added scripts for char-based lang prep

This commit is contained in:
jinzr 2024-03-12 12:12:35 +08:00
parent ddefabcb7a
commit 4a1d4be94a
5 changed files with 251 additions and 84 deletions

View File

@ -0,0 +1 @@
../../../aishell/ASR/local/prepare_char.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/local/prepare_lang.py

View File

@ -0,0 +1 @@
../../../librispeech/ASR/local/prepare_lang_fst.py

View File

@ -0,0 +1,126 @@
#!/usr/bin/env python3
# Copyright 2024 Xiaomi Corp. (authors: Zengrui Jin)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script takes a text file "data/lang_char/text" as input, the file consist of
lines each containing a transcript, applies text norm and generates the following
files in the directory "data/lang_char":
- transcript_words.txt
- words.txt
- words_no_ids.txt
"""
import argparse
import logging
from pathlib import Path
from typing import List
import pycantonese
from tqdm.auto import tqdm
from icefall.utils import is_cjk
def get_parser():
parser = argparse.ArgumentParser(
description="Prepare char lexicon",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"--input-file",
"-i",
default="data/yue/lang_char/text",
type=str,
help="The input text file",
)
parser.add_argument(
"--output-dir",
"-o",
default="data/yue/lang_char/",
type=str,
help="The output directory",
)
return parser
def get_word_segments(lines: List[str]) -> List[str]:
# the current pycantonese segmenter does not handle the case when the input
# is code switching, so we need to handle it separately
new_lines = []
for line in tqdm(lines, desc="Segmenting lines"):
try:
# code switching
if len(line.strip().split(" ")) > 1:
segments = []
for segment in line.strip().split(" "):
if segment.strip() == "":
continue
try:
if not is_cjk(segment[0]): # en segment
segments.append(segment)
else: # zh segment
segments.extend(pycantonese.segment(segment))
except Exception as e:
logging.error(f"Failed to process segment: {segment}")
raise e
new_lines.append(" ".join(segments) + "\n")
# not code switching
else:
new_lines.append(" ".join(pycantonese.segment(line)) + "\n")
except Exception as e:
logging.error(f"Failed to process line: {line}")
raise e
return new_lines
def get_words(lines: List[str]) -> List[str]:
words = set()
for line in tqdm(lines, desc="Getting words"):
words.update(line.strip().split(" "))
return list(words)
if __name__ == "__main__":
parser = get_parser()
args = parser.parse_args()
input_file = Path(args.input_file)
output_dir = Path(args.output_dir)
assert input_file.is_file(), f"{input_file} does not exist"
assert output_dir.is_dir(), f"{output_dir} does not exist"
lines = input_file.read_text(encoding="utf-8").strip().split("\n")
text_words_segments = get_word_segments(lines)
with open(output_dir / "transcript_words.txt", "w+", encoding="utf-8") as f:
f.writelines(text_words_segments)
words = get_words(text_words_segments)[1:] # remove "\n" from words
with open(output_dir / "words_no_ids.txt", "w+", encoding="utf-8") as f:
f.writelines([word + "\n" for word in sorted(words)])
words = (
["<eps>", "!SIL", "<SPOKEN_NOISE>", "<UNK>"]
+ sorted(words)
+ ["#0", "<s>", "<\s>"]
)
with open(output_dir / "words.txt", "w+", encoding="utf-8") as f:
f.writelines([f"{word} {i}\n" for i, word in enumerate(words)])

View File

@ -172,8 +172,41 @@ if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
fi
if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
log "Stage 9: Prepare BPE based lang"
if [ $lang == "yue" ] || [ $lang == "zh_TW" ] || [ $lang == "zh_CN" ] || [ $lang == "zh_HK" ]; then
log "Stage 9: Prepare Char based lang"
lang_dir=data/${lang}/lang_char/
mkdir -p $lang_dir
if [ ! -f $lang_dir/transcript_words.txt ]; then
log "Generate data for lang preparation"
file=$(
find "data/${lang}/fbank/cv-${lang}_cuts_train.jsonl.gz"
)
gunzip -c ${file} | awk -F '"' '{print $30}' > $lang_dir/text
# Ensure space only appears once
sed -i 's/\t/ /g' $lang_dir/text
sed -i 's/[ ][ ]*/ /g' $lang_dir/text
if [ $lang == "yue" ]; then
# Get words.txt and words_no_ids.txt
./local/word_segment_yue.py \
--input-file $lang_dir/text \
--output-dir $lang_dir
mv $lang_dir/text $lang_dir/_text
cp $lang_dir/transcript_words.txt $lang_dir/text
if [ ! -f $lang_dir/tokens.txt ]; then
./local/prepare_char.py --lang-dir $lang_dir
fi
else
log "word_segment_${lang}.py not implemented yet"
exit 1
fi
fi
else
log "Stage 9: Prepare BPE based lang"
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/${lang}/lang_bpe_${vocab_size}
mkdir -p $lang_dir
@ -249,6 +282,7 @@ if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
$lang_dir/L_disambig.fst
fi
done
fi
fi
if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then
@ -256,6 +290,9 @@ if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then
# We assume you have install kaldilm, if not, please install
# it using: pip install kaldilm
if [ $lang == "yue" ] || [ $lang == "zh_TW" ] || [ $lang == "zh_CN" ] || [ $lang == "zh_HK" ]; then
echo "TO BE IMPLEMENTED"
else
for vocab_size in ${vocab_sizes[@]}; do
lang_dir=data/${lang}/lang_bpe_${vocab_size}
mkdir -p $lang_dir/lm
@ -277,6 +314,7 @@ if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then
fi
done
done
fi
fi
if [ $stage -le 11 ] && [ $stop_stage -ge 11 ]; then