Add low-order density ratio in RNNLM shallow fusion (#678)

* Support LODR in RNNLM shallow fusion

* fix style

* fix code style

* update workflow and CI

* update results

* propagate changes to stateless3

* add decoding results for stateless3+giga

* fix CI
This commit is contained in:
marcoyang1998 2022-11-30 17:26:05 +08:00 committed by GitHub
parent 1d5c03f85a
commit 4b5bc480e8
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 646 additions and 19 deletions

View File

@ -16,6 +16,7 @@ log "Downloading pre-trained model from $repo_url"
git lfs install
git clone $repo_url
repo=$(basename $repo_url)
abs_repo=$(realpath $repo)
log "Display test files"
tree $repo/
@ -178,21 +179,27 @@ echo "GITHUB_EVENT_LABEL_NAME: ${GITHUB_EVENT_LABEL_NAME}"
if [[ x"${GITHUB_EVENT_LABEL_NAME}" == x"shallow-fusion" ]]; then
lm_repo_url=https://huggingface.co/ezerhouni/icefall-librispeech-rnn-lm
log "Download pre-trained RNN-LM model from ${lm_repo_url}"
git clone $lm_repo_url
GIT_LFS_SKIP_SMUDGE=1 git clone $lm_repo_url
lm_repo=$(basename $lm_repo_url)
pushd $lm_repo
git lfs pull --include "exp/pretrained.pt"
cd exp
ln -s pretrained.pt epoch-88.pt
mv exp/pretrained.pt exp/epoch-88.pt
popd
mkdir -p lstm_transducer_stateless2/exp
ln -sf $PWD/$repo/exp/pretrained.pt lstm_transducer_stateless2/exp/epoch-999.pt
ln -s $PWD/$repo/data/lang_bpe_500 data/
ls -lh data
ls -lh lstm_transducer_stateless2/exp
log "Decoding test-clean and test-other"
./lstm_transducer_stateless2/decode.py \
--use-averaged-model 0 \
--epoch 99 \
--epoch 999 \
--avg 1 \
--exp-dir $repo/exp \
--lang-dir $repo/data/lang_bpe_500 \
--bpe-model $repo/data/lang_bpe_500/bpe.model \
--exp-dir lstm_transducer_stateless2/exp \
--max-duration 600 \
--decoding-method modified_beam_search_rnnlm_shallow_fusion \
--beam 4 \
@ -204,6 +211,52 @@ if [[ x"${GITHUB_EVENT_LABEL_NAME}" == x"shallow-fusion" ]]; then
--rnn-lm-tie-weights 1
fi
if [[ x"${GITHUB_EVENT_LABEL_NAME}" == x"LODR" ]]; then
bigram_repo_url=https://huggingface.co/marcoyang/librispeech_bigram
log "Download bi-gram LM from ${bigram_repo_url}"
GIT_LFS_SKIP_SMUDGE=1 git clone $bigram_repo_url
bigramlm_repo=$(basename $bigram_repo_url)
pushd $bigramlm_repo
git lfs pull --include "2gram.fst.txt"
cp 2gram.fst.txt $abs_repo/data/lang_bpe_500/.
popd
lm_repo_url=https://huggingface.co/ezerhouni/icefall-librispeech-rnn-lm
log "Download pre-trained RNN-LM model from ${lm_repo_url}"
GIT_LFS_SKIP_SMUDGE=1 git clone $lm_repo_url
lm_repo=$(basename $lm_repo_url)
pushd $lm_repo
git lfs pull --include "exp/pretrained.pt"
mv exp/pretrained.pt exp/epoch-88.pt
popd
mkdir -p lstm_transducer_stateless2/exp
ln -sf $PWD/$repo/exp/pretrained.pt lstm_transducer_stateless2/exp/epoch-999.pt
ln -s $PWD/$repo/data/lang_bpe_500 data/
ls -lh data
ls -lh lstm_transducer_stateless2/exp
log "Decoding test-clean and test-other"
./lstm_transducer_stateless2/decode.py \
--use-averaged-model 0 \
--epoch 999 \
--avg 1 \
--exp-dir lstm_transducer_stateless2/exp \
--max-duration 600 \
--decoding-method modified_beam_search_rnnlm_LODR \
--beam 4 \
--rnn-lm-scale 0.3 \
--rnn-lm-exp-dir $lm_repo/exp \
--rnn-lm-epoch 88 \
--rnn-lm-avg 1 \
--rnn-lm-num-layers 3 \
--rnn-lm-tie-weights 1 \
--tokens-ngram 2 \
--ngram-lm-scale -0.16
fi
if [[ x"${GITHUB_EVENT_NAME}" == x"schedule" ]]; then
mkdir -p lstm_transducer_stateless2/exp
ln -s $PWD/$repo/exp/pretrained.pt lstm_transducer_stateless2/exp/epoch-999.pt

View File

@ -18,7 +18,7 @@ on:
jobs:
run_librispeech_lstm_transducer_stateless2_2022_09_03:
if: github.event.label.name == 'ready' || github.event.label.name == 'shallow-fusion' || github.event.label.name == 'ncnn' || github.event.label.name == 'onnx' || github.event_name == 'push' || github.event_name == 'schedule'
if: github.event.label.name == 'ready' || github.event.label.name == 'LODR' || github.event.label.name == 'shallow-fusion' || github.event.label.name == 'ncnn' || github.event.label.name == 'onnx' || github.event_name == 'push' || github.event_name == 'schedule'
runs-on: ${{ matrix.os }}
strategy:
matrix:
@ -139,9 +139,20 @@ jobs:
find modified_beam_search_rnnlm_shallow_fusion -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
find modified_beam_search_rnnlm_shallow_fusion -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
- name: Display decoding results for lstm_transducer_stateless2
if: github.event.label.name == 'LODR'
shell: bash
run: |
cd egs/librispeech/ASR
tree lstm_transducer_stateless2/exp
cd lstm_transducer_stateless2/exp
echo "===modified_beam_search_rnnlm_LODR==="
find modified_beam_search_rnnlm_LODR -name "log-*" -exec grep -n --color "best for test-clean" {} + | sort -n -k2
find modified_beam_search_rnnlm_LODR -name "log-*" -exec grep -n --color "best for test-other" {} + | sort -n -k2
- name: Upload decoding results for lstm_transducer_stateless2
uses: actions/upload-artifact@v2
if: github.event_name == 'schedule' || github.event.label.name == 'shallow-fusion'
if: github.event_name == 'schedule' || github.event.label.name == 'shallow-fusion' || github.event.label.name == 'LODR'
with:
name: torch-${{ matrix.torch }}-python-${{ matrix.python-version }}-ubuntu-18.04-cpu-lstm_transducer_stateless2-2022-09-03
path: egs/librispeech/ASR/lstm_transducer_stateless2/exp/

View File

@ -318,6 +318,7 @@ The WERs are:
| greedy search (max sym per frame 1) | 2.78 | 7.36 | --iter 468000 --avg 16 |
| modified_beam_search | 2.73 | 7.15 | --iter 468000 --avg 16 |
| modified_beam_search + RNNLM shallow fusion | 2.42 | 6.46 | --iter 468000 --avg 16 |
| modified_beam_search + RNNLM shallow fusion | 2.28 | 5.94 | --iter 468000 --avg 16 |
| fast_beam_search | 2.76 | 7.31 | --iter 468000 --avg 16 |
| greedy search (max sym per frame 1) | 2.77 | 7.35 | --iter 472000 --avg 18 |
| modified_beam_search | 2.75 | 7.08 | --iter 472000 --avg 18 |
@ -393,6 +394,32 @@ for iter in 472000; do
done
done
You may also decode using LODR + RNNLM shallow fusion. This decoding method is proposed in <https://arxiv.org/pdf/2203.16776.pdf>.
It subtracts the internal language model score during shallow fusion, which is approximated by a bi-gram model. The bi-gram can be
generated by `generate-lm.sh`, or you may download it from <https://huggingface.co/marcoyang/librispeech_bigram>.
The decoding command is as follows:
for iter in 472000; do
for avg in 8 10 12 14 16 18; do
./lstm_transducer_stateless2/decode.py \
--iter $iter \
--avg $avg \
--exp-dir ./lstm_transducer_stateless2/exp \
--max-duration 600 \
--decoding-method modified_beam_search_rnnlm_LODR \
--beam 4 \
--rnn-lm-scale 0.4 \
--rnn-lm-exp-dir /path/to/RNNLM \
--rnn-lm-epoch 99 \
--rnn-lm-avg 1 \
--rnn-lm-num-layers 3 \
--rnn-lm-tie-weights 1 \
--token-ngram 2 \
--ngram-lm-scale -0.16
done
done
Pretrained models, training logs, decoding logs, and decoding results
are available at
<https://huggingface.co/csukuangfj/icefall-asr-librispeech-lstm-transducer-stateless2-2022-09-03>
@ -1912,6 +1939,8 @@ subset so that the gigaspeech dataloader never exhausts.
|-------------------------------------|------------|------------|---------------------------------------------|
| greedy search (max sym per frame 1) | 2.03 | 4.70 | --iter 1224000 --avg 14 --max-duration 600 |
| modified beam search | 2.00 | 4.63 | --iter 1224000 --avg 14 --max-duration 600 |
| modified beam search + rnnlm shallow fusion | 1.94 | 4.2 | --iter 1224000 --avg 14 --max-duration 600 |
| modified beam search + LODR | 1.83 | 4.03 | --iter 1224000 --avg 14 --max-duration 600 |
| fast beam search | 2.10 | 4.68 | --iter 1224000 --avg 14 --max-duration 600 |
The training commands are:
@ -1957,6 +1986,64 @@ for iter in 1224000; do
done
done
```
You may also decode using shallow fusion with external RNNLM. To do so you need to
download a well-trained RNNLM from this link <https://huggingface.co/ezerhouni/icefall-librispeech-rnn-lm/tree/main>
```bash
rnn_lm_scale=0.3
for iter in 1224000; do
for avg in 14; do
for method in modified_beam_search_rnnlm_shallow_fusion ; do
./pruned_transducer_stateless3/decode.py \
--iter $iter \
--avg $avg \
--exp-dir ./pruned_transducer_stateless3/exp-0.9/ \
--max-duration 600 \
--decoding-method $method \
--max-sym-per-frame 1 \
--beam 4 \
--max-contexts 32 \
--rnn-lm-scale $rnn_lm_scale \
--rnn-lm-exp-dir /path/to/RNNLM \
--rnn-lm-epoch 99 \
--rnn-lm-avg 1 \
--rnn-lm-num-layers 3 \
--rnn-lm-tie-weights 1
done
done
done
```
If you want to try out with LODR decoding, use the following command. This assums you have a bi-gram LM trained on LibriSpeech text. You can also download the bi-gram LM from here <https://huggingface.co/marcoyang/librispeech_bigram/tree/main> and put it under the directory `data/lang_bpe_500`.
```bash
rnn_lm_scale=0.4
for iter in 1224000; do
for avg in 14; do
for method in modified_beam_search_rnnlm_LODR ; do
./pruned_transducer_stateless3/decode.py \
--iter $iter \
--avg $avg \
--exp-dir ./pruned_transducer_stateless3/exp-0.9/ \
--max-duration 600 \
--decoding-method $method \
--max-sym-per-frame 1 \
--beam 4 \
--max-contexts 32 \
--rnn-lm-scale $rnn_lm_scale \
--rnn-lm-exp-dir /path/to/RNNLM \
--rnn-lm-epoch 99 \
--rnn-lm-avg 1 \
--rnn-lm-num-layers 3 \
--rnn-lm-tie-weights 1 \
--tokens-ngram 2 \
--ngram-lm-scale -0.14
done
done
done
```
The pretrained models, training logs, decoding logs, and decoding results
can be found at

View File

@ -107,8 +107,25 @@ Usage:
--rnn-lm-avg 1 \
--rnn-lm-num-layers 3 \
--rnn-lm-tie-weights 1
"""
(9) modified beam search with RNNLM shallow fusion + LODR
./lstm_transducer_stateless2/decode.py \
--epoch 35 \
--avg 15 \
--max-duration 600 \
--exp-dir ./lstm_transducer_stateless2/exp \
--decoding-method modified_beam_search_rnnlm_LODR \
--beam 4 \
--max-contexts 4 \
--rnn-lm-scale 0.4 \
--rnn-lm-exp-dir /path/to/RNNLM/exp \
--rnn-lm-epoch 99 \
--rnn-lm-avg 1 \
--rnn-lm-num-layers 3 \
--rnn-lm-tie-weights 1 \
--tokens-ngram 2 \
--ngram-lm-scale -0.16 \
"""
import argparse
import logging
@ -132,6 +149,7 @@ from beam_search import (
greedy_search_batch,
modified_beam_search,
modified_beam_search_ngram_rescoring,
modified_beam_search_rnnlm_LODR,
modified_beam_search_rnnlm_shallow_fusion,
)
from librispeech import LibriSpeech
@ -235,7 +253,8 @@ def get_parser():
- fast_beam_search_nbest_oracle
- fast_beam_search_nbest_LG
- modified_beam_search_ngram_rescoring
- modified_beam_search_rnnlm_shallow_fusion # for rnn lm shallow fusion
- modified_beam_search_rnnlm_shallow_fusion
- modified_beam_search_rnnlm_LODR
If you use fast_beam_search_nbest_LG, you have to specify
`--lang-dir`, which should contain `LG.pt`.
""",
@ -394,7 +413,8 @@ def get_parser():
type=int,
default=3,
help="""Token Ngram used for rescoring.
Used only when the decoding method is modified_beam_search_ngram_rescoring""",
Used only when the decoding method is
modified_beam_search_ngram_rescoring""",
)
parser.add_argument(
@ -402,7 +422,8 @@ def get_parser():
type=int,
default=500,
help="""ID of the backoff symbol.
Used only when the decoding method is modified_beam_search_ngram_rescoring""",
Used only when the decoding method is
modified_beam_search_ngram_rescoring""",
)
add_model_arguments(parser)
@ -572,6 +593,20 @@ def decode_one_batch(
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
elif params.decoding_method == "modified_beam_search_rnnlm_LODR":
hyp_tokens = modified_beam_search_rnnlm_LODR(
model=model,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam_size,
sp=sp,
LODR_lm=ngram_lm,
LODR_lm_scale=ngram_lm_scale,
rnnlm=rnnlm,
rnnlm_scale=rnnlm_scale,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
else:
batch_size = encoder_out.size(0)
@ -760,6 +795,7 @@ def main():
"fast_beam_search_nbest_LG",
"fast_beam_search_nbest_oracle",
"modified_beam_search",
"modified_beam_search_rnnlm_LODR",
"modified_beam_search_ngram_rescoring",
"modified_beam_search_rnnlm_shallow_fusion",
)
@ -788,6 +824,9 @@ def main():
if "rnnlm" in params.decoding_method:
params.suffix += f"-rnnlm-lm-scale-{params.rnn_lm_scale}"
if "LODR" in params.decoding_method:
params.suffix += "-LODR"
if params.use_averaged_model:
params.suffix += "-use-averaged-model"
@ -901,7 +940,7 @@ def main():
model.eval()
# only load N-gram LM when needed
if "ngram" in params.decoding_method:
if "ngram" in params.decoding_method or "LODR" in params.decoding_method:
lm_filename = f"{params.tokens_ngram}gram.fst.txt"
logging.info(f"lm filename: {lm_filename}")
ngram_lm = NgramLm(
@ -910,6 +949,7 @@ def main():
is_binary=False,
)
logging.info(f"num states: {ngram_lm.lm.num_states}")
ngram_lm_scale = params.ngram_lm_scale
else:
ngram_lm = None
ngram_lm_scale = None
@ -933,7 +973,6 @@ def main():
)
rnn_lm_model.to(device)
rnn_lm_model.eval()
else:
rnn_lm_model = None
rnn_lm_scale = 0.0

View File

@ -2083,3 +2083,267 @@ def modified_beam_search_rnnlm_shallow_fusion(
tokens=ans,
timestamps=ans_timestamps,
)
def modified_beam_search_rnnlm_LODR(
model: Transducer,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
sp: spm.SentencePieceProcessor,
LODR_lm: NgramLm,
LODR_lm_scale: float,
rnnlm: RnnLmModel,
rnnlm_scale: float,
beam: int = 4,
) -> List[List[int]]:
"""This function implements LODR (https://arxiv.org/abs/2203.16776) with
`modified_beam_search`. It uses a bi-gram language model as the estimate
of the internal language model and subtracts its score during shallow fusion
with an external language model. This implementation uses a RNNLM as the
external language model.
Args:
model (Transducer):
The transducer model
encoder_out (torch.Tensor):
Encoder output in (N,T,C)
encoder_out_lens (torch.Tensor):
A 1-D tensor of shape (N,), containing the number of
valid frames in encoder_out before padding.
sp:
Sentence piece generator.
LODR_lm:
A low order n-gram LM
LODR_lm_scale:
The scale of the LODR_lm
rnnlm (RnnLmModel):
RNNLM, the external language model
rnnlm_scale (float):
scale of RNNLM in shallow fusion
beam (int, optional):
Beam size. Defaults to 4.
Returns:
Return a list-of-list of token IDs. ans[i] is the decoding results
for the i-th utterance.
"""
assert encoder_out.ndim == 3, encoder_out.shape
assert encoder_out.size(0) >= 1, encoder_out.size(0)
assert rnnlm is not None
lm_scale = rnnlm_scale
vocab_size = rnnlm.vocab_size
packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence(
input=encoder_out,
lengths=encoder_out_lens.cpu(),
batch_first=True,
enforce_sorted=False,
)
blank_id = model.decoder.blank_id
sos_id = sp.piece_to_id("<sos/eos>")
unk_id = getattr(model, "unk_id", blank_id)
context_size = model.decoder.context_size
device = next(model.parameters()).device
batch_size_list = packed_encoder_out.batch_sizes.tolist()
N = encoder_out.size(0)
assert torch.all(encoder_out_lens > 0), encoder_out_lens
assert N == batch_size_list[0], (N, batch_size_list)
# get initial lm score and lm state by scoring the "sos" token
sos_token = torch.tensor([[sos_id]]).to(torch.int64).to(device)
init_score, init_states = rnnlm.score_token(sos_token)
B = [HypothesisList() for _ in range(N)]
for i in range(N):
B[i].add(
Hypothesis(
ys=[blank_id] * context_size,
log_prob=torch.zeros(1, dtype=torch.float32, device=device),
state=init_states, # state of the RNNLM
lm_score=init_score.reshape(-1),
state_cost=NgramLmStateCost(
LODR_lm
), # state of the source domain ngram
)
)
rnnlm.clean_cache()
encoder_out = model.joiner.encoder_proj(packed_encoder_out.data)
offset = 0
finalized_B = []
for batch_size in batch_size_list:
start = offset
end = offset + batch_size
current_encoder_out = encoder_out.data[start:end] # get batch
current_encoder_out = current_encoder_out.unsqueeze(1).unsqueeze(1)
# current_encoder_out's shape is (batch_size, 1, 1, encoder_out_dim)
offset = end
finalized_B = B[batch_size:] + finalized_B
B = B[:batch_size]
hyps_shape = get_hyps_shape(B).to(device)
A = [list(b) for b in B]
B = [HypothesisList() for _ in range(batch_size)]
ys_log_probs = torch.cat(
[hyp.log_prob.reshape(1, 1) for hyps in A for hyp in hyps]
)
decoder_input = torch.tensor(
[hyp.ys[-context_size:] for hyps in A for hyp in hyps],
device=device,
dtype=torch.int64,
) # (num_hyps, context_size)
decoder_out = model.decoder(decoder_input, need_pad=False).unsqueeze(1)
decoder_out = model.joiner.decoder_proj(decoder_out)
current_encoder_out = torch.index_select(
current_encoder_out,
dim=0,
index=hyps_shape.row_ids(1).to(torch.int64),
) # (num_hyps, 1, 1, encoder_out_dim)
logits = model.joiner(
current_encoder_out,
decoder_out,
project_input=False,
) # (num_hyps, 1, 1, vocab_size)
logits = logits.squeeze(1).squeeze(1) # (num_hyps, vocab_size)
log_probs = logits.log_softmax(dim=-1) # (num_hyps, vocab_size)
log_probs.add_(ys_log_probs)
vocab_size = log_probs.size(-1)
log_probs = log_probs.reshape(-1)
row_splits = hyps_shape.row_splits(1) * vocab_size
log_probs_shape = k2.ragged.create_ragged_shape2(
row_splits=row_splits, cached_tot_size=log_probs.numel()
)
ragged_log_probs = k2.RaggedTensor(
shape=log_probs_shape, value=log_probs
)
"""
for all hyps with a non-blank new token, score this token.
It is a little confusing here because this for-loop
looks very similar to the one below. Here, we go through all
top-k tokens and only add the non-blanks ones to the token_list.
The RNNLM will score those tokens given the LM states. Note that
the variable `scores` is the LM score after seeing the new
non-blank token.
"""
token_list = []
hs = []
cs = []
for i in range(batch_size):
topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
topk_hyp_indexes = (topk_indexes // vocab_size).tolist()
topk_token_indexes = (topk_indexes % vocab_size).tolist()
for k in range(len(topk_hyp_indexes)):
hyp_idx = topk_hyp_indexes[k]
hyp = A[i][hyp_idx]
new_token = topk_token_indexes[k]
if new_token not in (blank_id, unk_id):
assert new_token != 0, new_token
token_list.append([new_token])
# store the LSTM states
hs.append(hyp.state[0])
cs.append(hyp.state[1])
# forward RNNLM to get new states and scores
if len(token_list) != 0:
tokens_to_score = (
torch.tensor(token_list)
.to(torch.int64)
.to(device)
.reshape(-1, 1)
)
hs = torch.cat(hs, dim=1).to(device)
cs = torch.cat(cs, dim=1).to(device)
scores, lm_states = rnnlm.score_token(tokens_to_score, (hs, cs))
count = 0 # index, used to locate score and lm states
for i in range(batch_size):
topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
topk_hyp_indexes = (topk_indexes // vocab_size).tolist()
topk_token_indexes = (topk_indexes % vocab_size).tolist()
for k in range(len(topk_hyp_indexes)):
hyp_idx = topk_hyp_indexes[k]
hyp = A[i][hyp_idx]
ys = hyp.ys[:]
# current score of hyp
lm_score = hyp.lm_score
state = hyp.state
hyp_log_prob = topk_log_probs[k] # get score of current hyp
new_token = topk_token_indexes[k]
if new_token not in (blank_id, unk_id):
ys.append(new_token)
state_cost = hyp.state_cost.forward_one_step(new_token)
# calculate the score of the latest token
current_ngram_score = (
state_cost.lm_score - hyp.state_cost.lm_score
)
assert current_ngram_score <= 0.0, (
state_cost.lm_score,
hyp.state_cost.lm_score,
)
# score = score + RNNLM_score - LODR_score
# LODR_LM_scale is a negative number here
hyp_log_prob += (
lm_score[new_token] * lm_scale
+ LODR_lm_scale * current_ngram_score
) # add the lm score
lm_score = scores[count]
state = (
lm_states[0][:, count, :].unsqueeze(1),
lm_states[1][:, count, :].unsqueeze(1),
)
count += 1
else:
state_cost = hyp.state_cost
new_hyp = Hypothesis(
ys=ys,
log_prob=hyp_log_prob,
state=state,
lm_score=lm_score,
state_cost=state_cost,
)
B[i].add(new_hyp)
B = B + finalized_B
best_hyps = [b.get_most_probable(length_norm=True) for b in B]
sorted_ans = [h.ys[context_size:] for h in best_hyps]
ans = []
unsorted_indices = packed_encoder_out.unsorted_indices.tolist()
for i in range(N):
ans.append(sorted_ans[unsorted_indices[i]])
return ans

View File

@ -1,6 +1,7 @@
#!/usr/bin/env python3
#
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang
# Xiaoyu Yang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
@ -90,8 +91,40 @@ Usage:
--beam 20.0 \
--max-contexts 8 \
--max-states 64
"""
(8) modified beam search (with RNNLM shallow fusion)
./pruned_transducer_stateless3/decode.py \
--epoch 28 \
--avg 15 \
--exp-dir ./pruned_transducer_stateless3/exp \
--max-duration 600 \
--decoding-method modified_beam_search_rnnlm_shallow_fusion \
--beam 4 \
--rnn-lm-scale 0.3 \
--rnn-lm-exp-dir /path/to/RNNLM \
--rnn-lm-epoch 99 \
--rnn-lm-avg 1 \
--rnn-lm-num-layers 3 \
--rnn-lm-tie-weights 1
(9) modified beam search with RNNLM shallow fusion + LODR
./pruned_transducer_stateless3/decode.py \
--epoch 28 \
--avg 15 \
--max-duration 600 \
--exp-dir ./pruned_transducer_stateless3/exp \
--decoding-method modified_beam_search_rnnlm_LODR \
--beam 4 \
--max-contexts 4 \
--rnn-lm-scale 0.4 \
--rnn-lm-exp-dir /path/to/RNNLM/exp \
--rnn-lm-epoch 99 \
--rnn-lm-avg 1 \
--rnn-lm-num-layers 3 \
--rnn-lm-tie-weights 1 \
--tokens-ngram 2 \
--ngram-lm-scale -0.16 \
"""
import argparse
import logging
@ -116,10 +149,14 @@ from beam_search import (
greedy_search,
greedy_search_batch,
modified_beam_search,
modified_beam_search_ngram_rescoring,
modified_beam_search_rnnlm_LODR,
modified_beam_search_rnnlm_shallow_fusion,
)
from librispeech import LibriSpeech
from train import add_model_arguments, get_params, get_transducer_model
from icefall import NgramLm
from icefall.checkpoint import average_checkpoints, find_checkpoints, load_checkpoint
from icefall.lexicon import Lexicon
from icefall.rnn_lm.model import RnnLmModel
@ -202,6 +239,9 @@ def get_parser():
- fast_beam_search_nbest
- fast_beam_search_nbest_oracle
- fast_beam_search_nbest_LG
- modified_beam_search_ngram_rescoring
- modified_beam_search_rnnlm_shallow_fusion
- modified_beam_search_rnnlm_LODR
If you use fast_beam_search_nbest_LG, you have to specify
`--lang-dir`, which should contain `LG.pt`.
""",
@ -263,6 +303,7 @@ def get_parser():
default=2,
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
)
parser.add_argument(
"--max-sym-per-frame",
type=int,
@ -341,6 +382,15 @@ def get_parser():
""",
)
parser.add_argument(
"--rnn-lm-scale",
type=float,
default=0.0,
help="""Used only when --method is modified-beam-search_rnnlm_shallow_fusion.
It specifies the path to RNN LM exp dir.
""",
)
parser.add_argument(
"--rnn-lm-exp-dir",
type=str,
@ -397,6 +447,24 @@ def get_parser():
""",
)
parser.add_argument(
"--tokens-ngram",
type=int,
default=3,
help="""Token Ngram used for rescoring.
Used only when the decoding method is
modified_beam_search_ngram_rescoring""",
)
parser.add_argument(
"--backoff-id",
type=int,
default=500,
help="""ID of the backoff symbol.
Used only when the decoding method is
modified_beam_search_ngram_rescoring""",
)
add_model_arguments(parser)
return parser
@ -410,7 +478,10 @@ def decode_one_batch(
word_table: Optional[k2.SymbolTable] = None,
decoding_graph: Optional[k2.Fsa] = None,
G: Optional[k2.Fsa] = None,
rnn_lm_model: torch.nn.Module = None,
ngram_lm: Optional[NgramLm] = None,
ngram_lm_scale: float = 1.0,
rnn_lm_model: Optional[RnnLmModel] = None,
rnnlm_scale: float = 1.0,
) -> Dict[str, List[List[str]]]:
"""Decode one batch and return the result in a dict. The dict has the
following format:
@ -444,6 +515,14 @@ def decode_one_batch(
fast_beam_search_nbest, fast_beam_search_nbest_oracle,
or fast_beam_search_with_nbest_rescoring.
It an FsaVec containing an acceptor.
rnn_lm_model:
A rnnlm which can be used for rescoring or shallow fusion
rnnlm_scale:
The scale of the rnnlm.
ngram_lm:
A ngram lm. Used in LODR decoding.
ngram_lm_scale:
The scale of the ngram language model.
Returns:
Return the decoding result. See above description for the format of
the returned dict.
@ -607,6 +686,43 @@ def decode_one_batch(
nbest_scale=params.nbest_scale,
temperature=params.temperature,
)
elif params.decoding_method == "modified_beam_search_ngram_rescoring":
hyp_tokens = modified_beam_search_ngram_rescoring(
model=model,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
ngram_lm=ngram_lm,
ngram_lm_scale=ngram_lm_scale,
beam=params.beam_size,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
elif params.decoding_method == "modified_beam_search_rnnlm_shallow_fusion":
hyp_tokens = modified_beam_search_rnnlm_shallow_fusion(
model=model,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam_size,
sp=sp,
rnnlm=rnn_lm_model,
rnnlm_scale=rnnlm_scale,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
elif params.decoding_method == "modified_beam_search_rnnlm_LODR":
hyp_tokens = modified_beam_search_rnnlm_LODR(
model=model,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam_size,
sp=sp,
LODR_lm=ngram_lm,
LODR_lm_scale=ngram_lm_scale,
rnnlm=rnn_lm_model,
rnnlm_scale=rnnlm_scale,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
else:
batch_size = encoder_out.size(0)
@ -693,7 +809,10 @@ def decode_dataset(
word_table: Optional[k2.SymbolTable] = None,
decoding_graph: Optional[k2.Fsa] = None,
G: Optional[k2.Fsa] = None,
rnn_lm_model: torch.nn.Module = None,
ngram_lm: Optional[NgramLm] = None,
ngram_lm_scale: float = 1.0,
rnn_lm_model: Optional[RnnLmModel] = None,
rnnlm_scale: float = 1.0,
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
"""Decode dataset.
@ -749,7 +868,10 @@ def decode_dataset(
decoding_graph=decoding_graph,
batch=batch,
G=G,
ngram_lm=ngram_lm,
ngram_lm_scale=ngram_lm_scale,
rnn_lm_model=rnn_lm_model,
rnnlm_scale=rnnlm_scale,
)
for name, hyps in hyps_dict.items():
@ -900,6 +1022,9 @@ def main():
"modified_beam_search",
"fast_beam_search_with_nbest_rescoring",
"fast_beam_search_with_nbest_rnn_rescoring",
"modified_beam_search_rnnlm_LODR",
"modified_beam_search_ngram_rescoring",
"modified_beam_search_rnnlm_shallow_fusion",
)
params.res_dir = params.exp_dir / params.decoding_method
@ -930,6 +1055,13 @@ def main():
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
params.suffix += f"-temperature-{params.temperature}"
if "rnnlm" in params.decoding_method:
params.suffix += f"-rnnlm-lm-scale-{params.rnn_lm_scale}"
if "LODR" in params.decoding_method:
params.suffix += "-LODR"
if "ngram" in params.decoding_method:
params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}"
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
logging.info("Decoding started")
@ -1048,6 +1180,44 @@ def main():
word_table = None
rnn_lm_model = None
# only load N-gram LM when needed
if "ngram" in params.decoding_method or "LODR" in params.decoding_method:
lm_filename = f"{params.tokens_ngram}gram.fst.txt"
logging.info(f"lm filename: {lm_filename}")
ngram_lm = NgramLm(
str(params.lang_dir / lm_filename),
backoff_id=params.backoff_id,
is_binary=False,
)
logging.info(f"num states: {ngram_lm.lm.num_states}")
ngram_lm_scale = params.ngram_lm_scale
else:
ngram_lm = None
ngram_lm_scale = None
# only load rnnlm if used
if "rnnlm" in params.decoding_method:
rnn_lm_scale = params.rnn_lm_scale
rnn_lm_model = RnnLmModel(
vocab_size=params.vocab_size,
embedding_dim=params.rnn_lm_embedding_dim,
hidden_dim=params.rnn_lm_hidden_dim,
num_layers=params.rnn_lm_num_layers,
tie_weights=params.rnn_lm_tie_weights,
)
assert params.rnn_lm_avg == 1
load_checkpoint(
f"{params.rnn_lm_exp_dir}/epoch-{params.rnn_lm_epoch}.pt",
rnn_lm_model,
)
rnn_lm_model.to(device)
rnn_lm_model.eval()
else:
rnn_lm_model = None
rnn_lm_scale = 0.0
num_param = sum([p.numel() for p in model.parameters()])
logging.info(f"Number of model parameters: {num_param}")
@ -1074,7 +1244,10 @@ def main():
word_table=word_table,
decoding_graph=decoding_graph,
G=G,
ngram_lm=ngram_lm,
ngram_lm_scale=ngram_lm_scale,
rnn_lm_model=rnn_lm_model,
rnnlm_scale=rnn_lm_scale,
)
save_results(