More fixes to gigaspeech recipe

This commit is contained in:
pkufool 2024-02-01 19:01:25 +08:00
parent 2addc6cba6
commit 4b3356307a
7 changed files with 75 additions and 887 deletions

View File

@ -416,6 +416,17 @@ def get_parser():
help="Accumulate stats on activations, print them and exit.",
)
parser.add_argument(
"--scan-for-oom-batches",
type=str2bool,
default=False,
help="""
Whether to scan for oom batches before training, this is helpful for
finding the suitable max_duration, you only need to run it once.
Caution: a little time consuming.
""",
)
parser.add_argument(
"--inf-check",
type=str2bool,
@ -1197,14 +1208,14 @@ def run(rank, world_size, args):
valid_cuts = valid_cuts.filter(remove_short_utt)
valid_dl = gigaspeech.valid_dataloaders(valid_cuts)
# if not params.print_diagnostics:
# scan_pessimistic_batches_for_oom(
# model=model,
# train_dl=train_dl,
# optimizer=optimizer,
# sp=sp,
# params=params,
# )
if not params.print_diagnostics and params.scan_for_oom_batches:
scan_pessimistic_batches_for_oom(
model=model,
train_dl=train_dl,
optimizer=optimizer,
sp=sp,
params=params,
)
scaler = GradScaler(enabled=params.use_fp16, init_scale=1.0)
if checkpoints and "grad_scaler" in checkpoints:

View File

@ -1,5 +1,5 @@
# Copyright 2021 Piotr Żelasko
# Copyright 2023 Xiaomi Corporation (Author: Yifan Yang)
# Copyright 2024 Xiaomi Corporation (Author: Wei Kang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
@ -448,13 +448,6 @@ class GigaSpeechAsrDataModule:
self.args.manifest_dir / "gigaspeech_cuts_TEST.jsonl.gz"
)
@lru_cache()
def libri_100_cuts(self) -> CutSet:
logging.info("About to get libri100 cuts")
return load_manifest_lazy(
self.args.manifest_dir / "librispeech_cuts_train-clean-100.jsonl.gz"
)
@lru_cache()
def fsc_train_cuts(self) -> CutSet:
logging.info("About to get fluent speech commands train cuts")

View File

@ -274,7 +274,7 @@ def decode_one_batch(
model=model,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
context_graph=kws_graph,
keywords_graph=kws_graph,
beam=params.beam,
num_tailing_blanks=params.num_tailing_blanks,
blank_penalty=params.blank_penalty,

View File

@ -1,7 +1,8 @@
#!/usr/bin/env python3
#
# Copyright 2021-2023 Xiaomi Corporation (Author: Fangjun Kuang,
# Zengwei Yao)
# Copyright 2021-2024 Xiaomi Corporation (Author: Fangjun Kuang,
# Zengwei Yao,
# Wei Kang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#

View File

@ -72,16 +72,13 @@ from lhotse.dataset.sampling.base import CutSampler
from lhotse.utils import fix_random_seed
from model import AsrModel
from optim import Eden, ScaledAdam
from scaling import ScheduledFloat
from subsampling import Conv2dSubsampling
from torch import Tensor
from torch.cuda.amp import GradScaler
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.tensorboard import SummaryWriter
from zipformer import Zipformer2
from icefall import diagnostics
from icefall.checkpoint import load_checkpoint, remove_checkpoints
from icefall.checkpoint import remove_checkpoints
from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
from icefall.checkpoint import (
save_checkpoint_with_global_batch_idx,
@ -98,30 +95,24 @@ from icefall.utils import (
str2bool,
)
from train import (
add_model_arguments,
add_training_arguments,
compute_loss,
compute_validation_loss,
display_and_save_batch,
get_adjusted_batch_count,
get_model,
get_params,
load_checkpoint_if_available,
save_checkpoint,
scan_pessimistic_batches_for_oom,
set_batch_count,
)
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
def get_adjusted_batch_count(params: AttributeDict) -> float:
# returns the number of batches we would have used so far if we had used the reference
# duration. This is for purposes of set_batch_count().
return (
params.batch_idx_train
* (params.max_duration * params.world_size)
/ params.ref_duration
)
def set_batch_count(model: Union[nn.Module, DDP], batch_count: float) -> None:
if isinstance(model, DDP):
# get underlying nn.Module
model = model.module
for name, module in model.named_modules():
if hasattr(module, "batch_count"):
module.batch_count = batch_count
if hasattr(module, "name"):
module.name = name
def add_finetune_arguments(parser: argparse.ArgumentParser):
parser.add_argument(
"--use-mux",
@ -162,518 +153,18 @@ def add_finetune_arguments(parser: argparse.ArgumentParser):
)
def add_model_arguments(parser: argparse.ArgumentParser):
parser.add_argument(
"--num-encoder-layers",
type=str,
default="2,2,3,4,3,2",
help="Number of zipformer encoder layers per stack, comma separated.",
)
parser.add_argument(
"--downsampling-factor",
type=str,
default="1,2,4,8,4,2",
help="Downsampling factor for each stack of encoder layers.",
)
parser.add_argument(
"--feedforward-dim",
type=str,
default="512,768,1024,1536,1024,768",
help="Feedforward dimension of the zipformer encoder layers, per stack, comma separated.",
)
parser.add_argument(
"--num-heads",
type=str,
default="4,4,4,8,4,4",
help="Number of attention heads in the zipformer encoder layers: a single int or comma-separated list.",
)
parser.add_argument(
"--encoder-dim",
type=str,
default="192,256,384,512,384,256",
help="Embedding dimension in encoder stacks: a single int or comma-separated list.",
)
parser.add_argument(
"--query-head-dim",
type=str,
default="32",
help="Query/key dimension per head in encoder stacks: a single int or comma-separated list.",
)
parser.add_argument(
"--value-head-dim",
type=str,
default="12",
help="Value dimension per head in encoder stacks: a single int or comma-separated list.",
)
parser.add_argument(
"--pos-head-dim",
type=str,
default="4",
help="Positional-encoding dimension per head in encoder stacks: a single int or comma-separated list.",
)
parser.add_argument(
"--pos-dim",
type=int,
default="48",
help="Positional-encoding embedding dimension",
)
parser.add_argument(
"--encoder-unmasked-dim",
type=str,
default="192,192,256,256,256,192",
help="Unmasked dimensions in the encoders, relates to augmentation during training. "
"A single int or comma-separated list. Must be <= each corresponding encoder_dim.",
)
parser.add_argument(
"--cnn-module-kernel",
type=str,
default="31,31,15,15,15,31",
help="Sizes of convolutional kernels in convolution modules in each encoder stack: "
"a single int or comma-separated list.",
)
parser.add_argument(
"--decoder-dim",
type=int,
default=512,
help="Embedding dimension in the decoder model.",
)
parser.add_argument(
"--joiner-dim",
type=int,
default=512,
help="""Dimension used in the joiner model.
Outputs from the encoder and decoder model are projected
to this dimension before adding.
""",
)
parser.add_argument(
"--causal",
type=str2bool,
default=False,
help="If True, use causal version of model.",
)
parser.add_argument(
"--chunk-size",
type=str,
default="16,32,64,-1",
help="Chunk sizes (at 50Hz frame rate) will be chosen randomly from this list during training. "
" Must be just -1 if --causal=False",
)
parser.add_argument(
"--left-context-frames",
type=str,
default="64,128,256,-1",
help="Maximum left-contexts for causal training, measured in frames which will "
"be converted to a number of chunks. If splitting into chunks, "
"chunk left-context frames will be chosen randomly from this list; else not relevant.",
)
parser.add_argument(
"--use-transducer",
type=str2bool,
default=True,
help="If True, use Transducer head.",
)
parser.add_argument(
"--use-ctc",
type=str2bool,
default=False,
help="If True, use CTC head.",
)
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--world-size",
type=int,
default=1,
help="Number of GPUs for DDP training.",
)
parser.add_argument(
"--master-port",
type=int,
default=12354,
help="Master port to use for DDP training.",
)
parser.add_argument(
"--tensorboard",
type=str2bool,
default=True,
help="Should various information be logged in tensorboard.",
)
parser.add_argument(
"--num-epochs",
type=int,
default=30,
help="Number of epochs to train.",
)
parser.add_argument(
"--start-epoch",
type=int,
default=1,
help="""Resume training from this epoch. It should be positive.
If larger than 1, it will load checkpoint from
exp-dir/epoch-{start_epoch-1}.pt
""",
)
parser.add_argument(
"--start-batch",
type=int,
default=0,
help="""If positive, --start-epoch is ignored and
it loads the checkpoint from exp-dir/checkpoint-{start_batch}.pt
""",
)
parser.add_argument(
"--exp-dir",
type=str,
default="zipformer/exp",
help="""The experiment dir.
It specifies the directory where all training related
files, e.g., checkpoints, log, etc, are saved
""",
)
parser.add_argument(
"--bpe-model",
type=str,
default="data/lang_bpe_500/bpe.model",
help="Path to the BPE model",
)
parser.add_argument(
"--base-lr", type=float, default=0.045, help="The base learning rate."
)
parser.add_argument(
"--lr-batches",
type=float,
default=7500,
help="""Number of steps that affects how rapidly the learning rate
decreases. We suggest not to change this.""",
)
parser.add_argument(
"--lr-epochs",
type=float,
default=1,
help="""Number of epochs that affects how rapidly the learning rate decreases.
""",
)
parser.add_argument(
"--ref-duration",
type=float,
default=600,
help="Reference batch duration for purposes of adjusting batch counts for setting various "
"schedules inside the model",
)
parser.add_argument(
"--context-size",
type=int,
default=2,
help="The context size in the decoder. 1 means bigram; " "2 means tri-gram",
)
parser.add_argument(
"--prune-range",
type=int,
default=5,
help="The prune range for rnnt loss, it means how many symbols(context)"
"we are using to compute the loss",
)
parser.add_argument(
"--lm-scale",
type=float,
default=0.25,
help="The scale to smooth the loss with lm "
"(output of prediction network) part.",
)
parser.add_argument(
"--am-scale",
type=float,
default=0.0,
help="The scale to smooth the loss with am (output of encoder network)" "part.",
)
parser.add_argument(
"--simple-loss-scale",
type=float,
default=0.5,
help="To get pruning ranges, we will calculate a simple version"
"loss(joiner is just addition), this simple loss also uses for"
"training (as a regularization item). We will scale the simple loss"
"with this parameter before adding to the final loss.",
)
parser.add_argument(
"--ctc-loss-scale",
type=float,
default=0.2,
help="Scale for CTC loss.",
)
parser.add_argument(
"--seed",
type=int,
default=42,
help="The seed for random generators intended for reproducibility",
)
parser.add_argument(
"--print-diagnostics",
type=str2bool,
default=False,
help="Accumulate stats on activations, print them and exit.",
)
parser.add_argument(
"--inf-check",
type=str2bool,
default=False,
help="Add hooks to check for infinite module outputs and gradients.",
)
parser.add_argument(
"--save-every-n",
type=int,
default=8000,
help="""Save checkpoint after processing this number of batches"
periodically. We save checkpoint to exp-dir/ whenever
params.batch_idx_train % save_every_n == 0. The checkpoint filename
has the form: f'exp-dir/checkpoint-{params.batch_idx_train}.pt'
Note: It also saves checkpoint to `exp-dir/epoch-xxx.pt` at the
end of each epoch where `xxx` is the epoch number counting from 1.
""",
)
parser.add_argument(
"--keep-last-k",
type=int,
default=30,
help="""Only keep this number of checkpoints on disk.
For instance, if it is 3, there are only 3 checkpoints
in the exp-dir with filenames `checkpoint-xxx.pt`.
It does not affect checkpoints with name `epoch-xxx.pt`.
""",
)
parser.add_argument(
"--average-period",
type=int,
default=200,
help="""Update the averaged model, namely `model_avg`, after processing
this number of batches. `model_avg` is a separate version of model,
in which each floating-point parameter is the average of all the
parameters from the start of training. Each time we take the average,
we do: `model_avg = model * (average_period / batch_idx_train) +
model_avg * ((batch_idx_train - average_period) / batch_idx_train)`.
""",
)
parser.add_argument(
"--use-fp16",
type=str2bool,
default=False,
help="Whether to use half precision training.",
)
add_training_arguments(parser)
add_model_arguments(parser)
add_finetune_arguments(parser)
return parser
def get_params() -> AttributeDict:
"""Return a dict containing training parameters.
All training related parameters that are not passed from the commandline
are saved in the variable `params`.
Commandline options are merged into `params` after they are parsed, so
you can also access them via `params`.
Explanation of options saved in `params`:
- best_train_loss: Best training loss so far. It is used to select
the model that has the lowest training loss. It is
updated during the training.
- best_valid_loss: Best validation loss so far. It is used to select
the model that has the lowest validation loss. It is
updated during the training.
- best_train_epoch: It is the epoch that has the best training loss.
- best_valid_epoch: It is the epoch that has the best validation loss.
- batch_idx_train: Used to writing statistics to tensorboard. It
contains number of batches trained so far across
epochs.
- log_interval: Print training loss if batch_idx % log_interval` is 0
- reset_interval: Reset statistics if batch_idx % reset_interval is 0
- valid_interval: Run validation if batch_idx % valid_interval is 0
- feature_dim: The model input dim. It has to match the one used
in computing features.
- subsampling_factor: The subsampling factor for the model.
- encoder_dim: Hidden dim for multi-head attention model.
- num_decoder_layers: Number of decoder layer of transformer decoder.
- warm_step: The warmup period that dictates the decay of the
scale on "simple" (un-pruned) loss.
"""
params = AttributeDict(
{
"best_train_loss": float("inf"),
"best_valid_loss": float("inf"),
"best_train_epoch": -1,
"best_valid_epoch": -1,
"batch_idx_train": 0,
"log_interval": 500,
"reset_interval": 2000,
"valid_interval": 20000,
# parameters for zipformer
"feature_dim": 80,
"subsampling_factor": 4, # not passed in, this is fixed.
"warm_step": 2000,
"env_info": get_env_info(),
}
)
return params
def _to_int_tuple(s: str):
return tuple(map(int, s.split(",")))
def get_encoder_embed(params: AttributeDict) -> nn.Module:
# encoder_embed converts the input of shape (N, T, num_features)
# to the shape (N, (T - 7) // 2, encoder_dims).
# That is, it does two things simultaneously:
# (1) subsampling: T -> (T - 7) // 2
# (2) embedding: num_features -> encoder_dims
# In the normal configuration, we will downsample once more at the end
# by a factor of 2, and most of the encoder stacks will run at a lower
# sampling rate.
encoder_embed = Conv2dSubsampling(
in_channels=params.feature_dim,
out_channels=_to_int_tuple(params.encoder_dim)[0],
dropout=ScheduledFloat((0.0, 0.3), (20000.0, 0.1)),
)
return encoder_embed
def get_encoder_model(params: AttributeDict) -> nn.Module:
encoder = Zipformer2(
output_downsampling_factor=2,
downsampling_factor=_to_int_tuple(params.downsampling_factor),
num_encoder_layers=_to_int_tuple(params.num_encoder_layers),
encoder_dim=_to_int_tuple(params.encoder_dim),
encoder_unmasked_dim=_to_int_tuple(params.encoder_unmasked_dim),
query_head_dim=_to_int_tuple(params.query_head_dim),
pos_head_dim=_to_int_tuple(params.pos_head_dim),
value_head_dim=_to_int_tuple(params.value_head_dim),
pos_dim=params.pos_dim,
num_heads=_to_int_tuple(params.num_heads),
feedforward_dim=_to_int_tuple(params.feedforward_dim),
cnn_module_kernel=_to_int_tuple(params.cnn_module_kernel),
dropout=ScheduledFloat((0.0, 0.3), (20000.0, 0.1)),
warmup_batches=4000.0,
causal=params.causal,
chunk_size=_to_int_tuple(params.chunk_size),
left_context_frames=_to_int_tuple(params.left_context_frames),
)
return encoder
def get_decoder_model(params: AttributeDict) -> nn.Module:
decoder = Decoder(
vocab_size=params.vocab_size,
decoder_dim=params.decoder_dim,
blank_id=params.blank_id,
context_size=params.context_size,
)
return decoder
def get_joiner_model(params: AttributeDict) -> nn.Module:
joiner = Joiner(
encoder_dim=max(_to_int_tuple(params.encoder_dim)),
decoder_dim=params.decoder_dim,
joiner_dim=params.joiner_dim,
vocab_size=params.vocab_size,
)
return joiner
def get_model(params: AttributeDict) -> nn.Module:
assert params.use_transducer or params.use_ctc, (
f"At least one of them should be True, "
f"but got params.use_transducer={params.use_transducer}, "
f"params.use_ctc={params.use_ctc}"
)
encoder_embed = get_encoder_embed(params)
encoder = get_encoder_model(params)
if params.use_transducer:
decoder = get_decoder_model(params)
joiner = get_joiner_model(params)
else:
decoder = None
joiner = None
model = AsrModel(
encoder_embed=encoder_embed,
encoder=encoder,
decoder=decoder,
joiner=joiner,
encoder_dim=max(_to_int_tuple(params.encoder_dim)),
decoder_dim=params.decoder_dim,
vocab_size=params.vocab_size,
use_transducer=params.use_transducer,
use_ctc=params.use_ctc,
)
return model
def load_model_params(
ckpt: str, model: nn.Module, init_modules: List[str] = None, strict: bool = True
):
@ -721,246 +212,6 @@ def load_model_params(
return None
def load_checkpoint_if_available(
params: AttributeDict,
model: nn.Module,
model_avg: nn.Module = None,
optimizer: Optional[torch.optim.Optimizer] = None,
scheduler: Optional[LRSchedulerType] = None,
) -> Optional[Dict[str, Any]]:
"""Load checkpoint from file.
If params.start_batch is positive, it will load the checkpoint from
`params.exp_dir/checkpoint-{params.start_batch}.pt`. Otherwise, if
params.start_epoch is larger than 1, it will load the checkpoint from
`params.start_epoch - 1`.
Apart from loading state dict for `model` and `optimizer` it also updates
`best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
and `best_valid_loss` in `params`.
Args:
params:
The return value of :func:`get_params`.
model:
The training model.
model_avg:
The stored model averaged from the start of training.
optimizer:
The optimizer that we are using.
scheduler:
The scheduler that we are using.
Returns:
Return a dict containing previously saved training info.
"""
if params.start_batch > 0:
filename = params.exp_dir / f"checkpoint-{params.start_batch}.pt"
elif params.start_epoch > 1:
filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
else:
return None
assert filename.is_file(), f"{filename} does not exist!"
saved_params = load_checkpoint(
filename,
model=model,
model_avg=model_avg,
optimizer=optimizer,
scheduler=scheduler,
)
keys = [
"best_train_epoch",
"best_valid_epoch",
"batch_idx_train",
"best_train_loss",
"best_valid_loss",
]
for k in keys:
params[k] = saved_params[k]
if params.start_batch > 0:
if "cur_epoch" in saved_params:
params["start_epoch"] = saved_params["cur_epoch"]
return saved_params
def save_checkpoint(
params: AttributeDict,
model: Union[nn.Module, DDP],
model_avg: Optional[nn.Module] = None,
optimizer: Optional[torch.optim.Optimizer] = None,
scheduler: Optional[LRSchedulerType] = None,
sampler: Optional[CutSampler] = None,
scaler: Optional[GradScaler] = None,
rank: int = 0,
) -> None:
"""Save model, optimizer, scheduler and training stats to file.
Args:
params:
It is returned by :func:`get_params`.
model:
The training model.
model_avg:
The stored model averaged from the start of training.
optimizer:
The optimizer used in the training.
sampler:
The sampler for the training dataset.
scaler:
The scaler used for mix precision training.
"""
if rank != 0:
return
filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
save_checkpoint_impl(
filename=filename,
model=model,
model_avg=model_avg,
params=params,
optimizer=optimizer,
scheduler=scheduler,
sampler=sampler,
scaler=scaler,
rank=rank,
)
if params.best_train_epoch == params.cur_epoch:
best_train_filename = params.exp_dir / "best-train-loss.pt"
copyfile(src=filename, dst=best_train_filename)
if params.best_valid_epoch == params.cur_epoch:
best_valid_filename = params.exp_dir / "best-valid-loss.pt"
copyfile(src=filename, dst=best_valid_filename)
def compute_loss(
params: AttributeDict,
model: Union[nn.Module, DDP],
sp: spm.SentencePieceProcessor,
batch: dict,
is_training: bool,
) -> Tuple[Tensor, MetricsTracker]:
"""
Compute loss given the model and its inputs.
Args:
params:
Parameters for training. See :func:`get_params`.
model:
The model for training. It is an instance of Zipformer in our case.
batch:
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
for the content in it.
is_training:
True for training. False for validation. When it is True, this
function enables autograd during computation; when it is False, it
disables autograd.
warmup: a floating point value which increases throughout training;
values >= 1.0 are fully warmed up and have all modules present.
"""
device = model.device if isinstance(model, DDP) else next(model.parameters()).device
feature = batch["inputs"]
# at entry, feature is (N, T, C)
assert feature.ndim == 3
feature = feature.to(device)
supervisions = batch["supervisions"]
feature_lens = supervisions["num_frames"].to(device)
batch_idx_train = params.batch_idx_train
warm_step = params.warm_step
texts = batch["supervisions"]["text"]
y = sp.encode(texts, out_type=int)
y = k2.RaggedTensor(y)
with torch.set_grad_enabled(is_training):
simple_loss, pruned_loss, ctc_loss = model(
x=feature,
x_lens=feature_lens,
y=y,
prune_range=params.prune_range,
am_scale=params.am_scale,
lm_scale=params.lm_scale,
)
loss = 0.0
if params.use_transducer:
s = params.simple_loss_scale
# take down the scale on the simple loss from 1.0 at the start
# to params.simple_loss scale by warm_step.
simple_loss_scale = (
s
if batch_idx_train >= warm_step
else 1.0 - (batch_idx_train / warm_step) * (1.0 - s)
)
pruned_loss_scale = (
1.0
if batch_idx_train >= warm_step
else 0.1 + 0.9 * (batch_idx_train / warm_step)
)
loss += simple_loss_scale * simple_loss + pruned_loss_scale * pruned_loss
if params.use_ctc:
loss += params.ctc_loss_scale * ctc_loss
assert loss.requires_grad == is_training
info = MetricsTracker()
with warnings.catch_warnings():
warnings.simplefilter("ignore")
info["frames"] = (feature_lens // params.subsampling_factor).sum().item()
# Note: We use reduction=sum while computing the loss.
info["loss"] = loss.detach().cpu().item()
if params.use_transducer:
info["simple_loss"] = simple_loss.detach().cpu().item()
info["pruned_loss"] = pruned_loss.detach().cpu().item()
if params.use_ctc:
info["ctc_loss"] = ctc_loss.detach().cpu().item()
return loss, info
def compute_validation_loss(
params: AttributeDict,
model: Union[nn.Module, DDP],
sp: spm.SentencePieceProcessor,
valid_dl: torch.utils.data.DataLoader,
world_size: int = 1,
) -> MetricsTracker:
"""Run the validation process."""
model.eval()
tot_loss = MetricsTracker()
for batch_idx, batch in enumerate(valid_dl):
loss, loss_info = compute_loss(
params=params,
model=model,
sp=sp,
batch=batch,
is_training=False,
)
assert loss.requires_grad is False
tot_loss = tot_loss + loss_info
if world_size > 1:
tot_loss.reduce(loss.device)
loss_value = tot_loss["loss"] / tot_loss["frames"]
if loss_value < params.best_valid_loss:
params.best_valid_epoch = params.cur_epoch
params.best_valid_loss = loss_value
return tot_loss
def train_one_epoch(
params: AttributeDict,
model: Union[nn.Module, DDP],
@ -1305,14 +556,14 @@ def run(rank, world_size, args):
valid_cuts = valid_cuts.filter(remove_short_utt)
valid_dl = gigaspeech.valid_dataloaders(valid_cuts)
# if not params.print_diagnostics:
# scan_pessimistic_batches_for_oom(
# model=model,
# train_dl=train_dl,
# optimizer=optimizer,
# sp=sp,
# params=params,
# )
if not params.print_diagnostics and params.scan_for_oom_batches:
scan_pessimistic_batches_for_oom(
model=model,
train_dl=train_dl,
optimizer=optimizer,
sp=sp,
params=params,
)
scaler = GradScaler(enabled=params.use_fp16, init_scale=1.0)
if checkpoints and "grad_scaler" in checkpoints:
@ -1366,80 +617,6 @@ def run(rank, world_size, args):
cleanup_dist()
def display_and_save_batch(
batch: dict,
params: AttributeDict,
sp: spm.SentencePieceProcessor,
) -> None:
"""Display the batch statistics and save the batch into disk.
Args:
batch:
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
for the content in it.
params:
Parameters for training. See :func:`get_params`.
sp:
The BPE model.
"""
from lhotse.utils import uuid4
filename = f"{params.exp_dir}/batch-{uuid4()}.pt"
logging.info(f"Saving batch to {filename}")
torch.save(batch, filename)
supervisions = batch["supervisions"]
features = batch["inputs"]
logging.info(f"features shape: {features.shape}")
y = sp.encode(supervisions["text"], out_type=int)
num_tokens = sum(len(i) for i in y)
logging.info(f"num tokens: {num_tokens}")
def scan_pessimistic_batches_for_oom(
model: Union[nn.Module, DDP],
train_dl: torch.utils.data.DataLoader,
optimizer: torch.optim.Optimizer,
sp: spm.SentencePieceProcessor,
params: AttributeDict,
):
from lhotse.dataset import find_pessimistic_batches
logging.info(
"Sanity check -- see if any of the batches in epoch 1 would cause OOM."
)
batches, crit_values = find_pessimistic_batches(train_dl.sampler)
for criterion, cuts in batches.items():
batch = train_dl.dataset[cuts]
try:
with torch.cuda.amp.autocast(enabled=params.use_fp16):
loss, _ = compute_loss(
params=params,
model=model,
sp=sp,
batch=batch,
is_training=True,
)
loss.backward()
optimizer.zero_grad()
except Exception as e:
if "CUDA out of memory" in str(e):
logging.error(
"Your GPU ran out of memory with the current "
"max_duration setting. We recommend decreasing "
"max_duration and trying again.\n"
f"Failing criterion: {criterion} "
f"(={crit_values[criterion]}) ..."
)
display_and_save_batch(batch, params=params, sp=sp)
raise
logging.info(
f"Maximum memory allocated so far is {torch.cuda.max_memory_allocated()//1000000}MB"
)
def main():
parser = get_parser()
GigaSpeechAsrDataModule.add_arguments(parser)
@ -1454,8 +631,7 @@ def main():
run(rank=0, world_size=1, args=args)
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
if __name__ == "__main__":
torch.set_num_threads(1)
torch.set_num_interop_threads(1)
main()

View File

@ -263,6 +263,20 @@ def get_parser():
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--bpe-model",
type=str,
default="data/lang_bpe_500/bpe.model",
help="Path to the BPE model",
)
add_training_arguments(parser)
add_model_arguments(parser)
return parser
def add_model_arguments(parser: argparse.ArgumentParser):
parser.add_argument(
"--world-size",
type=int,
@ -320,13 +334,6 @@ def get_parser():
""",
)
parser.add_argument(
"--bpe-model",
type=str,
default="data/lang_bpe_500/bpe.model",
help="Path to the BPE model",
)
parser.add_argument(
"--base-lr", type=float, default=0.045, help="The base learning rate."
)
@ -478,10 +485,6 @@ def get_parser():
help="Whether to use half precision training.",
)
add_model_arguments(parser)
return parser
def get_params() -> AttributeDict:
"""Return a dict containing training parameters.

View File

@ -15,7 +15,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import math
import warnings
from dataclasses import dataclass, field
@ -964,9 +963,9 @@ def keywords_search(
model: nn.Module,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
context_graph: ContextGraph,
keywords_graph: ContextGraph,
beam: int = 4,
num_tailing_blanks: int = 8,
num_tailing_blanks: int = 0,
blank_penalty: float = 0,
) -> List[List[KeywordResult]]:
"""Beam search in batch mode with --max-sym-per-frame=1 being hardcoded.
@ -979,8 +978,16 @@ def keywords_search(
encoder_out_lens:
A 1-D tensor of shape (N,), containing number of valid frames in
encoder_out before padding.
keywords_graph:
A instance of ContextGraph containing keywords and their configurations.
beam:
Number of active paths during the beam search.
num_tailing_blanks:
The number of tailing blanks a keyword should be followed, this is for the
scenario that a keyword will be the prefix of another. In most cases, you
can just set it to 0.
blank_penalty:
The score used to penalize blank probability.
Returns:
Return a list of list of KeywordResult.
"""
@ -1141,9 +1148,6 @@ def keywords_search(
ac_prob = (
sum(top_hyp.ac_probs[-matched_state.level :]) / matched_state.level
)
# logging.info(
# f"ac prob : {ac_prob}, threshold : {matched_state.ac_threshold}"
# )
if (
matched
and top_hyp.num_tailing_blanks > num_tailing_blanks