diff --git a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.prompt_tuning.py.swp b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.prompt_tuning.py.swp index a2b144972..6ac397d6d 100644 Binary files a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.prompt_tuning.py.swp and b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/.prompt_tuning.py.swp differ diff --git a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/prompt_tuning.py b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/prompt_tuning.py index eca008b74..5311fc36f 100755 --- a/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/prompt_tuning.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless_d2v_v2/prompt_tuning.py @@ -588,7 +588,7 @@ def get_params() -> AttributeDict: "best_train_epoch": -1, "best_valid_epoch": -1, "batch_idx_train": 0, - "log_interval": 20, + "log_interval": 5, "reset_interval": 200, "valid_interval": 3000, # For the 100h subset, use 800 # parameters for zipformer