|
|
||||||
if attn_mask is not None:
|
if attn_mask is not None:
|
||||||
assert (
|
assert (
|
||||||
@ -785,14 +776,9 @@ class RelPositionMultiheadAttention(nn.Module):
|
|||||||
) # (batch, head, time1, 2*time1-1)
|
) # (batch, head, time1, 2*time1-1)
|
||||||
matrix_bd = self.rel_shift(matrix_bd)
|
matrix_bd = self.rel_shift(matrix_bd)
|
||||||
|
|
||||||
if not self.is_espnet_structure:
|
attn_output_weights = (
|
||||||
attn_output_weights = (
|
matrix_ac + matrix_bd
|
||||||
matrix_ac + matrix_bd
|
) * scaling # (batch, head, time1, time2)
|
||||||
) # (batch, head, time1, time2)
|
|
||||||
else:
|
|
||||||
attn_output_weights = (
|
|
||||||
matrix_ac + matrix_bd
|
|
||||||
) * scaling # (batch, head, time1, time2)
|
|
||||||
|
|
||||||
attn_output_weights = attn_output_weights.view(
|
attn_output_weights = attn_output_weights.view(
|
||||||
bsz * num_heads, tgt_len, -1
|
bsz * num_heads, tgt_len, -1
|
||||||
|
@ -57,7 +57,7 @@ def get_parser():
|
|||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--epoch",
|
"--epoch",
|
||||||
type=int,
|
type=int,
|
||||||
default=34,
|
default=49,
|
||||||
help="It specifies the checkpoint to use for decoding."
|
help="It specifies the checkpoint to use for decoding."
|
||||||
"Note: Epoch counts from 0.",
|
"Note: Epoch counts from 0.",
|
||||||
)
|
)
|
||||||
@ -101,7 +101,7 @@ def get_parser():
|
|||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--lattice-score-scale",
|
"--lattice-score-scale",
|
||||||
type=float,
|
type=float,
|
||||||
default=1.0,
|
default=0.5,
|
||||||
help="""The scale to be applied to `lattice.scores`.
|
help="""The scale to be applied to `lattice.scores`.
|
||||||
It's needed if you use any kinds of n-best based rescoring.
|
It's needed if you use any kinds of n-best based rescoring.
|
||||||
Used only when "method" is one of the following values:
|
Used only when "method" is one of the following values:
|
||||||
@ -116,19 +116,19 @@ def get_parser():
|
|||||||
def get_params() -> AttributeDict:
|
def get_params() -> AttributeDict:
|
||||||
params = AttributeDict(
|
params = AttributeDict(
|
||||||
{
|
{
|
||||||
"exp_dir": Path("conformer_ctc/exp_char"),
|
"exp_dir": Path("conformer_ctc/exp"),
|
||||||
"lang_dir": Path("data/lang_char"),
|
"lang_dir": Path("data/lang_char"),
|
||||||
"lm_dir": Path("data/lm"),
|
"lm_dir": Path("data/lm"),
|
||||||
|
# parameters for conformer
|
||||||
|
"subsampling_factor": 4,
|
||||||
"feature_dim": 80,
|
"feature_dim": 80,
|
||||||
"nhead": 4,
|
"nhead": 4,
|
||||||
"attention_dim": 512,
|
"attention_dim": 512,
|
||||||
"subsampling_factor": 4,
|
|
||||||
"num_encoder_layers": 12,
|
"num_encoder_layers": 12,
|
||||||
"num_decoder_layers": 6,
|
"num_decoder_layers": 6,
|
||||||
"vgg_frontend": False,
|
"vgg_frontend": False,
|
||||||
"is_espnet_structure": True,
|
|
||||||
"mmi_loss": False,
|
|
||||||
"use_feat_batchnorm": True,
|
"use_feat_batchnorm": True,
|
||||||
|
# parameters for decoder
|
||||||
"search_beam": 20,
|
"search_beam": 20,
|
||||||
"output_beam": 7,
|
"output_beam": 7,
|
||||||
"min_active_states": 30,
|
"min_active_states": 30,
|
||||||
@ -364,9 +364,12 @@ def save_results(
|
|||||||
# The following prints out WERs, per-word error statistics and aligned
|
# The following prints out WERs, per-word error statistics and aligned
|
||||||
# ref/hyp pairs.
|
# ref/hyp pairs.
|
||||||
errs_filename = params.exp_dir / f"errs-{test_set_name}-{key}.txt"
|
errs_filename = params.exp_dir / f"errs-{test_set_name}-{key}.txt"
|
||||||
|
results_tmp = []
|
||||||
|
for res in results:
|
||||||
|
results_tmp.append((list("".join(res[0])), list("".join(res[1]))))
|
||||||
with open(errs_filename, "w") as f:
|
with open(errs_filename, "w") as f:
|
||||||
wer = write_error_stats(
|
wer = write_error_stats(
|
||||||
f, f"{test_set_name}-{key}", results, enable_log=enable_log
|
f, f"{test_set_name}-{key}", results_tmp, enable_log=enable_log
|
||||||
)
|
)
|
||||||
test_set_wers[key] = wer
|
test_set_wers[key] = wer
|
||||||
|
|
||||||
@ -440,8 +443,6 @@ def main():
|
|||||||
num_encoder_layers=params.num_encoder_layers,
|
num_encoder_layers=params.num_encoder_layers,
|
||||||
num_decoder_layers=params.num_decoder_layers,
|
num_decoder_layers=params.num_decoder_layers,
|
||||||
vgg_frontend=params.vgg_frontend,
|
vgg_frontend=params.vgg_frontend,
|
||||||
is_espnet_structure=params.is_espnet_structure,
|
|
||||||
mmi_loss=params.mmi_loss,
|
|
||||||
use_feat_batchnorm=params.use_feat_batchnorm,
|
use_feat_batchnorm=params.use_feat_batchnorm,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@ -1,5 +1,6 @@
|
|||||||
#!/usr/bin/env python3
|
#!/usr/bin/env python3
|
||||||
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang
|
||||||
|
# Wei Kang)
|
||||||
#
|
#
|
||||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
#
|
#
|
||||||
@ -77,7 +78,7 @@ def get_parser():
|
|||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--num-epochs",
|
"--num-epochs",
|
||||||
type=int,
|
type=int,
|
||||||
default=35,
|
default=50,
|
||||||
help="Number of epochs to train.",
|
help="Number of epochs to train.",
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -111,19 +112,6 @@ def get_params() -> AttributeDict:
|
|||||||
- lang_dir: It contains language related input files such as
|
- lang_dir: It contains language related input files such as
|
||||||
"lexicon.txt"
|
"lexicon.txt"
|
||||||
|
|
||||||
- lr: It specifies the initial learning rate
|
|
||||||
|
|
||||||
- feature_dim: The model input dim. It has to match the one used
|
|
||||||
in computing features.
|
|
||||||
|
|
||||||
- weight_decay: The weight_decay for the optimizer.
|
|
||||||
|
|
||||||
- subsampling_factor: The subsampling factor for the model.
|
|
||||||
|
|
||||||
- best_train_loss: Best training loss so far. It is used to select
|
|
||||||
the model that has the lowest training loss. It is
|
|
||||||
updated during the training.
|
|
||||||
|
|
||||||
- best_valid_loss: Best validation loss so far. It is used to select
|
- best_valid_loss: Best validation loss so far. It is used to select
|
||||||
the model that has the lowest validation loss. It is
|
the model that has the lowest validation loss. It is
|
||||||
updated during the training.
|
updated during the training.
|
||||||
@ -138,23 +126,45 @@ def get_params() -> AttributeDict:
|
|||||||
|
|
||||||
- log_interval: Print training loss if batch_idx % log_interval` is 0
|
- log_interval: Print training loss if batch_idx % log_interval` is 0
|
||||||
|
|
||||||
- valid_interval: Run validation if batch_idx % valid_interval is 0
|
|
||||||
|
|
||||||
- reset_interval: Reset statistics if batch_idx % reset_interval is 0
|
- reset_interval: Reset statistics if batch_idx % reset_interval is 0
|
||||||
|
|
||||||
|
- valid_interval: Run validation if batch_idx % valid_interval is 0
|
||||||
|
|
||||||
- beam_size: It is used in k2.ctc_loss
|
- beam_size: It is used in k2.ctc_loss
|
||||||
|
|
||||||
- reduction: It is used in k2.ctc_loss
|
- reduction: It is used in k2.ctc_loss
|
||||||
|
|
||||||
- use_double_scores: It is used in k2.ctc_loss
|
- use_double_scores: It is used in k2.ctc_loss
|
||||||
|
|
||||||
|
- att_rate: The proportion of label smoothing loss, final loss will be
|
||||||
|
(1 - att_rate) * ctc_loss + att_rate * label_smoothing_loss
|
||||||
|
|
||||||
|
- subsampling_factor: The subsampling factor for the model.
|
||||||
|
|
||||||
|
- feature_dim: The model input dim. It has to match the one used
|
||||||
|
in computing features.
|
||||||
|
|
||||||
|
- attention_dim: Attention dimension.
|
||||||
|
|
||||||
|
- nhead: Number of heads in multi-head attention.
|
||||||
|
Must satisfy attention_dim // nhead == 0.
|
||||||
|
|
||||||
|
- num_encoder_layers: Number of attention encoder layers.
|
||||||
|
|
||||||
|
- num_decoder_layers: Number of attention decoder layers.
|
||||||
|
|
||||||
|
- use_feat_batchnorm: Whether to do normalization in the input layer.
|
||||||
|
|
||||||
|
- weight_decay: The weight_decay for the optimizer.
|
||||||
|
|
||||||
|
- lr_factor: The lr_factor for the optimizer.
|
||||||
|
|
||||||
|
- warm_step: The warm_step for the optimizer.
|
||||||
"""
|
"""
|
||||||
params = AttributeDict(
|
params = AttributeDict(
|
||||||
{
|
{
|
||||||
"exp_dir": Path("conformer_ctc/exp_char"),
|
"exp_dir": Path("conformer_ctc/exp"),
|
||||||
"lang_dir": Path("data/lang_char"),
|
"lang_dir": Path("data/lang_char"),
|
||||||
"feature_dim": 80,
|
|
||||||
"weight_decay": 1e-6,
|
|
||||||
"subsampling_factor": 4,
|
|
||||||
"best_train_loss": float("inf"),
|
"best_train_loss": float("inf"),
|
||||||
"best_valid_loss": float("inf"),
|
"best_valid_loss": float("inf"),
|
||||||
"best_train_epoch": -1,
|
"best_train_epoch": -1,
|
||||||
@ -163,18 +173,21 @@ def get_params() -> AttributeDict:
|
|||||||
"log_interval": 10,
|
"log_interval": 10,
|
||||||
"reset_interval": 200,
|
"reset_interval": 200,
|
||||||
"valid_interval": 3000,
|
"valid_interval": 3000,
|
||||||
|
# parameters for k2.ctc_loss
|
||||||
"beam_size": 10,
|
"beam_size": 10,
|
||||||
"reduction": "sum",
|
"reduction": "sum",
|
||||||
"use_double_scores": True,
|
"use_double_scores": True,
|
||||||
"accum_grad": 1,
|
|
||||||
"att_rate": 0.7,
|
"att_rate": 0.7,
|
||||||
|
# parameters for conformer
|
||||||
|
"subsampling_factor": 4,
|
||||||
|
"feature_dim": 80,
|
||||||
"attention_dim": 512,
|
"attention_dim": 512,
|
||||||
"nhead": 4,
|
"nhead": 4,
|
||||||
"num_decoder_layers": 6,
|
|
||||||
"num_encoder_layers": 12,
|
"num_encoder_layers": 12,
|
||||||
"is_espnet_structure": True,
|
"num_decoder_layers": 6,
|
||||||
"mmi_loss": False,
|
|
||||||
"use_feat_batchnorm": True,
|
"use_feat_batchnorm": True,
|
||||||
|
# parameters for Noam
|
||||||
|
"weight_decay": 1e-5,
|
||||||
"lr_factor": 5.0,
|
"lr_factor": 5.0,
|
||||||
"warm_step": 36000,
|
"warm_step": 36000,
|
||||||
}
|
}
|
||||||
@ -648,8 +661,6 @@ def run(rank, world_size, args):
|
|||||||
num_encoder_layers=params.num_encoder_layers,
|
num_encoder_layers=params.num_encoder_layers,
|
||||||
num_decoder_layers=params.num_decoder_layers,
|
num_decoder_layers=params.num_decoder_layers,
|
||||||
vgg_frontend=False,
|
vgg_frontend=False,
|
||||||
is_espnet_structure=params.is_espnet_structure,
|
|
||||||
mmi_loss=params.mmi_loss,
|
|
||||||
use_feat_batchnorm=params.use_feat_batchnorm,
|
use_feat_batchnorm=params.use_feat_batchnorm,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@ -41,7 +41,6 @@ class Transformer(nn.Module):
|
|||||||
dropout: float = 0.1,
|
dropout: float = 0.1,
|
||||||
normalize_before: bool = True,
|
normalize_before: bool = True,
|
||||||
vgg_frontend: bool = False,
|
vgg_frontend: bool = False,
|
||||||
mmi_loss: bool = True,
|
|
||||||
use_feat_batchnorm: bool = False,
|
use_feat_batchnorm: bool = False,
|
||||||
) -> None:
|
) -> None:
|
||||||
"""
|
"""
|
||||||
@ -70,7 +69,6 @@ class Transformer(nn.Module):
|
|||||||
If True, use pre-layer norm; False to use post-layer norm.
|
If True, use pre-layer norm; False to use post-layer norm.
|
||||||
vgg_frontend:
|
vgg_frontend:
|
||||||
True to use vgg style frontend for subsampling.
|
True to use vgg style frontend for subsampling.
|
||||||
mmi_loss:
|
|
||||||
use_feat_batchnorm:
|
use_feat_batchnorm:
|
||||||
True to use batchnorm for the input layer.
|
True to use batchnorm for the input layer.
|
||||||
"""
|
"""
|
||||||
@ -122,14 +120,9 @@ class Transformer(nn.Module):
|
|||||||
)
|
)
|
||||||
|
|
||||||
if num_decoder_layers > 0:
|
if num_decoder_layers > 0:
|
||||||
if mmi_loss:
|
self.decoder_num_class = (
|
||||||
self.decoder_num_class = (
|
self.num_classes
|
||||||
self.num_classes + 1
|
) # bpe model already has sos/eos symbol
|
||||||
) # +1 for the sos/eos symbol
|
|
||||||
else:
|
|
||||||
self.decoder_num_class = (
|
|
||||||
self.num_classes
|
|
||||||
) # bpe model already has sos/eos symbol
|
|
||||||
|
|
||||||
self.decoder_embed = nn.Embedding(
|
self.decoder_embed = nn.Embedding(
|
||||||
num_embeddings=self.decoder_num_class, embedding_dim=d_model
|
num_embeddings=self.decoder_num_class, embedding_dim=d_model
|
||||||
|
@ -124,7 +124,7 @@ def lexicon_to_fst_no_sil(
|
|||||||
|
|
||||||
|
|
||||||
def contain_oov(token_sym_table: Dict[str, int], tokens: List[str]) -> bool:
|
def contain_oov(token_sym_table: Dict[str, int], tokens: List[str]) -> bool:
|
||||||
"""Return if all the tokens are in token symbol table.
|
"""Check if all the given tokens are in token symbol table.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
token_sym_table:
|
token_sym_table:
|
||||||
|
@ -3,7 +3,7 @@
|
|||||||
set -eou pipefail
|
set -eou pipefail
|
||||||
|
|
||||||
nj=15
|
nj=15
|
||||||
stage=6
|
stage=-1
|
||||||
stop_stage=10
|
stop_stage=10
|
||||||
|
|
||||||
# We assume dl_dir (download dir) contains the following
|
# We assume dl_dir (download dir) contains the following
|
||||||
@ -11,7 +11,7 @@ stop_stage=10
|
|||||||
# by this script automatically.
|
# by this script automatically.
|
||||||
#
|
#
|
||||||
# - $dl_dir/aishell
|
# - $dl_dir/aishell
|
||||||
# You can data_aishell, resource_aishell inside it.
|
# You can find data_aishell, resource_aishell inside it.
|
||||||
# You can download them from https://www.openslr.org/33
|
# You can download them from https://www.openslr.org/33
|
||||||
#
|
#
|
||||||
# - $dl_dir/lm
|
# - $dl_dir/lm
|
||||||
@ -27,6 +27,7 @@ stop_stage=10
|
|||||||
# - music
|
# - music
|
||||||
# - noise
|
# - noise
|
||||||
# - speech
|
# - speech
|
||||||
|
|
||||||
dl_dir=$PWD/download
|
dl_dir=$PWD/download
|
||||||
|
|
||||||
. shared/parse_options.sh || exit 1
|
. shared/parse_options.sh || exit 1
|
||||||
|
@ -73,14 +73,14 @@ class AishellAsrDataModule(DataModule):
|
|||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--max-duration",
|
"--max-duration",
|
||||||
type=int,
|
type=int,
|
||||||
default=500.0,
|
default=200.0,
|
||||||
help="Maximum pooled recordings duration (seconds) in a "
|
help="Maximum pooled recordings duration (seconds) in a "
|
||||||
"single batch. You can reduce it if it causes CUDA OOM.",
|
"single batch. You can reduce it if it causes CUDA OOM.",
|
||||||
)
|
)
|
||||||
group.add_argument(
|
group.add_argument(
|
||||||
"--bucketing-sampler",
|
"--bucketing-sampler",
|
||||||
type=str2bool,
|
type=str2bool,
|
||||||
default=False,
|
default=True,
|
||||||
help="When enabled, the batches will come from buckets of "
|
help="When enabled, the batches will come from buckets of "
|
||||||
"similar duration (saves padding frames).",
|
"similar duration (saves padding frames).",
|
||||||
)
|
)
|
||||||
|
@ -95,7 +95,7 @@ def get_params() -> AttributeDict:
|
|||||||
# Possible values for method:
|
# Possible values for method:
|
||||||
# - 1best
|
# - 1best
|
||||||
# - nbest
|
# - nbest
|
||||||
"method": "nbest",
|
"method": "1best",
|
||||||
# num_paths is used when method is "nbest"
|
# num_paths is used when method is "nbest"
|
||||||
"num_paths": 30,
|
"num_paths": 30,
|
||||||
}
|
}
|
||||||
@ -274,8 +274,11 @@ def save_results(
|
|||||||
# The following prints out WERs, per-word error statistics and aligned
|
# The following prints out WERs, per-word error statistics and aligned
|
||||||
# ref/hyp pairs.
|
# ref/hyp pairs.
|
||||||
errs_filename = params.exp_dir / f"errs-{test_set_name}-{key}.txt"
|
errs_filename = params.exp_dir / f"errs-{test_set_name}-{key}.txt"
|
||||||
|
results_tmp = []
|
||||||
|
for res in results:
|
||||||
|
results_tmp.append((list("".join(res[0])), list("".join(res[1]))))
|
||||||
with open(errs_filename, "w") as f:
|
with open(errs_filename, "w") as f:
|
||||||
wer = write_error_stats(f, f"{test_set_name}-{key}", results)
|
wer = write_error_stats(f, f"{test_set_name}-{key}", results_tmp)
|
||||||
test_set_wers[key] = wer
|
test_set_wers[key] = wer
|
||||||
|
|
||||||
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||||
|
@ -883,3 +883,4 @@ def rescore_with_attention_decoder(
|
|||||||
key = f"ngram_lm_scale_{n_scale}_attention_scale_{a_scale}"
|
key = f"ngram_lm_scale_{n_scale}_attention_scale_{a_scale}"
|
||||||
ans[key] = best_path_fsa
|
ans[key] = best_path_fsa
|
||||||
return ans
|
return ans
|
||||||
|
|
||||||
|
@ -99,7 +99,6 @@ def setup_logger(
|
|||||||
"""
|
"""
|
||||||
now = datetime.now()
|
now = datetime.now()
|
||||||
date_time = now.strftime("%Y-%m-%d-%H-%M-%S")
|
date_time = now.strftime("%Y-%m-%d-%H-%M-%S")
|
||||||
|
|
||||||
if dist.is_available() and dist.is_initialized():
|
if dist.is_available() and dist.is_initialized():
|
||||||
world_size = dist.get_world_size()
|
world_size = dist.get_world_size()
|
||||||
rank = dist.get_rank()
|
rank = dist.get_rank()
|
||||||
|
Loading…
x
Reference in New Issue
Block a user