mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
Add low-order density ratio in RNNLM shallow fusion (#678)
* Support LODR in RNNLM shallow fusion * fix style * fix code style * update workflow and CI * update results * propagate changes to stateless3 * add decoding results for stateless3+giga * fix CI
This commit is contained in:
parent
1d5c03f85a
commit
4b5bc480e8
@ -16,6 +16,7 @@ log "Downloading pre-trained model from $repo_url"
|
||||
git lfs install
|
||||
git clone $repo_url
|
||||
repo=$(basename $repo_url)
|
||||
abs_repo=$(realpath $repo)
|
||||
|
||||
log "Display test files"
|
||||
tree $repo/
|
||||
@ -178,21 +179,27 @@ echo "GITHUB_EVENT_LABEL_NAME: ${GITHUB_EVENT_LABEL_NAME}"
|
||||
if [[ x"${GITHUB_EVENT_LABEL_NAME}" == x"shallow-fusion" ]]; then
|
||||
lm_repo_url=https://huggingface.co/ezerhouni/icefall-librispeech-rnn-lm
|
||||
log "Download pre-trained RNN-LM model from ${lm_repo_url}"
|
||||
git clone $lm_repo_url
|
||||
GIT_LFS_SKIP_SMUDGE=1 git clone $lm_repo_url
|
||||
lm_repo=$(basename $lm_repo_url)
|
||||
pushd $lm_repo
|
||||
git lfs pull --include "exp/pretrained.pt"
|
||||
cd exp
|
||||
ln -s pretrained.pt epoch-88.pt
|
||||
mv exp/pretrained.pt exp/epoch-88.pt
|
||||
popd
|
||||
|
||||
mkdir -p lstm_transducer_stateless2/exp
|
||||
ln -sf $PWD/$repo/exp/pretrained.pt lstm_transducer_stateless2/exp/epoch-999.pt
|
||||
ln -s $PWD/$repo/data/lang_bpe_500 data/
|
||||
|
||||
ls -lh data
|
||||
ls -lh lstm_transducer_stateless2/exp
|
||||
|
||||
log "Decoding test-clean and test-other"
|
||||
|
||||
./lstm_transducer_stateless2/decode.py \
|
||||
--use-averaged-model 0 \
|
||||
--epoch 99 \
|
||||
--epoch 999 \
|
||||
--avg 1 \
|
||||
--exp-dir $repo/exp \
|
||||
--lang-dir $repo/data/lang_bpe_500 \
|
||||
--bpe-model $repo/data/lang_bpe_500/bpe.model \
|
||||
--exp-dir lstm_transducer_stateless2/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method modified_beam_search_rnnlm_shallow_fusion \
|
||||
--beam 4 \
|
||||
@ -204,6 +211,52 @@ if [[ x"${GITHUB_EVENT_LABEL_NAME}" == x"shallow-fusion" ]]; then
|
||||
--rnn-lm-tie-weights 1
|
||||
fi
|
||||
|
||||
if [[ x"${GITHUB_EVENT_LABEL_NAME}" == x"LODR" ]]; then
|
||||
bigram_repo_url=https://huggingface.co/marcoyang/librispeech_bigram
|
||||
log "Download bi-gram LM from ${bigram_repo_url}"
|
||||
GIT_LFS_SKIP_SMUDGE=1 git clone $bigram_repo_url
|
||||
bigramlm_repo=$(basename $bigram_repo_url)
|
||||
pushd $bigramlm_repo
|
||||
git lfs pull --include "2gram.fst.txt"
|
||||
cp 2gram.fst.txt $abs_repo/data/lang_bpe_500/.
|
||||
popd
|
||||
|
||||
lm_repo_url=https://huggingface.co/ezerhouni/icefall-librispeech-rnn-lm
|
||||
log "Download pre-trained RNN-LM model from ${lm_repo_url}"
|
||||
GIT_LFS_SKIP_SMUDGE=1 git clone $lm_repo_url
|
||||
lm_repo=$(basename $lm_repo_url)
|
||||
pushd $lm_repo
|
||||
git lfs pull --include "exp/pretrained.pt"
|
||||
mv exp/pretrained.pt exp/epoch-88.pt
|
||||
popd
|
||||
|
||||
mkdir -p lstm_transducer_stateless2/exp
|
||||
ln -sf $PWD/$repo/exp/pretrained.pt lstm_transducer_stateless2/exp/epoch-999.pt
|
||||
ln -s $PWD/$repo/data/lang_bpe_500 data/
|
||||
|
||||
ls -lh data
|
||||
ls -lh lstm_transducer_stateless2/exp
|
||||
|
||||
log "Decoding test-clean and test-other"
|
||||
|
||||
./lstm_transducer_stateless2/decode.py \
|
||||
--use-averaged-model 0 \
|
||||
--epoch 999 \
|
||||
--avg 1 \
|
||||
--exp-dir lstm_transducer_stateless2/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method modified_beam_search_rnnlm_LODR \
|
||||
--beam 4 \
|
||||
--rnn-lm-scale 0.3 \
|
||||
--rnn-lm-exp-dir $lm_repo/exp \
|
||||
--rnn-lm-epoch 88 \
|
||||
--rnn-lm-avg 1 \
|
||||
--rnn-lm-num-layers 3 \
|
||||
--rnn-lm-tie-weights 1 \
|
||||
--tokens-ngram 2 \
|
||||
--ngram-lm-scale -0.16
|
||||
fi
|
||||
|
||||
if [[ x"${GITHUB_EVENT_NAME}" == x"schedule" ]]; then
|
||||
mkdir -p lstm_transducer_stateless2/exp
|
||||
ln -s $PWD/$repo/exp/pretrained.pt lstm_transducer_stateless2/exp/epoch-999.pt
|
||||
|
@ -18,7 +18,7 @@ on:
|
||||
|
||||
jobs:
|
||||
run_librispeech_lstm_transducer_stateless2_2022_09_03:
|
||||
if: github.event.label.name == 'ready' || github.event.label.name == 'shallow-fusion' || github.event.label.name == 'ncnn' || github.event.label.name == 'onnx' || github.event_name == 'push' || github.event_name == 'schedule'
|
||||
if: github.event.label.name == 'ready' || github.event.label.name == 'LODR' || github.event.label.name == 'shallow-fusion' || github.event.label.name == 'ncnn' || github.event.label.name == 'onnx' || github.event_name == 'push' || github.event_name == 'schedule'
|
||||
runs-on: ${{ matrix.os }}
|
||||
strategy:
|
||||
matrix:
|
||||
@ -139,9 +139,20 @@ jobs:
|
||||
find modified_beam_search_rnnlm_shallow_fusion -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||
find modified_beam_search_rnnlm_shallow_fusion -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||
|
||||
- name: Display decoding results for lstm_transducer_stateless2
|
||||
if: github.event.label.name == 'LODR'
|
||||
shell: bash
|
||||
run: |
|
||||
cd egs/librispeech/ASR
|
||||
tree lstm_transducer_stateless2/exp
|
||||
cd lstm_transducer_stateless2/exp
|
||||
echo "===modified_beam_search_rnnlm_LODR==="
|
||||
find modified_beam_search_rnnlm_LODR -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
|
||||
find modified_beam_search_rnnlm_LODR -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
|
||||
|
||||
- name: Upload decoding results for lstm_transducer_stateless2
|
||||
uses: actions/upload-artifact@v2
|
||||
if: github.event_name == 'schedule' || github.event.label.name == 'shallow-fusion'
|
||||
if: github.event_name == 'schedule' || github.event.label.name == 'shallow-fusion' || github.event.label.name == 'LODR'
|
||||
with:
|
||||
name: torch-${{ matrix.torch }}-python-${{ matrix.python-version }}-ubuntu-18.04-cpu-lstm_transducer_stateless2-2022-09-03
|
||||
path: egs/librispeech/ASR/lstm_transducer_stateless2/exp/
|
||||
|
@ -318,6 +318,7 @@ The WERs are:
|
||||
| greedy search (max sym per frame 1) | 2.78 | 7.36 | --iter 468000 --avg 16 |
|
||||
| modified_beam_search | 2.73 | 7.15 | --iter 468000 --avg 16 |
|
||||
| modified_beam_search + RNNLM shallow fusion | 2.42 | 6.46 | --iter 468000 --avg 16 |
|
||||
| modified_beam_search + RNNLM shallow fusion | 2.28 | 5.94 | --iter 468000 --avg 16 |
|
||||
| fast_beam_search | 2.76 | 7.31 | --iter 468000 --avg 16 |
|
||||
| greedy search (max sym per frame 1) | 2.77 | 7.35 | --iter 472000 --avg 18 |
|
||||
| modified_beam_search | 2.75 | 7.08 | --iter 472000 --avg 18 |
|
||||
@ -393,6 +394,32 @@ for iter in 472000; do
|
||||
done
|
||||
done
|
||||
|
||||
You may also decode using LODR + RNNLM shallow fusion. This decoding method is proposed in <https://arxiv.org/pdf/2203.16776.pdf>.
|
||||
It subtracts the internal language model score during shallow fusion, which is approximated by a bi-gram model. The bi-gram can be
|
||||
generated by `generate-lm.sh`, or you may download it from <https://huggingface.co/marcoyang/librispeech_bigram>.
|
||||
|
||||
The decoding command is as follows:
|
||||
|
||||
for iter in 472000; do
|
||||
for avg in 8 10 12 14 16 18; do
|
||||
./lstm_transducer_stateless2/decode.py \
|
||||
--iter $iter \
|
||||
--avg $avg \
|
||||
--exp-dir ./lstm_transducer_stateless2/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method modified_beam_search_rnnlm_LODR \
|
||||
--beam 4 \
|
||||
--rnn-lm-scale 0.4 \
|
||||
--rnn-lm-exp-dir /path/to/RNNLM \
|
||||
--rnn-lm-epoch 99 \
|
||||
--rnn-lm-avg 1 \
|
||||
--rnn-lm-num-layers 3 \
|
||||
--rnn-lm-tie-weights 1 \
|
||||
--token-ngram 2 \
|
||||
--ngram-lm-scale -0.16
|
||||
done
|
||||
done
|
||||
|
||||
Pretrained models, training logs, decoding logs, and decoding results
|
||||
are available at
|
||||
<https://huggingface.co/csukuangfj/icefall-asr-librispeech-lstm-transducer-stateless2-2022-09-03>
|
||||
@ -1912,6 +1939,8 @@ subset so that the gigaspeech dataloader never exhausts.
|
||||
|-------------------------------------|------------|------------|---------------------------------------------|
|
||||
| greedy search (max sym per frame 1) | 2.03 | 4.70 | --iter 1224000 --avg 14 --max-duration 600 |
|
||||
| modified beam search | 2.00 | 4.63 | --iter 1224000 --avg 14 --max-duration 600 |
|
||||
| modified beam search + rnnlm shallow fusion | 1.94 | 4.2 | --iter 1224000 --avg 14 --max-duration 600 |
|
||||
| modified beam search + LODR | 1.83 | 4.03 | --iter 1224000 --avg 14 --max-duration 600 |
|
||||
| fast beam search | 2.10 | 4.68 | --iter 1224000 --avg 14 --max-duration 600 |
|
||||
|
||||
The training commands are:
|
||||
@ -1957,6 +1986,64 @@ for iter in 1224000; do
|
||||
done
|
||||
done
|
||||
```
|
||||
You may also decode using shallow fusion with external RNNLM. To do so you need to
|
||||
download a well-trained RNNLM from this link <https://huggingface.co/ezerhouni/icefall-librispeech-rnn-lm/tree/main>
|
||||
|
||||
```bash
|
||||
rnn_lm_scale=0.3
|
||||
|
||||
for iter in 1224000; do
|
||||
for avg in 14; do
|
||||
for method in modified_beam_search_rnnlm_shallow_fusion ; do
|
||||
./pruned_transducer_stateless3/decode.py \
|
||||
--iter $iter \
|
||||
--avg $avg \
|
||||
--exp-dir ./pruned_transducer_stateless3/exp-0.9/ \
|
||||
--max-duration 600 \
|
||||
--decoding-method $method \
|
||||
--max-sym-per-frame 1 \
|
||||
--beam 4 \
|
||||
--max-contexts 32 \
|
||||
--rnn-lm-scale $rnn_lm_scale \
|
||||
--rnn-lm-exp-dir /path/to/RNNLM \
|
||||
--rnn-lm-epoch 99 \
|
||||
--rnn-lm-avg 1 \
|
||||
--rnn-lm-num-layers 3 \
|
||||
--rnn-lm-tie-weights 1
|
||||
done
|
||||
done
|
||||
done
|
||||
```
|
||||
|
||||
If you want to try out with LODR decoding, use the following command. This assums you have a bi-gram LM trained on LibriSpeech text. You can also download the bi-gram LM from here <https://huggingface.co/marcoyang/librispeech_bigram/tree/main> and put it under the directory `data/lang_bpe_500`.
|
||||
|
||||
```bash
|
||||
rnn_lm_scale=0.4
|
||||
|
||||
for iter in 1224000; do
|
||||
for avg in 14; do
|
||||
for method in modified_beam_search_rnnlm_LODR ; do
|
||||
./pruned_transducer_stateless3/decode.py \
|
||||
--iter $iter \
|
||||
--avg $avg \
|
||||
--exp-dir ./pruned_transducer_stateless3/exp-0.9/ \
|
||||
--max-duration 600 \
|
||||
--decoding-method $method \
|
||||
--max-sym-per-frame 1 \
|
||||
--beam 4 \
|
||||
--max-contexts 32 \
|
||||
--rnn-lm-scale $rnn_lm_scale \
|
||||
--rnn-lm-exp-dir /path/to/RNNLM \
|
||||
--rnn-lm-epoch 99 \
|
||||
--rnn-lm-avg 1 \
|
||||
--rnn-lm-num-layers 3 \
|
||||
--rnn-lm-tie-weights 1 \
|
||||
--tokens-ngram 2 \
|
||||
--ngram-lm-scale -0.14
|
||||
done
|
||||
done
|
||||
done
|
||||
```
|
||||
|
||||
The pretrained models, training logs, decoding logs, and decoding results
|
||||
can be found at
|
||||
|
@ -107,8 +107,25 @@ Usage:
|
||||
--rnn-lm-avg 1 \
|
||||
--rnn-lm-num-layers 3 \
|
||||
--rnn-lm-tie-weights 1
|
||||
"""
|
||||
|
||||
(9) modified beam search with RNNLM shallow fusion + LODR
|
||||
./lstm_transducer_stateless2/decode.py \
|
||||
--epoch 35 \
|
||||
--avg 15 \
|
||||
--max-duration 600 \
|
||||
--exp-dir ./lstm_transducer_stateless2/exp \
|
||||
--decoding-method modified_beam_search_rnnlm_LODR \
|
||||
--beam 4 \
|
||||
--max-contexts 4 \
|
||||
--rnn-lm-scale 0.4 \
|
||||
--rnn-lm-exp-dir /path/to/RNNLM/exp \
|
||||
--rnn-lm-epoch 99 \
|
||||
--rnn-lm-avg 1 \
|
||||
--rnn-lm-num-layers 3 \
|
||||
--rnn-lm-tie-weights 1 \
|
||||
--tokens-ngram 2 \
|
||||
--ngram-lm-scale -0.16 \
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
@ -132,6 +149,7 @@ from beam_search import (
|
||||
greedy_search_batch,
|
||||
modified_beam_search,
|
||||
modified_beam_search_ngram_rescoring,
|
||||
modified_beam_search_rnnlm_LODR,
|
||||
modified_beam_search_rnnlm_shallow_fusion,
|
||||
)
|
||||
from librispeech import LibriSpeech
|
||||
@ -235,7 +253,8 @@ def get_parser():
|
||||
- fast_beam_search_nbest_oracle
|
||||
- fast_beam_search_nbest_LG
|
||||
- modified_beam_search_ngram_rescoring
|
||||
- modified_beam_search_rnnlm_shallow_fusion # for rnn lm shallow fusion
|
||||
- modified_beam_search_rnnlm_shallow_fusion
|
||||
- modified_beam_search_rnnlm_LODR
|
||||
If you use fast_beam_search_nbest_LG, you have to specify
|
||||
`--lang-dir`, which should contain `LG.pt`.
|
||||
""",
|
||||
@ -394,7 +413,8 @@ def get_parser():
|
||||
type=int,
|
||||
default=3,
|
||||
help="""Token Ngram used for rescoring.
|
||||
Used only when the decoding method is modified_beam_search_ngram_rescoring""",
|
||||
Used only when the decoding method is
|
||||
modified_beam_search_ngram_rescoring""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
@ -402,7 +422,8 @@ def get_parser():
|
||||
type=int,
|
||||
default=500,
|
||||
help="""ID of the backoff symbol.
|
||||
Used only when the decoding method is modified_beam_search_ngram_rescoring""",
|
||||
Used only when the decoding method is
|
||||
modified_beam_search_ngram_rescoring""",
|
||||
)
|
||||
|
||||
add_model_arguments(parser)
|
||||
@ -572,6 +593,20 @@ def decode_one_batch(
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
elif params.decoding_method == "modified_beam_search_rnnlm_LODR":
|
||||
hyp_tokens = modified_beam_search_rnnlm_LODR(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam_size,
|
||||
sp=sp,
|
||||
LODR_lm=ngram_lm,
|
||||
LODR_lm_scale=ngram_lm_scale,
|
||||
rnnlm=rnnlm,
|
||||
rnnlm_scale=rnnlm_scale,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
else:
|
||||
batch_size = encoder_out.size(0)
|
||||
|
||||
@ -760,6 +795,7 @@ def main():
|
||||
"fast_beam_search_nbest_LG",
|
||||
"fast_beam_search_nbest_oracle",
|
||||
"modified_beam_search",
|
||||
"modified_beam_search_rnnlm_LODR",
|
||||
"modified_beam_search_ngram_rescoring",
|
||||
"modified_beam_search_rnnlm_shallow_fusion",
|
||||
)
|
||||
@ -788,6 +824,9 @@ def main():
|
||||
if "rnnlm" in params.decoding_method:
|
||||
params.suffix += f"-rnnlm-lm-scale-{params.rnn_lm_scale}"
|
||||
|
||||
if "LODR" in params.decoding_method:
|
||||
params.suffix += "-LODR"
|
||||
|
||||
if params.use_averaged_model:
|
||||
params.suffix += "-use-averaged-model"
|
||||
|
||||
@ -901,7 +940,7 @@ def main():
|
||||
model.eval()
|
||||
|
||||
# only load N-gram LM when needed
|
||||
if "ngram" in params.decoding_method:
|
||||
if "ngram" in params.decoding_method or "LODR" in params.decoding_method:
|
||||
lm_filename = f"{params.tokens_ngram}gram.fst.txt"
|
||||
logging.info(f"lm filename: {lm_filename}")
|
||||
ngram_lm = NgramLm(
|
||||
@ -910,6 +949,7 @@ def main():
|
||||
is_binary=False,
|
||||
)
|
||||
logging.info(f"num states: {ngram_lm.lm.num_states}")
|
||||
ngram_lm_scale = params.ngram_lm_scale
|
||||
else:
|
||||
ngram_lm = None
|
||||
ngram_lm_scale = None
|
||||
@ -933,7 +973,6 @@ def main():
|
||||
)
|
||||
rnn_lm_model.to(device)
|
||||
rnn_lm_model.eval()
|
||||
|
||||
else:
|
||||
rnn_lm_model = None
|
||||
rnn_lm_scale = 0.0
|
||||
|
@ -2083,3 +2083,267 @@ def modified_beam_search_rnnlm_shallow_fusion(
|
||||
tokens=ans,
|
||||
timestamps=ans_timestamps,
|
||||
)
|
||||
|
||||
|
||||
def modified_beam_search_rnnlm_LODR(
|
||||
model: Transducer,
|
||||
encoder_out: torch.Tensor,
|
||||
encoder_out_lens: torch.Tensor,
|
||||
sp: spm.SentencePieceProcessor,
|
||||
LODR_lm: NgramLm,
|
||||
LODR_lm_scale: float,
|
||||
rnnlm: RnnLmModel,
|
||||
rnnlm_scale: float,
|
||||
beam: int = 4,
|
||||
) -> List[List[int]]:
|
||||
"""This function implements LODR (https://arxiv.org/abs/2203.16776) with
|
||||
`modified_beam_search`. It uses a bi-gram language model as the estimate
|
||||
of the internal language model and subtracts its score during shallow fusion
|
||||
with an external language model. This implementation uses a RNNLM as the
|
||||
external language model.
|
||||
|
||||
Args:
|
||||
model (Transducer):
|
||||
The transducer model
|
||||
encoder_out (torch.Tensor):
|
||||
Encoder output in (N,T,C)
|
||||
encoder_out_lens (torch.Tensor):
|
||||
A 1-D tensor of shape (N,), containing the number of
|
||||
valid frames in encoder_out before padding.
|
||||
sp:
|
||||
Sentence piece generator.
|
||||
LODR_lm:
|
||||
A low order n-gram LM
|
||||
LODR_lm_scale:
|
||||
The scale of the LODR_lm
|
||||
rnnlm (RnnLmModel):
|
||||
RNNLM, the external language model
|
||||
rnnlm_scale (float):
|
||||
scale of RNNLM in shallow fusion
|
||||
beam (int, optional):
|
||||
Beam size. Defaults to 4.
|
||||
|
||||
Returns:
|
||||
Return a list-of-list of token IDs. ans[i] is the decoding results
|
||||
for the i-th utterance.
|
||||
|
||||
"""
|
||||
assert encoder_out.ndim == 3, encoder_out.shape
|
||||
assert encoder_out.size(0) >= 1, encoder_out.size(0)
|
||||
assert rnnlm is not None
|
||||
lm_scale = rnnlm_scale
|
||||
vocab_size = rnnlm.vocab_size
|
||||
|
||||
packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence(
|
||||
input=encoder_out,
|
||||
lengths=encoder_out_lens.cpu(),
|
||||
batch_first=True,
|
||||
enforce_sorted=False,
|
||||
)
|
||||
|
||||
blank_id = model.decoder.blank_id
|
||||
sos_id = sp.piece_to_id("<sos/eos>")
|
||||
unk_id = getattr(model, "unk_id", blank_id)
|
||||
context_size = model.decoder.context_size
|
||||
device = next(model.parameters()).device
|
||||
|
||||
batch_size_list = packed_encoder_out.batch_sizes.tolist()
|
||||
N = encoder_out.size(0)
|
||||
assert torch.all(encoder_out_lens > 0), encoder_out_lens
|
||||
assert N == batch_size_list[0], (N, batch_size_list)
|
||||
|
||||
# get initial lm score and lm state by scoring the "sos" token
|
||||
sos_token = torch.tensor([[sos_id]]).to(torch.int64).to(device)
|
||||
init_score, init_states = rnnlm.score_token(sos_token)
|
||||
|
||||
B = [HypothesisList() for _ in range(N)]
|
||||
for i in range(N):
|
||||
B[i].add(
|
||||
Hypothesis(
|
||||
ys=[blank_id] * context_size,
|
||||
log_prob=torch.zeros(1, dtype=torch.float32, device=device),
|
||||
state=init_states, # state of the RNNLM
|
||||
lm_score=init_score.reshape(-1),
|
||||
state_cost=NgramLmStateCost(
|
||||
LODR_lm
|
||||
), # state of the source domain ngram
|
||||
)
|
||||
)
|
||||
|
||||
rnnlm.clean_cache()
|
||||
encoder_out = model.joiner.encoder_proj(packed_encoder_out.data)
|
||||
|
||||
offset = 0
|
||||
finalized_B = []
|
||||
for batch_size in batch_size_list:
|
||||
start = offset
|
||||
end = offset + batch_size
|
||||
current_encoder_out = encoder_out.data[start:end] # get batch
|
||||
current_encoder_out = current_encoder_out.unsqueeze(1).unsqueeze(1)
|
||||
# current_encoder_out's shape is (batch_size, 1, 1, encoder_out_dim)
|
||||
offset = end
|
||||
|
||||
finalized_B = B[batch_size:] + finalized_B
|
||||
B = B[:batch_size]
|
||||
|
||||
hyps_shape = get_hyps_shape(B).to(device)
|
||||
|
||||
A = [list(b) for b in B]
|
||||
B = [HypothesisList() for _ in range(batch_size)]
|
||||
|
||||
ys_log_probs = torch.cat(
|
||||
[hyp.log_prob.reshape(1, 1) for hyps in A for hyp in hyps]
|
||||
)
|
||||
|
||||
decoder_input = torch.tensor(
|
||||
[hyp.ys[-context_size:] for hyps in A for hyp in hyps],
|
||||
device=device,
|
||||
dtype=torch.int64,
|
||||
) # (num_hyps, context_size)
|
||||
|
||||
decoder_out = model.decoder(decoder_input, need_pad=False).unsqueeze(1)
|
||||
decoder_out = model.joiner.decoder_proj(decoder_out)
|
||||
|
||||
current_encoder_out = torch.index_select(
|
||||
current_encoder_out,
|
||||
dim=0,
|
||||
index=hyps_shape.row_ids(1).to(torch.int64),
|
||||
) # (num_hyps, 1, 1, encoder_out_dim)
|
||||
|
||||
logits = model.joiner(
|
||||
current_encoder_out,
|
||||
decoder_out,
|
||||
project_input=False,
|
||||
) # (num_hyps, 1, 1, vocab_size)
|
||||
|
||||
logits = logits.squeeze(1).squeeze(1) # (num_hyps, vocab_size)
|
||||
|
||||
log_probs = logits.log_softmax(dim=-1) # (num_hyps, vocab_size)
|
||||
|
||||
log_probs.add_(ys_log_probs)
|
||||
|
||||
vocab_size = log_probs.size(-1)
|
||||
|
||||
log_probs = log_probs.reshape(-1)
|
||||
|
||||
row_splits = hyps_shape.row_splits(1) * vocab_size
|
||||
log_probs_shape = k2.ragged.create_ragged_shape2(
|
||||
row_splits=row_splits, cached_tot_size=log_probs.numel()
|
||||
)
|
||||
ragged_log_probs = k2.RaggedTensor(
|
||||
shape=log_probs_shape, value=log_probs
|
||||
)
|
||||
"""
|
||||
for all hyps with a non-blank new token, score this token.
|
||||
It is a little confusing here because this for-loop
|
||||
looks very similar to the one below. Here, we go through all
|
||||
top-k tokens and only add the non-blanks ones to the token_list.
|
||||
The RNNLM will score those tokens given the LM states. Note that
|
||||
the variable `scores` is the LM score after seeing the new
|
||||
non-blank token.
|
||||
"""
|
||||
token_list = []
|
||||
hs = []
|
||||
cs = []
|
||||
for i in range(batch_size):
|
||||
topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam)
|
||||
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore")
|
||||
topk_hyp_indexes = (topk_indexes // vocab_size).tolist()
|
||||
topk_token_indexes = (topk_indexes % vocab_size).tolist()
|
||||
for k in range(len(topk_hyp_indexes)):
|
||||
hyp_idx = topk_hyp_indexes[k]
|
||||
hyp = A[i][hyp_idx]
|
||||
|
||||
new_token = topk_token_indexes[k]
|
||||
if new_token not in (blank_id, unk_id):
|
||||
assert new_token != 0, new_token
|
||||
token_list.append([new_token])
|
||||
# store the LSTM states
|
||||
hs.append(hyp.state[0])
|
||||
cs.append(hyp.state[1])
|
||||
|
||||
# forward RNNLM to get new states and scores
|
||||
if len(token_list) != 0:
|
||||
tokens_to_score = (
|
||||
torch.tensor(token_list)
|
||||
.to(torch.int64)
|
||||
.to(device)
|
||||
.reshape(-1, 1)
|
||||
)
|
||||
|
||||
hs = torch.cat(hs, dim=1).to(device)
|
||||
cs = torch.cat(cs, dim=1).to(device)
|
||||
scores, lm_states = rnnlm.score_token(tokens_to_score, (hs, cs))
|
||||
|
||||
count = 0 # index, used to locate score and lm states
|
||||
for i in range(batch_size):
|
||||
topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam)
|
||||
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore")
|
||||
topk_hyp_indexes = (topk_indexes // vocab_size).tolist()
|
||||
topk_token_indexes = (topk_indexes % vocab_size).tolist()
|
||||
|
||||
for k in range(len(topk_hyp_indexes)):
|
||||
hyp_idx = topk_hyp_indexes[k]
|
||||
hyp = A[i][hyp_idx]
|
||||
|
||||
ys = hyp.ys[:]
|
||||
|
||||
# current score of hyp
|
||||
lm_score = hyp.lm_score
|
||||
state = hyp.state
|
||||
|
||||
hyp_log_prob = topk_log_probs[k] # get score of current hyp
|
||||
new_token = topk_token_indexes[k]
|
||||
if new_token not in (blank_id, unk_id):
|
||||
|
||||
ys.append(new_token)
|
||||
state_cost = hyp.state_cost.forward_one_step(new_token)
|
||||
|
||||
# calculate the score of the latest token
|
||||
current_ngram_score = (
|
||||
state_cost.lm_score - hyp.state_cost.lm_score
|
||||
)
|
||||
|
||||
assert current_ngram_score <= 0.0, (
|
||||
state_cost.lm_score,
|
||||
hyp.state_cost.lm_score,
|
||||
)
|
||||
# score = score + RNNLM_score - LODR_score
|
||||
# LODR_LM_scale is a negative number here
|
||||
hyp_log_prob += (
|
||||
lm_score[new_token] * lm_scale
|
||||
+ LODR_lm_scale * current_ngram_score
|
||||
) # add the lm score
|
||||
|
||||
lm_score = scores[count]
|
||||
state = (
|
||||
lm_states[0][:, count, :].unsqueeze(1),
|
||||
lm_states[1][:, count, :].unsqueeze(1),
|
||||
)
|
||||
count += 1
|
||||
else:
|
||||
state_cost = hyp.state_cost
|
||||
|
||||
new_hyp = Hypothesis(
|
||||
ys=ys,
|
||||
log_prob=hyp_log_prob,
|
||||
state=state,
|
||||
lm_score=lm_score,
|
||||
state_cost=state_cost,
|
||||
)
|
||||
B[i].add(new_hyp)
|
||||
|
||||
B = B + finalized_B
|
||||
best_hyps = [b.get_most_probable(length_norm=True) for b in B]
|
||||
|
||||
sorted_ans = [h.ys[context_size:] for h in best_hyps]
|
||||
ans = []
|
||||
unsorted_indices = packed_encoder_out.unsorted_indices.tolist()
|
||||
for i in range(N):
|
||||
ans.append(sorted_ans[unsorted_indices[i]])
|
||||
|
||||
return ans
|
||||
|
@ -1,6 +1,7 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
|
||||
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang
|
||||
# Xiaoyu Yang)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
@ -90,8 +91,40 @@ Usage:
|
||||
--beam 20.0 \
|
||||
--max-contexts 8 \
|
||||
--max-states 64
|
||||
"""
|
||||
|
||||
(8) modified beam search (with RNNLM shallow fusion)
|
||||
./pruned_transducer_stateless3/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--exp-dir ./pruned_transducer_stateless3/exp \
|
||||
--max-duration 600 \
|
||||
--decoding-method modified_beam_search_rnnlm_shallow_fusion \
|
||||
--beam 4 \
|
||||
--rnn-lm-scale 0.3 \
|
||||
--rnn-lm-exp-dir /path/to/RNNLM \
|
||||
--rnn-lm-epoch 99 \
|
||||
--rnn-lm-avg 1 \
|
||||
--rnn-lm-num-layers 3 \
|
||||
--rnn-lm-tie-weights 1
|
||||
|
||||
(9) modified beam search with RNNLM shallow fusion + LODR
|
||||
./pruned_transducer_stateless3/decode.py \
|
||||
--epoch 28 \
|
||||
--avg 15 \
|
||||
--max-duration 600 \
|
||||
--exp-dir ./pruned_transducer_stateless3/exp \
|
||||
--decoding-method modified_beam_search_rnnlm_LODR \
|
||||
--beam 4 \
|
||||
--max-contexts 4 \
|
||||
--rnn-lm-scale 0.4 \
|
||||
--rnn-lm-exp-dir /path/to/RNNLM/exp \
|
||||
--rnn-lm-epoch 99 \
|
||||
--rnn-lm-avg 1 \
|
||||
--rnn-lm-num-layers 3 \
|
||||
--rnn-lm-tie-weights 1 \
|
||||
--tokens-ngram 2 \
|
||||
--ngram-lm-scale -0.16 \
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
@ -116,10 +149,14 @@ from beam_search import (
|
||||
greedy_search,
|
||||
greedy_search_batch,
|
||||
modified_beam_search,
|
||||
modified_beam_search_ngram_rescoring,
|
||||
modified_beam_search_rnnlm_LODR,
|
||||
modified_beam_search_rnnlm_shallow_fusion,
|
||||
)
|
||||
from librispeech import LibriSpeech
|
||||
from train import add_model_arguments, get_params, get_transducer_model
|
||||
|
||||
from icefall import NgramLm
|
||||
from icefall.checkpoint import average_checkpoints, find_checkpoints, load_checkpoint
|
||||
from icefall.lexicon import Lexicon
|
||||
from icefall.rnn_lm.model import RnnLmModel
|
||||
@ -202,6 +239,9 @@ def get_parser():
|
||||
- fast_beam_search_nbest
|
||||
- fast_beam_search_nbest_oracle
|
||||
- fast_beam_search_nbest_LG
|
||||
- modified_beam_search_ngram_rescoring
|
||||
- modified_beam_search_rnnlm_shallow_fusion
|
||||
- modified_beam_search_rnnlm_LODR
|
||||
If you use fast_beam_search_nbest_LG, you have to specify
|
||||
`--lang-dir`, which should contain `LG.pt`.
|
||||
""",
|
||||
@ -263,6 +303,7 @@ def get_parser():
|
||||
default=2,
|
||||
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-sym-per-frame",
|
||||
type=int,
|
||||
@ -341,6 +382,15 @@ def get_parser():
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--rnn-lm-scale",
|
||||
type=float,
|
||||
default=0.0,
|
||||
help="""Used only when --method is modified-beam-search_rnnlm_shallow_fusion.
|
||||
It specifies the path to RNN LM exp dir.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--rnn-lm-exp-dir",
|
||||
type=str,
|
||||
@ -397,6 +447,24 @@ def get_parser():
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tokens-ngram",
|
||||
type=int,
|
||||
default=3,
|
||||
help="""Token Ngram used for rescoring.
|
||||
Used only when the decoding method is
|
||||
modified_beam_search_ngram_rescoring""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--backoff-id",
|
||||
type=int,
|
||||
default=500,
|
||||
help="""ID of the backoff symbol.
|
||||
Used only when the decoding method is
|
||||
modified_beam_search_ngram_rescoring""",
|
||||
)
|
||||
|
||||
add_model_arguments(parser)
|
||||
|
||||
return parser
|
||||
@ -410,7 +478,10 @@ def decode_one_batch(
|
||||
word_table: Optional[k2.SymbolTable] = None,
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
G: Optional[k2.Fsa] = None,
|
||||
rnn_lm_model: torch.nn.Module = None,
|
||||
ngram_lm: Optional[NgramLm] = None,
|
||||
ngram_lm_scale: float = 1.0,
|
||||
rnn_lm_model: Optional[RnnLmModel] = None,
|
||||
rnnlm_scale: float = 1.0,
|
||||
) -> Dict[str, List[List[str]]]:
|
||||
"""Decode one batch and return the result in a dict. The dict has the
|
||||
following format:
|
||||
@ -444,6 +515,14 @@ def decode_one_batch(
|
||||
fast_beam_search_nbest, fast_beam_search_nbest_oracle,
|
||||
or fast_beam_search_with_nbest_rescoring.
|
||||
It an FsaVec containing an acceptor.
|
||||
rnn_lm_model:
|
||||
A rnnlm which can be used for rescoring or shallow fusion
|
||||
rnnlm_scale:
|
||||
The scale of the rnnlm.
|
||||
ngram_lm:
|
||||
A ngram lm. Used in LODR decoding.
|
||||
ngram_lm_scale:
|
||||
The scale of the ngram language model.
|
||||
Returns:
|
||||
Return the decoding result. See above description for the format of
|
||||
the returned dict.
|
||||
@ -607,6 +686,43 @@ def decode_one_batch(
|
||||
nbest_scale=params.nbest_scale,
|
||||
temperature=params.temperature,
|
||||
)
|
||||
elif params.decoding_method == "modified_beam_search_ngram_rescoring":
|
||||
hyp_tokens = modified_beam_search_ngram_rescoring(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
ngram_lm=ngram_lm,
|
||||
ngram_lm_scale=ngram_lm_scale,
|
||||
beam=params.beam_size,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
elif params.decoding_method == "modified_beam_search_rnnlm_shallow_fusion":
|
||||
hyp_tokens = modified_beam_search_rnnlm_shallow_fusion(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam_size,
|
||||
sp=sp,
|
||||
rnnlm=rnn_lm_model,
|
||||
rnnlm_scale=rnnlm_scale,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
elif params.decoding_method == "modified_beam_search_rnnlm_LODR":
|
||||
hyp_tokens = modified_beam_search_rnnlm_LODR(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam_size,
|
||||
sp=sp,
|
||||
LODR_lm=ngram_lm,
|
||||
LODR_lm_scale=ngram_lm_scale,
|
||||
rnnlm=rnn_lm_model,
|
||||
rnnlm_scale=rnnlm_scale,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
else:
|
||||
batch_size = encoder_out.size(0)
|
||||
|
||||
@ -693,7 +809,10 @@ def decode_dataset(
|
||||
word_table: Optional[k2.SymbolTable] = None,
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
G: Optional[k2.Fsa] = None,
|
||||
rnn_lm_model: torch.nn.Module = None,
|
||||
ngram_lm: Optional[NgramLm] = None,
|
||||
ngram_lm_scale: float = 1.0,
|
||||
rnn_lm_model: Optional[RnnLmModel] = None,
|
||||
rnnlm_scale: float = 1.0,
|
||||
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
||||
"""Decode dataset.
|
||||
|
||||
@ -749,7 +868,10 @@ def decode_dataset(
|
||||
decoding_graph=decoding_graph,
|
||||
batch=batch,
|
||||
G=G,
|
||||
ngram_lm=ngram_lm,
|
||||
ngram_lm_scale=ngram_lm_scale,
|
||||
rnn_lm_model=rnn_lm_model,
|
||||
rnnlm_scale=rnnlm_scale,
|
||||
)
|
||||
|
||||
for name, hyps in hyps_dict.items():
|
||||
@ -900,6 +1022,9 @@ def main():
|
||||
"modified_beam_search",
|
||||
"fast_beam_search_with_nbest_rescoring",
|
||||
"fast_beam_search_with_nbest_rnn_rescoring",
|
||||
"modified_beam_search_rnnlm_LODR",
|
||||
"modified_beam_search_ngram_rescoring",
|
||||
"modified_beam_search_rnnlm_shallow_fusion",
|
||||
)
|
||||
params.res_dir = params.exp_dir / params.decoding_method
|
||||
|
||||
@ -930,6 +1055,13 @@ def main():
|
||||
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
||||
params.suffix += f"-temperature-{params.temperature}"
|
||||
|
||||
if "rnnlm" in params.decoding_method:
|
||||
params.suffix += f"-rnnlm-lm-scale-{params.rnn_lm_scale}"
|
||||
if "LODR" in params.decoding_method:
|
||||
params.suffix += "-LODR"
|
||||
if "ngram" in params.decoding_method:
|
||||
params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}"
|
||||
|
||||
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
||||
logging.info("Decoding started")
|
||||
|
||||
@ -1048,6 +1180,44 @@ def main():
|
||||
word_table = None
|
||||
rnn_lm_model = None
|
||||
|
||||
# only load N-gram LM when needed
|
||||
if "ngram" in params.decoding_method or "LODR" in params.decoding_method:
|
||||
lm_filename = f"{params.tokens_ngram}gram.fst.txt"
|
||||
logging.info(f"lm filename: {lm_filename}")
|
||||
ngram_lm = NgramLm(
|
||||
str(params.lang_dir / lm_filename),
|
||||
backoff_id=params.backoff_id,
|
||||
is_binary=False,
|
||||
)
|
||||
logging.info(f"num states: {ngram_lm.lm.num_states}")
|
||||
ngram_lm_scale = params.ngram_lm_scale
|
||||
else:
|
||||
ngram_lm = None
|
||||
ngram_lm_scale = None
|
||||
|
||||
# only load rnnlm if used
|
||||
if "rnnlm" in params.decoding_method:
|
||||
rnn_lm_scale = params.rnn_lm_scale
|
||||
|
||||
rnn_lm_model = RnnLmModel(
|
||||
vocab_size=params.vocab_size,
|
||||
embedding_dim=params.rnn_lm_embedding_dim,
|
||||
hidden_dim=params.rnn_lm_hidden_dim,
|
||||
num_layers=params.rnn_lm_num_layers,
|
||||
tie_weights=params.rnn_lm_tie_weights,
|
||||
)
|
||||
assert params.rnn_lm_avg == 1
|
||||
|
||||
load_checkpoint(
|
||||
f"{params.rnn_lm_exp_dir}/epoch-{params.rnn_lm_epoch}.pt",
|
||||
rnn_lm_model,
|
||||
)
|
||||
rnn_lm_model.to(device)
|
||||
rnn_lm_model.eval()
|
||||
else:
|
||||
rnn_lm_model = None
|
||||
rnn_lm_scale = 0.0
|
||||
|
||||
num_param = sum([p.numel() for p in model.parameters()])
|
||||
logging.info(f"Number of model parameters: {num_param}")
|
||||
|
||||
@ -1074,7 +1244,10 @@ def main():
|
||||
word_table=word_table,
|
||||
decoding_graph=decoding_graph,
|
||||
G=G,
|
||||
ngram_lm=ngram_lm,
|
||||
ngram_lm_scale=ngram_lm_scale,
|
||||
rnn_lm_model=rnn_lm_model,
|
||||
rnnlm_scale=rnn_lm_scale,
|
||||
)
|
||||
|
||||
save_results(
|
||||
|
Loading…
x
Reference in New Issue
Block a user