mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-08 09:32:20 +00:00
GigaSpeech RNN-T experiments (#318)
* Copy RNN-T recipe from librispeech * flake8 * flake8 * Update params * gigaspeech decode * black * Update results * syntax highlight * Update RESULTS.md * typo
This commit is contained in:
parent
7b7acdf369
commit
48a6a9a549
1
.flake8
1
.flake8
@ -9,6 +9,7 @@ per-file-ignores =
|
|||||||
egs/tedlium3/ASR/*/conformer.py: E501,
|
egs/tedlium3/ASR/*/conformer.py: E501,
|
||||||
egs/gigaspeech/ASR/*/conformer.py: E501,
|
egs/gigaspeech/ASR/*/conformer.py: E501,
|
||||||
egs/librispeech/ASR/pruned_transducer_stateless2/*.py: E501,
|
egs/librispeech/ASR/pruned_transducer_stateless2/*.py: E501,
|
||||||
|
egs/gigaspeech/ASR/pruned_transducer_stateless2/*.py: E501,
|
||||||
egs/librispeech/ASR/pruned_transducer_stateless4/*.py: E501,
|
egs/librispeech/ASR/pruned_transducer_stateless4/*.py: E501,
|
||||||
egs/librispeech/ASR/*/optim.py: E501,
|
egs/librispeech/ASR/*/optim.py: E501,
|
||||||
egs/librispeech/ASR/*/scaling.py: E501,
|
egs/librispeech/ASR/*/scaling.py: E501,
|
||||||
|
@ -13,8 +13,9 @@ ln -sfv /path/to/GigaSpeech download/GigaSpeech
|
|||||||
```
|
```
|
||||||
|
|
||||||
## Performance Record
|
## Performance Record
|
||||||
| | Dev | Test |
|
| | Dev | Test |
|
||||||
|-----|-------|-------|
|
|--------------------------------|-------|-------|
|
||||||
| WER | 10.47 | 10.58 |
|
| `conformer_ctc` | 10.47 | 10.58 |
|
||||||
|
| `pruned_transducer_stateless2` | 10.52 | 10.62 |
|
||||||
|
|
||||||
See [RESULTS](/egs/gigaspeech/ASR/RESULTS.md) for details.
|
See [RESULTS](/egs/gigaspeech/ASR/RESULTS.md) for details.
|
||||||
|
@ -1,4 +1,78 @@
|
|||||||
## Results
|
## Results
|
||||||
|
### GigaSpeech BPE training results (Pruned Transducer 2)
|
||||||
|
|
||||||
|
#### 2022-05-12
|
||||||
|
|
||||||
|
#### Conformer encoder + embedding decoder
|
||||||
|
|
||||||
|
Conformer encoder + non-recurrent decoder. The encoder is a
|
||||||
|
reworked version of the conformer encoder, with many changes. The
|
||||||
|
decoder contains only an embedding layer, a Conv1d (with kernel
|
||||||
|
size 2) and a linear layer (to transform tensor dim). k2 pruned
|
||||||
|
RNN-T loss is used.
|
||||||
|
|
||||||
|
Results are:
|
||||||
|
|
||||||
|
| | Dev | Test |
|
||||||
|
|----------------------|-------|-------|
|
||||||
|
| greedy search | 10.59 | 10.87 |
|
||||||
|
| fast beam search | 10.56 | 10.80 |
|
||||||
|
| modified beam search | 10.52 | 10.62 |
|
||||||
|
|
||||||
|
To reproduce the above result, use the following commands for training:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
cd egs/gigaspeech/ASR
|
||||||
|
./prepare.sh
|
||||||
|
export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
|
||||||
|
./pruned_transducer_stateless2/train.py \
|
||||||
|
--max-duration 120 \
|
||||||
|
--num-workers 1 \
|
||||||
|
--world-size 8 \
|
||||||
|
--exp-dir pruned_transducer_stateless2/exp \
|
||||||
|
--bpe-model data/lang_bpe_500/bpe.model \
|
||||||
|
--use-fp16 True
|
||||||
|
```
|
||||||
|
|
||||||
|
and the following commands for decoding:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# greedy search
|
||||||
|
./pruned_transducer_stateless2/decode.py \
|
||||||
|
--epoch 29 \
|
||||||
|
--avg 11 \
|
||||||
|
--decoding-method greedy_search \
|
||||||
|
--exp-dir pruned_transducer_stateless2/exp \
|
||||||
|
--bpe-model data/lang_bpe_500/bpe.model \
|
||||||
|
--max-duration 20 \
|
||||||
|
--num-workers 1
|
||||||
|
|
||||||
|
# fast beam search
|
||||||
|
./pruned_transducer_stateless2/decode.py \
|
||||||
|
--epoch 29 \
|
||||||
|
--avg 9 \
|
||||||
|
--decoding-method fast_beam_search \
|
||||||
|
--exp-dir pruned_transducer_stateless2/exp \
|
||||||
|
--bpe-model data/lang_bpe_500/bpe.model \
|
||||||
|
--max-duration 20 \
|
||||||
|
--num-workers 1
|
||||||
|
|
||||||
|
# modified beam search
|
||||||
|
./pruned_transducer_stateless2/decode.py \
|
||||||
|
--epoch 29 \
|
||||||
|
--avg 8 \
|
||||||
|
--decoding-method modified_beam_search \
|
||||||
|
--exp-dir pruned_transducer_stateless2/exp \
|
||||||
|
--bpe-model data/lang_bpe_500/bpe.model \
|
||||||
|
--max-duration 20 \
|
||||||
|
--num-workers 1
|
||||||
|
```
|
||||||
|
|
||||||
|
Pretrained model is available at
|
||||||
|
<https://huggingface.co/wgb14/icefall-asr-gigaspeech-pruned-transducer-stateless2>
|
||||||
|
|
||||||
|
The tensorboard log for training is available at
|
||||||
|
<https://tensorboard.dev/experiment/zmmM0MLASnG1N2RmJ4MZBw/>
|
||||||
|
|
||||||
### GigaSpeech BPE training results (Conformer-CTC)
|
### GigaSpeech BPE training results (Conformer-CTC)
|
||||||
|
|
||||||
@ -20,7 +94,7 @@ Scale values used in n-gram LM rescoring and attention rescoring for the best WE
|
|||||||
|
|
||||||
To reproduce the above result, use the following commands for training:
|
To reproduce the above result, use the following commands for training:
|
||||||
|
|
||||||
```
|
```bash
|
||||||
cd egs/gigaspeech/ASR
|
cd egs/gigaspeech/ASR
|
||||||
./prepare.sh
|
./prepare.sh
|
||||||
export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
|
export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
|
||||||
@ -34,7 +108,7 @@ export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
|
|||||||
|
|
||||||
and the following command for decoding:
|
and the following command for decoding:
|
||||||
|
|
||||||
```
|
```bash
|
||||||
./conformer_ctc/decode.py \
|
./conformer_ctc/decode.py \
|
||||||
--epoch 18 \
|
--epoch 18 \
|
||||||
--avg 6 \
|
--avg 6 \
|
||||||
@ -59,7 +133,7 @@ Scale values used in n-gram LM rescoring and attention rescoring for the best WE
|
|||||||
|
|
||||||
To reproduce the above result, use the training commands above, and the following command for decoding:
|
To reproduce the above result, use the training commands above, and the following command for decoding:
|
||||||
|
|
||||||
```
|
```bash
|
||||||
./conformer_ctc/decode.py \
|
./conformer_ctc/decode.py \
|
||||||
--epoch 18 \
|
--epoch 18 \
|
||||||
--avg 6 \
|
--avg 6 \
|
||||||
|
@ -0,0 +1,416 @@
|
|||||||
|
# Copyright 2021 Piotr Żelasko
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import inspect
|
||||||
|
import logging
|
||||||
|
from functools import lru_cache
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Any, Dict, Optional
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from lhotse import CutSet, Fbank, FbankConfig, load_manifest
|
||||||
|
from lhotse.dataset import (
|
||||||
|
BucketingSampler,
|
||||||
|
CutConcatenate,
|
||||||
|
CutMix,
|
||||||
|
DynamicBucketingSampler,
|
||||||
|
K2SpeechRecognitionDataset,
|
||||||
|
PrecomputedFeatures,
|
||||||
|
SingleCutSampler,
|
||||||
|
SpecAugment,
|
||||||
|
)
|
||||||
|
from lhotse.dataset.input_strategies import OnTheFlyFeatures
|
||||||
|
from lhotse.utils import fix_random_seed
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
|
|
||||||
|
from icefall.utils import str2bool
|
||||||
|
|
||||||
|
|
||||||
|
class _SeedWorkers:
|
||||||
|
def __init__(self, seed: int):
|
||||||
|
self.seed = seed
|
||||||
|
|
||||||
|
def __call__(self, worker_id: int):
|
||||||
|
fix_random_seed(self.seed + worker_id)
|
||||||
|
|
||||||
|
|
||||||
|
class GigaSpeechAsrDataModule:
|
||||||
|
"""
|
||||||
|
DataModule for k2 ASR experiments.
|
||||||
|
It assumes there is always one train and valid dataloader,
|
||||||
|
but there can be multiple test dataloaders (e.g. LibriSpeech test-clean
|
||||||
|
and test-other).
|
||||||
|
|
||||||
|
It contains all the common data pipeline modules used in ASR
|
||||||
|
experiments, e.g.:
|
||||||
|
- dynamic batch size,
|
||||||
|
- bucketing samplers,
|
||||||
|
- cut concatenation,
|
||||||
|
- augmentation,
|
||||||
|
- on-the-fly feature extraction
|
||||||
|
|
||||||
|
This class should be derived for specific corpora used in ASR tasks.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, args: argparse.Namespace):
|
||||||
|
self.args = args
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def add_arguments(cls, parser: argparse.ArgumentParser):
|
||||||
|
group = parser.add_argument_group(
|
||||||
|
title="ASR data related options",
|
||||||
|
description="These options are used for the preparation of "
|
||||||
|
"PyTorch DataLoaders from Lhotse CutSet's -- they control the "
|
||||||
|
"effective batch sizes, sampling strategies, applied data "
|
||||||
|
"augmentations, etc.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--manifest-dir",
|
||||||
|
type=Path,
|
||||||
|
default=Path("data/fbank"),
|
||||||
|
help="Path to directory with train/valid/test cuts.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--max-duration",
|
||||||
|
type=int,
|
||||||
|
default=200.0,
|
||||||
|
help="Maximum pooled recordings duration (seconds) in a "
|
||||||
|
"single batch. You can reduce it if it causes CUDA OOM.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--bucketing-sampler",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled, the batches will come from buckets of "
|
||||||
|
"similar duration (saves padding frames).",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--num-buckets",
|
||||||
|
type=int,
|
||||||
|
default=30,
|
||||||
|
help="The number of buckets for the DynamicBucketingSampler"
|
||||||
|
"(you might want to increase it for larger datasets).",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--concatenate-cuts",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="When enabled, utterances (cuts) will be concatenated "
|
||||||
|
"to minimize the amount of padding.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--duration-factor",
|
||||||
|
type=float,
|
||||||
|
default=1.0,
|
||||||
|
help="Determines the maximum duration of a concatenated cut "
|
||||||
|
"relative to the duration of the longest cut in a batch.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--gap",
|
||||||
|
type=float,
|
||||||
|
default=1.0,
|
||||||
|
help="The amount of padding (in seconds) inserted between "
|
||||||
|
"concatenated cuts. This padding is filled with noise when "
|
||||||
|
"noise augmentation is used.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--on-the-fly-feats",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="When enabled, use on-the-fly cut mixing and feature "
|
||||||
|
"extraction. Will drop existing precomputed feature manifests "
|
||||||
|
"if available.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--shuffle",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled (=default), the examples will be "
|
||||||
|
"shuffled for each epoch.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--return-cuts",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled, each batch will have the "
|
||||||
|
"field: batch['supervisions']['cut'] with the cuts that "
|
||||||
|
"were used to construct it.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--num-workers",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The number of training dataloader workers that "
|
||||||
|
"collect the batches.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--enable-spec-aug",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled, use SpecAugment for training dataset.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--spec-aug-time-warp-factor",
|
||||||
|
type=int,
|
||||||
|
default=80,
|
||||||
|
help="Used only when --enable-spec-aug is True. "
|
||||||
|
"It specifies the factor for time warping in SpecAugment. "
|
||||||
|
"Larger values mean more warping. "
|
||||||
|
"A value less than 1 means to disable time warp.",
|
||||||
|
)
|
||||||
|
|
||||||
|
group.add_argument(
|
||||||
|
"--enable-musan",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="When enabled, select noise from MUSAN and mix it "
|
||||||
|
"with training dataset. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
# GigaSpeech specific arguments
|
||||||
|
group.add_argument(
|
||||||
|
"--subset",
|
||||||
|
type=str,
|
||||||
|
default="XL",
|
||||||
|
help="Select the GigaSpeech subset (XS|S|M|L|XL)",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--small-dev",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="Should we use only 1000 utterances for dev "
|
||||||
|
"(speeds up training)",
|
||||||
|
)
|
||||||
|
|
||||||
|
def train_dataloaders(
|
||||||
|
self,
|
||||||
|
cuts_train: CutSet,
|
||||||
|
sampler_state_dict: Optional[Dict[str, Any]] = None,
|
||||||
|
) -> DataLoader:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
cuts_train:
|
||||||
|
CutSet for training.
|
||||||
|
sampler_state_dict:
|
||||||
|
The state dict for the training sampler.
|
||||||
|
"""
|
||||||
|
|
||||||
|
transforms = []
|
||||||
|
if self.args.enable_musan:
|
||||||
|
logging.info("Enable MUSAN")
|
||||||
|
logging.info("About to get Musan cuts")
|
||||||
|
cuts_musan = load_manifest(
|
||||||
|
self.args.manifest_dir / "cuts_musan.json.gz"
|
||||||
|
)
|
||||||
|
transforms.append(
|
||||||
|
CutMix(
|
||||||
|
cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True
|
||||||
|
)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
logging.info("Disable MUSAN")
|
||||||
|
|
||||||
|
if self.args.concatenate_cuts:
|
||||||
|
logging.info(
|
||||||
|
f"Using cut concatenation with duration factor "
|
||||||
|
f"{self.args.duration_factor} and gap {self.args.gap}."
|
||||||
|
)
|
||||||
|
# Cut concatenation should be the first transform in the list,
|
||||||
|
# so that if we e.g. mix noise in, it will fill the gaps between
|
||||||
|
# different utterances.
|
||||||
|
transforms = [
|
||||||
|
CutConcatenate(
|
||||||
|
duration_factor=self.args.duration_factor, gap=self.args.gap
|
||||||
|
)
|
||||||
|
] + transforms
|
||||||
|
|
||||||
|
input_transforms = []
|
||||||
|
if self.args.enable_spec_aug:
|
||||||
|
logging.info("Enable SpecAugment")
|
||||||
|
logging.info(
|
||||||
|
f"Time warp factor: {self.args.spec_aug_time_warp_factor}"
|
||||||
|
)
|
||||||
|
# Set the value of num_frame_masks according to Lhotse's version.
|
||||||
|
# In different Lhotse's versions, the default of num_frame_masks is
|
||||||
|
# different.
|
||||||
|
num_frame_masks = 10
|
||||||
|
num_frame_masks_parameter = inspect.signature(
|
||||||
|
SpecAugment.__init__
|
||||||
|
).parameters["num_frame_masks"]
|
||||||
|
if num_frame_masks_parameter.default == 1:
|
||||||
|
num_frame_masks = 2
|
||||||
|
logging.info(f"Num frame mask: {num_frame_masks}")
|
||||||
|
input_transforms.append(
|
||||||
|
SpecAugment(
|
||||||
|
time_warp_factor=self.args.spec_aug_time_warp_factor,
|
||||||
|
num_frame_masks=num_frame_masks,
|
||||||
|
features_mask_size=27,
|
||||||
|
num_feature_masks=2,
|
||||||
|
frames_mask_size=100,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
logging.info("Disable SpecAugment")
|
||||||
|
|
||||||
|
logging.info("About to create train dataset")
|
||||||
|
train = K2SpeechRecognitionDataset(
|
||||||
|
cut_transforms=transforms,
|
||||||
|
input_transforms=input_transforms,
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
|
||||||
|
if self.args.on_the_fly_feats:
|
||||||
|
# NOTE: the PerturbSpeed transform should be added only if we
|
||||||
|
# remove it from data prep stage.
|
||||||
|
# Add on-the-fly speed perturbation; since originally it would
|
||||||
|
# have increased epoch size by 3, we will apply prob 2/3 and use
|
||||||
|
# 3x more epochs.
|
||||||
|
# Speed perturbation probably should come first before
|
||||||
|
# concatenation, but in principle the transforms order doesn't have
|
||||||
|
# to be strict (e.g. could be randomized)
|
||||||
|
# transforms = [PerturbSpeed(factors=[0.9, 1.1], p=2/3)] + transforms # noqa
|
||||||
|
# Drop feats to be on the safe side.
|
||||||
|
train = K2SpeechRecognitionDataset(
|
||||||
|
cut_transforms=transforms,
|
||||||
|
input_strategy=OnTheFlyFeatures(
|
||||||
|
Fbank(FbankConfig(num_mel_bins=80))
|
||||||
|
),
|
||||||
|
input_transforms=input_transforms,
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
|
||||||
|
if self.args.bucketing_sampler:
|
||||||
|
logging.info("Using DynamicBucketingSampler.")
|
||||||
|
train_sampler = DynamicBucketingSampler(
|
||||||
|
cuts_train,
|
||||||
|
max_duration=self.args.max_duration,
|
||||||
|
shuffle=self.args.shuffle,
|
||||||
|
num_buckets=self.args.num_buckets,
|
||||||
|
drop_last=True,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
logging.info("Using SingleCutSampler.")
|
||||||
|
train_sampler = SingleCutSampler(
|
||||||
|
cuts_train,
|
||||||
|
max_duration=self.args.max_duration,
|
||||||
|
shuffle=self.args.shuffle,
|
||||||
|
)
|
||||||
|
logging.info("About to create train dataloader")
|
||||||
|
|
||||||
|
if sampler_state_dict is not None:
|
||||||
|
logging.info("Loading sampler state dict")
|
||||||
|
train_sampler.load_state_dict(sampler_state_dict)
|
||||||
|
|
||||||
|
# 'seed' is derived from the current random state, which will have
|
||||||
|
# previously been set in the main process.
|
||||||
|
seed = torch.randint(0, 100000, ()).item()
|
||||||
|
worker_init_fn = _SeedWorkers(seed)
|
||||||
|
|
||||||
|
train_dl = DataLoader(
|
||||||
|
train,
|
||||||
|
sampler=train_sampler,
|
||||||
|
batch_size=None,
|
||||||
|
num_workers=self.args.num_workers,
|
||||||
|
persistent_workers=False,
|
||||||
|
worker_init_fn=worker_init_fn,
|
||||||
|
)
|
||||||
|
|
||||||
|
return train_dl
|
||||||
|
|
||||||
|
def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader:
|
||||||
|
transforms = []
|
||||||
|
if self.args.concatenate_cuts:
|
||||||
|
transforms = [
|
||||||
|
CutConcatenate(
|
||||||
|
duration_factor=self.args.duration_factor, gap=self.args.gap
|
||||||
|
)
|
||||||
|
] + transforms
|
||||||
|
|
||||||
|
logging.info("About to create dev dataset")
|
||||||
|
if self.args.on_the_fly_feats:
|
||||||
|
validate = K2SpeechRecognitionDataset(
|
||||||
|
cut_transforms=transforms,
|
||||||
|
input_strategy=OnTheFlyFeatures(
|
||||||
|
Fbank(FbankConfig(num_mel_bins=80))
|
||||||
|
),
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
validate = K2SpeechRecognitionDataset(
|
||||||
|
cut_transforms=transforms,
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
valid_sampler = BucketingSampler(
|
||||||
|
cuts_valid,
|
||||||
|
max_duration=self.args.max_duration,
|
||||||
|
shuffle=False,
|
||||||
|
)
|
||||||
|
logging.info("About to create dev dataloader")
|
||||||
|
valid_dl = DataLoader(
|
||||||
|
validate,
|
||||||
|
sampler=valid_sampler,
|
||||||
|
batch_size=None,
|
||||||
|
num_workers=2,
|
||||||
|
persistent_workers=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
return valid_dl
|
||||||
|
|
||||||
|
def test_dataloaders(self, cuts: CutSet) -> DataLoader:
|
||||||
|
logging.debug("About to create test dataset")
|
||||||
|
test = K2SpeechRecognitionDataset(
|
||||||
|
input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80)))
|
||||||
|
if self.args.on_the_fly_feats
|
||||||
|
else PrecomputedFeatures(),
|
||||||
|
return_cuts=self.args.return_cuts,
|
||||||
|
)
|
||||||
|
sampler = BucketingSampler(
|
||||||
|
cuts, max_duration=self.args.max_duration, shuffle=False
|
||||||
|
)
|
||||||
|
logging.debug("About to create test dataloader")
|
||||||
|
test_dl = DataLoader(
|
||||||
|
test,
|
||||||
|
batch_size=None,
|
||||||
|
sampler=sampler,
|
||||||
|
num_workers=self.args.num_workers,
|
||||||
|
)
|
||||||
|
return test_dl
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def train_cuts(self) -> CutSet:
|
||||||
|
logging.info(f"About to get train_{self.args.subset} cuts")
|
||||||
|
path = self.args.manifest_dir / f"cuts_{self.args.subset}.jsonl.gz"
|
||||||
|
cuts_train = CutSet.from_jsonl_lazy(path)
|
||||||
|
return cuts_train
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def dev_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get dev cuts")
|
||||||
|
cuts_valid = load_manifest(self.args.manifest_dir / "cuts_DEV.jsonl.gz")
|
||||||
|
if self.args.small_dev:
|
||||||
|
return cuts_valid.subset(first=1000)
|
||||||
|
else:
|
||||||
|
return cuts_valid
|
||||||
|
|
||||||
|
@lru_cache()
|
||||||
|
def test_cuts(self) -> CutSet:
|
||||||
|
logging.info("About to get test cuts")
|
||||||
|
return load_manifest(self.args.manifest_dir / "cuts_TEST.jsonl.gz")
|
766
egs/gigaspeech/ASR/pruned_transducer_stateless2/beam_search.py
Normal file
766
egs/gigaspeech/ASR/pruned_transducer_stateless2/beam_search.py
Normal file
@ -0,0 +1,766 @@
|
|||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from dataclasses import dataclass
|
||||||
|
from typing import Dict, List, Optional
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import torch
|
||||||
|
from model import Transducer
|
||||||
|
|
||||||
|
from icefall.decode import one_best_decoding
|
||||||
|
from icefall.utils import get_texts
|
||||||
|
|
||||||
|
|
||||||
|
def fast_beam_search(
|
||||||
|
model: Transducer,
|
||||||
|
decoding_graph: k2.Fsa,
|
||||||
|
encoder_out: torch.Tensor,
|
||||||
|
encoder_out_lens: torch.Tensor,
|
||||||
|
beam: float,
|
||||||
|
max_states: int,
|
||||||
|
max_contexts: int,
|
||||||
|
) -> List[List[int]]:
|
||||||
|
"""It limits the maximum number of symbols per frame to 1.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
model:
|
||||||
|
An instance of `Transducer`.
|
||||||
|
decoding_graph:
|
||||||
|
Decoding graph used for decoding, may be a TrivialGraph or a HLG.
|
||||||
|
encoder_out:
|
||||||
|
A tensor of shape (N, T, C) from the encoder.
|
||||||
|
encoder_out_lens:
|
||||||
|
A tensor of shape (N,) containing the number of frames in `encoder_out`
|
||||||
|
before padding.
|
||||||
|
beam:
|
||||||
|
Beam value, similar to the beam used in Kaldi..
|
||||||
|
max_states:
|
||||||
|
Max states per stream per frame.
|
||||||
|
max_contexts:
|
||||||
|
Max contexts pre stream per frame.
|
||||||
|
Returns:
|
||||||
|
Return the decoded result.
|
||||||
|
"""
|
||||||
|
assert encoder_out.ndim == 3
|
||||||
|
|
||||||
|
context_size = model.decoder.context_size
|
||||||
|
vocab_size = model.decoder.vocab_size
|
||||||
|
|
||||||
|
B, T, C = encoder_out.shape
|
||||||
|
|
||||||
|
config = k2.RnntDecodingConfig(
|
||||||
|
vocab_size=vocab_size,
|
||||||
|
decoder_history_len=context_size,
|
||||||
|
beam=beam,
|
||||||
|
max_contexts=max_contexts,
|
||||||
|
max_states=max_states,
|
||||||
|
)
|
||||||
|
individual_streams = []
|
||||||
|
for i in range(B):
|
||||||
|
individual_streams.append(k2.RnntDecodingStream(decoding_graph))
|
||||||
|
decoding_streams = k2.RnntDecodingStreams(individual_streams, config)
|
||||||
|
|
||||||
|
encoder_out = model.joiner.encoder_proj(encoder_out)
|
||||||
|
|
||||||
|
for t in range(T):
|
||||||
|
# shape is a RaggedShape of shape (B, context)
|
||||||
|
# contexts is a Tensor of shape (shape.NumElements(), context_size)
|
||||||
|
shape, contexts = decoding_streams.get_contexts()
|
||||||
|
# `nn.Embedding()` in torch below v1.7.1 supports only torch.int64
|
||||||
|
contexts = contexts.to(torch.int64)
|
||||||
|
# decoder_out is of shape (shape.NumElements(), 1, decoder_out_dim)
|
||||||
|
decoder_out = model.decoder(contexts, need_pad=False)
|
||||||
|
decoder_out = model.joiner.decoder_proj(decoder_out)
|
||||||
|
# current_encoder_out is of shape
|
||||||
|
# (shape.NumElements(), 1, joiner_dim)
|
||||||
|
# fmt: off
|
||||||
|
current_encoder_out = torch.index_select(
|
||||||
|
encoder_out[:, t:t + 1, :], 0, shape.row_ids(1).to(torch.int64)
|
||||||
|
)
|
||||||
|
# fmt: on
|
||||||
|
logits = model.joiner(
|
||||||
|
current_encoder_out.unsqueeze(2),
|
||||||
|
decoder_out.unsqueeze(1),
|
||||||
|
project_input=False,
|
||||||
|
)
|
||||||
|
logits = logits.squeeze(1).squeeze(1)
|
||||||
|
log_probs = logits.log_softmax(dim=-1)
|
||||||
|
decoding_streams.advance(log_probs)
|
||||||
|
decoding_streams.terminate_and_flush_to_streams()
|
||||||
|
lattice = decoding_streams.format_output(encoder_out_lens.tolist())
|
||||||
|
|
||||||
|
best_path = one_best_decoding(lattice)
|
||||||
|
hyps = get_texts(best_path)
|
||||||
|
return hyps
|
||||||
|
|
||||||
|
|
||||||
|
def greedy_search(
|
||||||
|
model: Transducer, encoder_out: torch.Tensor, max_sym_per_frame: int
|
||||||
|
) -> List[int]:
|
||||||
|
"""Greedy search for a single utterance.
|
||||||
|
Args:
|
||||||
|
model:
|
||||||
|
An instance of `Transducer`.
|
||||||
|
encoder_out:
|
||||||
|
A tensor of shape (N, T, C) from the encoder. Support only N==1 for now.
|
||||||
|
max_sym_per_frame:
|
||||||
|
Maximum number of symbols per frame. If it is set to 0, the WER
|
||||||
|
would be 100%.
|
||||||
|
Returns:
|
||||||
|
Return the decoded result.
|
||||||
|
"""
|
||||||
|
assert encoder_out.ndim == 3
|
||||||
|
|
||||||
|
# support only batch_size == 1 for now
|
||||||
|
assert encoder_out.size(0) == 1, encoder_out.size(0)
|
||||||
|
|
||||||
|
blank_id = model.decoder.blank_id
|
||||||
|
context_size = model.decoder.context_size
|
||||||
|
|
||||||
|
device = model.device
|
||||||
|
|
||||||
|
decoder_input = torch.tensor(
|
||||||
|
[blank_id] * context_size, device=device, dtype=torch.int64
|
||||||
|
).reshape(1, context_size)
|
||||||
|
|
||||||
|
decoder_out = model.decoder(decoder_input, need_pad=False)
|
||||||
|
decoder_out = model.joiner.decoder_proj(decoder_out)
|
||||||
|
|
||||||
|
encoder_out = model.joiner.encoder_proj(encoder_out)
|
||||||
|
|
||||||
|
T = encoder_out.size(1)
|
||||||
|
t = 0
|
||||||
|
hyp = [blank_id] * context_size
|
||||||
|
|
||||||
|
# Maximum symbols per utterance.
|
||||||
|
max_sym_per_utt = 1000
|
||||||
|
|
||||||
|
# symbols per frame
|
||||||
|
sym_per_frame = 0
|
||||||
|
|
||||||
|
# symbols per utterance decoded so far
|
||||||
|
sym_per_utt = 0
|
||||||
|
|
||||||
|
while t < T and sym_per_utt < max_sym_per_utt:
|
||||||
|
if sym_per_frame >= max_sym_per_frame:
|
||||||
|
sym_per_frame = 0
|
||||||
|
t += 1
|
||||||
|
continue
|
||||||
|
|
||||||
|
# fmt: off
|
||||||
|
current_encoder_out = encoder_out[:, t:t+1, :].unsqueeze(2)
|
||||||
|
# fmt: on
|
||||||
|
logits = model.joiner(
|
||||||
|
current_encoder_out, decoder_out.unsqueeze(1), project_input=False
|
||||||
|
)
|
||||||
|
# logits is (1, 1, 1, vocab_size)
|
||||||
|
|
||||||
|
y = logits.argmax().item()
|
||||||
|
if y != blank_id:
|
||||||
|
hyp.append(y)
|
||||||
|
decoder_input = torch.tensor(
|
||||||
|
[hyp[-context_size:]], device=device
|
||||||
|
).reshape(1, context_size)
|
||||||
|
|
||||||
|
decoder_out = model.decoder(decoder_input, need_pad=False)
|
||||||
|
decoder_out = model.joiner.decoder_proj(decoder_out)
|
||||||
|
|
||||||
|
sym_per_utt += 1
|
||||||
|
sym_per_frame += 1
|
||||||
|
else:
|
||||||
|
sym_per_frame = 0
|
||||||
|
t += 1
|
||||||
|
hyp = hyp[context_size:] # remove blanks
|
||||||
|
|
||||||
|
return hyp
|
||||||
|
|
||||||
|
|
||||||
|
def greedy_search_batch(
|
||||||
|
model: Transducer, encoder_out: torch.Tensor
|
||||||
|
) -> List[List[int]]:
|
||||||
|
"""Greedy search in batch mode. It hardcodes --max-sym-per-frame=1.
|
||||||
|
Args:
|
||||||
|
model:
|
||||||
|
The transducer model.
|
||||||
|
encoder_out:
|
||||||
|
Output from the encoder. Its shape is (N, T, C), where N >= 1.
|
||||||
|
Returns:
|
||||||
|
Return a list-of-list of token IDs containing the decoded results.
|
||||||
|
len(ans) equals to encoder_out.size(0).
|
||||||
|
"""
|
||||||
|
assert encoder_out.ndim == 3
|
||||||
|
assert encoder_out.size(0) >= 1, encoder_out.size(0)
|
||||||
|
|
||||||
|
device = model.device
|
||||||
|
|
||||||
|
batch_size = encoder_out.size(0)
|
||||||
|
T = encoder_out.size(1)
|
||||||
|
|
||||||
|
blank_id = model.decoder.blank_id
|
||||||
|
context_size = model.decoder.context_size
|
||||||
|
|
||||||
|
hyps = [[blank_id] * context_size for _ in range(batch_size)]
|
||||||
|
|
||||||
|
decoder_input = torch.tensor(
|
||||||
|
hyps,
|
||||||
|
device=device,
|
||||||
|
dtype=torch.int64,
|
||||||
|
) # (batch_size, context_size)
|
||||||
|
|
||||||
|
decoder_out = model.decoder(decoder_input, need_pad=False)
|
||||||
|
decoder_out = model.joiner.decoder_proj(decoder_out)
|
||||||
|
encoder_out = model.joiner.encoder_proj(encoder_out)
|
||||||
|
|
||||||
|
# decoder_out: (batch_size, 1, decoder_out_dim)
|
||||||
|
for t in range(T):
|
||||||
|
current_encoder_out = encoder_out[:, t : t + 1, :].unsqueeze(2) # noqa
|
||||||
|
# current_encoder_out's shape: (batch_size, 1, 1, encoder_out_dim)
|
||||||
|
logits = model.joiner(
|
||||||
|
current_encoder_out, decoder_out.unsqueeze(1), project_input=False
|
||||||
|
)
|
||||||
|
# logits'shape (batch_size, 1, 1, vocab_size)
|
||||||
|
|
||||||
|
logits = logits.squeeze(1).squeeze(1) # (batch_size, vocab_size)
|
||||||
|
assert logits.ndim == 2, logits.shape
|
||||||
|
y = logits.argmax(dim=1).tolist()
|
||||||
|
emitted = False
|
||||||
|
for i, v in enumerate(y):
|
||||||
|
if v != blank_id:
|
||||||
|
hyps[i].append(v)
|
||||||
|
emitted = True
|
||||||
|
if emitted:
|
||||||
|
# update decoder output
|
||||||
|
decoder_input = [h[-context_size:] for h in hyps]
|
||||||
|
decoder_input = torch.tensor(
|
||||||
|
decoder_input,
|
||||||
|
device=device,
|
||||||
|
dtype=torch.int64,
|
||||||
|
)
|
||||||
|
decoder_out = model.decoder(decoder_input, need_pad=False)
|
||||||
|
decoder_out = model.joiner.decoder_proj(decoder_out)
|
||||||
|
|
||||||
|
ans = [h[context_size:] for h in hyps]
|
||||||
|
return ans
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class Hypothesis:
|
||||||
|
# The predicted tokens so far.
|
||||||
|
# Newly predicted tokens are appended to `ys`.
|
||||||
|
ys: List[int]
|
||||||
|
|
||||||
|
# The log prob of ys.
|
||||||
|
# It contains only one entry.
|
||||||
|
log_prob: torch.Tensor
|
||||||
|
|
||||||
|
@property
|
||||||
|
def key(self) -> str:
|
||||||
|
"""Return a string representation of self.ys"""
|
||||||
|
return "_".join(map(str, self.ys))
|
||||||
|
|
||||||
|
|
||||||
|
class HypothesisList(object):
|
||||||
|
def __init__(self, data: Optional[Dict[str, Hypothesis]] = None) -> None:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
data:
|
||||||
|
A dict of Hypotheses. Its key is its `value.key`.
|
||||||
|
"""
|
||||||
|
if data is None:
|
||||||
|
self._data = {}
|
||||||
|
else:
|
||||||
|
self._data = data
|
||||||
|
|
||||||
|
@property
|
||||||
|
def data(self) -> Dict[str, Hypothesis]:
|
||||||
|
return self._data
|
||||||
|
|
||||||
|
def add(self, hyp: Hypothesis) -> None:
|
||||||
|
"""Add a Hypothesis to `self`.
|
||||||
|
|
||||||
|
If `hyp` already exists in `self`, its probability is updated using
|
||||||
|
`log-sum-exp` with the existed one.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
hyp:
|
||||||
|
The hypothesis to be added.
|
||||||
|
"""
|
||||||
|
key = hyp.key
|
||||||
|
if key in self:
|
||||||
|
old_hyp = self._data[key] # shallow copy
|
||||||
|
torch.logaddexp(
|
||||||
|
old_hyp.log_prob, hyp.log_prob, out=old_hyp.log_prob
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
self._data[key] = hyp
|
||||||
|
|
||||||
|
def get_most_probable(self, length_norm: bool = False) -> Hypothesis:
|
||||||
|
"""Get the most probable hypothesis, i.e., the one with
|
||||||
|
the largest `log_prob`.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
length_norm:
|
||||||
|
If True, the `log_prob` of a hypothesis is normalized by the
|
||||||
|
number of tokens in it.
|
||||||
|
Returns:
|
||||||
|
Return the hypothesis that has the largest `log_prob`.
|
||||||
|
"""
|
||||||
|
if length_norm:
|
||||||
|
return max(
|
||||||
|
self._data.values(), key=lambda hyp: hyp.log_prob / len(hyp.ys)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
return max(self._data.values(), key=lambda hyp: hyp.log_prob)
|
||||||
|
|
||||||
|
def remove(self, hyp: Hypothesis) -> None:
|
||||||
|
"""Remove a given hypothesis.
|
||||||
|
|
||||||
|
Caution:
|
||||||
|
`self` is modified **in-place**.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
hyp:
|
||||||
|
The hypothesis to be removed from `self`.
|
||||||
|
Note: It must be contained in `self`. Otherwise,
|
||||||
|
an exception is raised.
|
||||||
|
"""
|
||||||
|
key = hyp.key
|
||||||
|
assert key in self, f"{key} does not exist"
|
||||||
|
del self._data[key]
|
||||||
|
|
||||||
|
def filter(self, threshold: torch.Tensor) -> "HypothesisList":
|
||||||
|
"""Remove all Hypotheses whose log_prob is less than threshold.
|
||||||
|
|
||||||
|
Caution:
|
||||||
|
`self` is not modified. Instead, a new HypothesisList is returned.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Return a new HypothesisList containing all hypotheses from `self`
|
||||||
|
with `log_prob` being greater than the given `threshold`.
|
||||||
|
"""
|
||||||
|
ans = HypothesisList()
|
||||||
|
for _, hyp in self._data.items():
|
||||||
|
if hyp.log_prob > threshold:
|
||||||
|
ans.add(hyp) # shallow copy
|
||||||
|
return ans
|
||||||
|
|
||||||
|
def topk(self, k: int) -> "HypothesisList":
|
||||||
|
"""Return the top-k hypothesis."""
|
||||||
|
hyps = list(self._data.items())
|
||||||
|
|
||||||
|
hyps = sorted(hyps, key=lambda h: h[1].log_prob, reverse=True)[:k]
|
||||||
|
|
||||||
|
ans = HypothesisList(dict(hyps))
|
||||||
|
return ans
|
||||||
|
|
||||||
|
def __contains__(self, key: str):
|
||||||
|
return key in self._data
|
||||||
|
|
||||||
|
def __iter__(self):
|
||||||
|
return iter(self._data.values())
|
||||||
|
|
||||||
|
def __len__(self) -> int:
|
||||||
|
return len(self._data)
|
||||||
|
|
||||||
|
def __str__(self) -> str:
|
||||||
|
s = []
|
||||||
|
for key in self:
|
||||||
|
s.append(key)
|
||||||
|
return ", ".join(s)
|
||||||
|
|
||||||
|
|
||||||
|
def _get_hyps_shape(hyps: List[HypothesisList]) -> k2.RaggedShape:
|
||||||
|
"""Return a ragged shape with axes [utt][num_hyps].
|
||||||
|
|
||||||
|
Args:
|
||||||
|
hyps:
|
||||||
|
len(hyps) == batch_size. It contains the current hypothesis for
|
||||||
|
each utterance in the batch.
|
||||||
|
Returns:
|
||||||
|
Return a ragged shape with 2 axes [utt][num_hyps]. Note that
|
||||||
|
the shape is on CPU.
|
||||||
|
"""
|
||||||
|
num_hyps = [len(h) for h in hyps]
|
||||||
|
|
||||||
|
# torch.cumsum() is inclusive sum, so we put a 0 at the beginning
|
||||||
|
# to get exclusive sum later.
|
||||||
|
num_hyps.insert(0, 0)
|
||||||
|
|
||||||
|
num_hyps = torch.tensor(num_hyps)
|
||||||
|
row_splits = torch.cumsum(num_hyps, dim=0, dtype=torch.int32)
|
||||||
|
ans = k2.ragged.create_ragged_shape2(
|
||||||
|
row_splits=row_splits, cached_tot_size=row_splits[-1].item()
|
||||||
|
)
|
||||||
|
return ans
|
||||||
|
|
||||||
|
|
||||||
|
def modified_beam_search(
|
||||||
|
model: Transducer,
|
||||||
|
encoder_out: torch.Tensor,
|
||||||
|
beam: int = 4,
|
||||||
|
) -> List[List[int]]:
|
||||||
|
"""Beam search in batch mode with --max-sym-per-frame=1 being hardcoded.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
model:
|
||||||
|
The transducer model.
|
||||||
|
encoder_out:
|
||||||
|
Output from the encoder. Its shape is (N, T, C).
|
||||||
|
beam:
|
||||||
|
Number of active paths during the beam search.
|
||||||
|
Returns:
|
||||||
|
Return a list-of-list of token IDs. ans[i] is the decoding results
|
||||||
|
for the i-th utterance.
|
||||||
|
"""
|
||||||
|
assert encoder_out.ndim == 3, encoder_out.shape
|
||||||
|
|
||||||
|
batch_size = encoder_out.size(0)
|
||||||
|
T = encoder_out.size(1)
|
||||||
|
|
||||||
|
blank_id = model.decoder.blank_id
|
||||||
|
context_size = model.decoder.context_size
|
||||||
|
device = model.device
|
||||||
|
B = [HypothesisList() for _ in range(batch_size)]
|
||||||
|
for i in range(batch_size):
|
||||||
|
B[i].add(
|
||||||
|
Hypothesis(
|
||||||
|
ys=[blank_id] * context_size,
|
||||||
|
log_prob=torch.zeros(1, dtype=torch.float32, device=device),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
encoder_out = model.joiner.encoder_proj(encoder_out)
|
||||||
|
|
||||||
|
for t in range(T):
|
||||||
|
current_encoder_out = encoder_out[:, t : t + 1, :].unsqueeze(2) # noqa
|
||||||
|
# current_encoder_out's shape is (batch_size, 1, 1, encoder_out_dim)
|
||||||
|
|
||||||
|
hyps_shape = _get_hyps_shape(B).to(device)
|
||||||
|
|
||||||
|
A = [list(b) for b in B]
|
||||||
|
B = [HypothesisList() for _ in range(batch_size)]
|
||||||
|
|
||||||
|
ys_log_probs = torch.cat(
|
||||||
|
[hyp.log_prob.reshape(1, 1) for hyps in A for hyp in hyps]
|
||||||
|
) # (num_hyps, 1)
|
||||||
|
|
||||||
|
decoder_input = torch.tensor(
|
||||||
|
[hyp.ys[-context_size:] for hyps in A for hyp in hyps],
|
||||||
|
device=device,
|
||||||
|
dtype=torch.int64,
|
||||||
|
) # (num_hyps, context_size)
|
||||||
|
|
||||||
|
decoder_out = model.decoder(decoder_input, need_pad=False).unsqueeze(1)
|
||||||
|
decoder_out = model.joiner.decoder_proj(decoder_out)
|
||||||
|
# decoder_out is of shape (num_hyps, 1, 1, joiner_dim)
|
||||||
|
|
||||||
|
# Note: For torch 1.7.1 and below, it requires a torch.int64 tensor
|
||||||
|
# as index, so we use `to(torch.int64)` below.
|
||||||
|
current_encoder_out = torch.index_select(
|
||||||
|
current_encoder_out,
|
||||||
|
dim=0,
|
||||||
|
index=hyps_shape.row_ids(1).to(torch.int64),
|
||||||
|
) # (num_hyps, 1, 1, encoder_out_dim)
|
||||||
|
|
||||||
|
logits = model.joiner(
|
||||||
|
current_encoder_out,
|
||||||
|
decoder_out,
|
||||||
|
project_input=False,
|
||||||
|
) # (num_hyps, 1, 1, vocab_size)
|
||||||
|
|
||||||
|
logits = logits.squeeze(1).squeeze(1) # (num_hyps, vocab_size)
|
||||||
|
|
||||||
|
log_probs = logits.log_softmax(dim=-1) # (num_hyps, vocab_size)
|
||||||
|
|
||||||
|
log_probs.add_(ys_log_probs)
|
||||||
|
|
||||||
|
vocab_size = log_probs.size(-1)
|
||||||
|
|
||||||
|
log_probs = log_probs.reshape(-1)
|
||||||
|
|
||||||
|
row_splits = hyps_shape.row_splits(1) * vocab_size
|
||||||
|
log_probs_shape = k2.ragged.create_ragged_shape2(
|
||||||
|
row_splits=row_splits, cached_tot_size=log_probs.numel()
|
||||||
|
)
|
||||||
|
ragged_log_probs = k2.RaggedTensor(
|
||||||
|
shape=log_probs_shape, value=log_probs
|
||||||
|
)
|
||||||
|
|
||||||
|
for i in range(batch_size):
|
||||||
|
topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam)
|
||||||
|
|
||||||
|
topk_hyp_indexes = (topk_indexes // vocab_size).tolist()
|
||||||
|
topk_token_indexes = (topk_indexes % vocab_size).tolist()
|
||||||
|
|
||||||
|
for k in range(len(topk_hyp_indexes)):
|
||||||
|
hyp_idx = topk_hyp_indexes[k]
|
||||||
|
hyp = A[i][hyp_idx]
|
||||||
|
|
||||||
|
new_ys = hyp.ys[:]
|
||||||
|
new_token = topk_token_indexes[k]
|
||||||
|
if new_token != blank_id:
|
||||||
|
new_ys.append(new_token)
|
||||||
|
|
||||||
|
new_log_prob = topk_log_probs[k]
|
||||||
|
new_hyp = Hypothesis(ys=new_ys, log_prob=new_log_prob)
|
||||||
|
B[i].add(new_hyp)
|
||||||
|
|
||||||
|
best_hyps = [b.get_most_probable(length_norm=True) for b in B]
|
||||||
|
ans = [h.ys[context_size:] for h in best_hyps]
|
||||||
|
|
||||||
|
return ans
|
||||||
|
|
||||||
|
|
||||||
|
def _deprecated_modified_beam_search(
|
||||||
|
model: Transducer,
|
||||||
|
encoder_out: torch.Tensor,
|
||||||
|
beam: int = 4,
|
||||||
|
) -> List[int]:
|
||||||
|
"""It limits the maximum number of symbols per frame to 1.
|
||||||
|
|
||||||
|
It decodes only one utterance at a time. We keep it only for reference.
|
||||||
|
The function :func:`modified_beam_search` should be preferred as it
|
||||||
|
supports batch decoding.
|
||||||
|
|
||||||
|
|
||||||
|
Args:
|
||||||
|
model:
|
||||||
|
An instance of `Transducer`.
|
||||||
|
encoder_out:
|
||||||
|
A tensor of shape (N, T, C) from the encoder. Support only N==1 for now.
|
||||||
|
beam:
|
||||||
|
Beam size.
|
||||||
|
Returns:
|
||||||
|
Return the decoded result.
|
||||||
|
"""
|
||||||
|
|
||||||
|
assert encoder_out.ndim == 3
|
||||||
|
|
||||||
|
# support only batch_size == 1 for now
|
||||||
|
assert encoder_out.size(0) == 1, encoder_out.size(0)
|
||||||
|
blank_id = model.decoder.blank_id
|
||||||
|
context_size = model.decoder.context_size
|
||||||
|
|
||||||
|
device = model.device
|
||||||
|
|
||||||
|
T = encoder_out.size(1)
|
||||||
|
|
||||||
|
B = HypothesisList()
|
||||||
|
B.add(
|
||||||
|
Hypothesis(
|
||||||
|
ys=[blank_id] * context_size,
|
||||||
|
log_prob=torch.zeros(1, dtype=torch.float32, device=device),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
encoder_out = model.joiner.encoder_proj(encoder_out)
|
||||||
|
|
||||||
|
for t in range(T):
|
||||||
|
# fmt: off
|
||||||
|
current_encoder_out = encoder_out[:, t:t+1, :].unsqueeze(2)
|
||||||
|
# current_encoder_out is of shape (1, 1, 1, encoder_out_dim)
|
||||||
|
# fmt: on
|
||||||
|
A = list(B)
|
||||||
|
B = HypothesisList()
|
||||||
|
|
||||||
|
ys_log_probs = torch.cat([hyp.log_prob.reshape(1, 1) for hyp in A])
|
||||||
|
# ys_log_probs is of shape (num_hyps, 1)
|
||||||
|
|
||||||
|
decoder_input = torch.tensor(
|
||||||
|
[hyp.ys[-context_size:] for hyp in A],
|
||||||
|
device=device,
|
||||||
|
dtype=torch.int64,
|
||||||
|
)
|
||||||
|
# decoder_input is of shape (num_hyps, context_size)
|
||||||
|
|
||||||
|
decoder_out = model.decoder(decoder_input, need_pad=False).unsqueeze(1)
|
||||||
|
decoder_out = model.joiner.decoder_proj(decoder_out)
|
||||||
|
# decoder_output is of shape (num_hyps, 1, 1, joiner_dim)
|
||||||
|
|
||||||
|
current_encoder_out = current_encoder_out.expand(
|
||||||
|
decoder_out.size(0), 1, 1, -1
|
||||||
|
) # (num_hyps, 1, 1, encoder_out_dim)
|
||||||
|
|
||||||
|
logits = model.joiner(
|
||||||
|
current_encoder_out,
|
||||||
|
decoder_out,
|
||||||
|
project_input=False,
|
||||||
|
)
|
||||||
|
# logits is of shape (num_hyps, 1, 1, vocab_size)
|
||||||
|
logits = logits.squeeze(1).squeeze(1)
|
||||||
|
|
||||||
|
# now logits is of shape (num_hyps, vocab_size)
|
||||||
|
log_probs = logits.log_softmax(dim=-1)
|
||||||
|
|
||||||
|
log_probs.add_(ys_log_probs)
|
||||||
|
|
||||||
|
log_probs = log_probs.reshape(-1)
|
||||||
|
topk_log_probs, topk_indexes = log_probs.topk(beam)
|
||||||
|
|
||||||
|
# topk_hyp_indexes are indexes into `A`
|
||||||
|
topk_hyp_indexes = topk_indexes // logits.size(-1)
|
||||||
|
topk_token_indexes = topk_indexes % logits.size(-1)
|
||||||
|
|
||||||
|
topk_hyp_indexes = topk_hyp_indexes.tolist()
|
||||||
|
topk_token_indexes = topk_token_indexes.tolist()
|
||||||
|
|
||||||
|
for i in range(len(topk_hyp_indexes)):
|
||||||
|
hyp = A[topk_hyp_indexes[i]]
|
||||||
|
new_ys = hyp.ys[:]
|
||||||
|
new_token = topk_token_indexes[i]
|
||||||
|
if new_token != blank_id:
|
||||||
|
new_ys.append(new_token)
|
||||||
|
new_log_prob = topk_log_probs[i]
|
||||||
|
new_hyp = Hypothesis(ys=new_ys, log_prob=new_log_prob)
|
||||||
|
B.add(new_hyp)
|
||||||
|
|
||||||
|
best_hyp = B.get_most_probable(length_norm=True)
|
||||||
|
ys = best_hyp.ys[context_size:] # [context_size:] to remove blanks
|
||||||
|
|
||||||
|
return ys
|
||||||
|
|
||||||
|
|
||||||
|
def beam_search(
|
||||||
|
model: Transducer,
|
||||||
|
encoder_out: torch.Tensor,
|
||||||
|
beam: int = 4,
|
||||||
|
) -> List[int]:
|
||||||
|
"""
|
||||||
|
It implements Algorithm 1 in https://arxiv.org/pdf/1211.3711.pdf
|
||||||
|
|
||||||
|
espnet/nets/beam_search_transducer.py#L247 is used as a reference.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
model:
|
||||||
|
An instance of `Transducer`.
|
||||||
|
encoder_out:
|
||||||
|
A tensor of shape (N, T, C) from the encoder. Support only N==1 for now.
|
||||||
|
beam:
|
||||||
|
Beam size.
|
||||||
|
Returns:
|
||||||
|
Return the decoded result.
|
||||||
|
"""
|
||||||
|
assert encoder_out.ndim == 3
|
||||||
|
|
||||||
|
# support only batch_size == 1 for now
|
||||||
|
assert encoder_out.size(0) == 1, encoder_out.size(0)
|
||||||
|
blank_id = model.decoder.blank_id
|
||||||
|
context_size = model.decoder.context_size
|
||||||
|
|
||||||
|
device = model.device
|
||||||
|
|
||||||
|
decoder_input = torch.tensor(
|
||||||
|
[blank_id] * context_size,
|
||||||
|
device=device,
|
||||||
|
dtype=torch.int64,
|
||||||
|
).reshape(1, context_size)
|
||||||
|
|
||||||
|
decoder_out = model.decoder(decoder_input, need_pad=False)
|
||||||
|
decoder_out = model.joiner.decoder_proj(decoder_out)
|
||||||
|
|
||||||
|
encoder_out = model.joiner.encoder_proj(encoder_out)
|
||||||
|
|
||||||
|
T = encoder_out.size(1)
|
||||||
|
t = 0
|
||||||
|
|
||||||
|
B = HypothesisList()
|
||||||
|
B.add(Hypothesis(ys=[blank_id] * context_size, log_prob=0.0))
|
||||||
|
|
||||||
|
max_sym_per_utt = 20000
|
||||||
|
|
||||||
|
sym_per_utt = 0
|
||||||
|
|
||||||
|
decoder_cache: Dict[str, torch.Tensor] = {}
|
||||||
|
|
||||||
|
while t < T and sym_per_utt < max_sym_per_utt:
|
||||||
|
# fmt: off
|
||||||
|
current_encoder_out = encoder_out[:, t:t+1, :].unsqueeze(2)
|
||||||
|
# fmt: on
|
||||||
|
A = B
|
||||||
|
B = HypothesisList()
|
||||||
|
|
||||||
|
joint_cache: Dict[str, torch.Tensor] = {}
|
||||||
|
|
||||||
|
# TODO(fangjun): Implement prefix search to update the `log_prob`
|
||||||
|
# of hypotheses in A
|
||||||
|
|
||||||
|
while True:
|
||||||
|
y_star = A.get_most_probable()
|
||||||
|
A.remove(y_star)
|
||||||
|
|
||||||
|
cached_key = y_star.key
|
||||||
|
|
||||||
|
if cached_key not in decoder_cache:
|
||||||
|
decoder_input = torch.tensor(
|
||||||
|
[y_star.ys[-context_size:]],
|
||||||
|
device=device,
|
||||||
|
dtype=torch.int64,
|
||||||
|
).reshape(1, context_size)
|
||||||
|
|
||||||
|
decoder_out = model.decoder(decoder_input, need_pad=False)
|
||||||
|
decoder_out = model.joiner.decoder_proj(decoder_out)
|
||||||
|
decoder_cache[cached_key] = decoder_out
|
||||||
|
else:
|
||||||
|
decoder_out = decoder_cache[cached_key]
|
||||||
|
|
||||||
|
cached_key += f"-t-{t}"
|
||||||
|
if cached_key not in joint_cache:
|
||||||
|
logits = model.joiner(
|
||||||
|
current_encoder_out,
|
||||||
|
decoder_out.unsqueeze(1),
|
||||||
|
project_input=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
# TODO(fangjun): Scale the blank posterior
|
||||||
|
log_prob = logits.log_softmax(dim=-1)
|
||||||
|
# log_prob is (1, 1, 1, vocab_size)
|
||||||
|
log_prob = log_prob.squeeze()
|
||||||
|
# Now log_prob is (vocab_size,)
|
||||||
|
joint_cache[cached_key] = log_prob
|
||||||
|
else:
|
||||||
|
log_prob = joint_cache[cached_key]
|
||||||
|
|
||||||
|
# First, process the blank symbol
|
||||||
|
skip_log_prob = log_prob[blank_id]
|
||||||
|
new_y_star_log_prob = y_star.log_prob + skip_log_prob
|
||||||
|
|
||||||
|
# ys[:] returns a copy of ys
|
||||||
|
B.add(Hypothesis(ys=y_star.ys[:], log_prob=new_y_star_log_prob))
|
||||||
|
|
||||||
|
# Second, process other non-blank labels
|
||||||
|
values, indices = log_prob.topk(beam + 1)
|
||||||
|
for i, v in zip(indices.tolist(), values.tolist()):
|
||||||
|
if i == blank_id:
|
||||||
|
continue
|
||||||
|
new_ys = y_star.ys + [i]
|
||||||
|
new_log_prob = y_star.log_prob + v
|
||||||
|
A.add(Hypothesis(ys=new_ys, log_prob=new_log_prob))
|
||||||
|
|
||||||
|
# Check whether B contains more than "beam" elements more probable
|
||||||
|
# than the most probable in A
|
||||||
|
A_most_probable = A.get_most_probable()
|
||||||
|
|
||||||
|
kept_B = B.filter(A_most_probable.log_prob)
|
||||||
|
|
||||||
|
if len(kept_B) >= beam:
|
||||||
|
B = kept_B.topk(beam)
|
||||||
|
break
|
||||||
|
|
||||||
|
t += 1
|
||||||
|
|
||||||
|
best_hyp = B.get_most_probable(length_norm=True)
|
||||||
|
ys = best_hyp.ys[context_size:] # [context_size:] to remove blanks
|
||||||
|
return ys
|
1038
egs/gigaspeech/ASR/pruned_transducer_stateless2/conformer.py
Normal file
1038
egs/gigaspeech/ASR/pruned_transducer_stateless2/conformer.py
Normal file
File diff suppressed because it is too large
Load Diff
557
egs/gigaspeech/ASR/pruned_transducer_stateless2/decode.py
Executable file
557
egs/gigaspeech/ASR/pruned_transducer_stateless2/decode.py
Executable file
@ -0,0 +1,557 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
#
|
||||||
|
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""
|
||||||
|
Usage:
|
||||||
|
(1) greedy search
|
||||||
|
./pruned_transducer_stateless2/decode.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./pruned_transducer_stateless2/exp \
|
||||||
|
--max-duration 100 \
|
||||||
|
--decoding-method greedy_search
|
||||||
|
|
||||||
|
(2) beam search
|
||||||
|
./pruned_transducer_stateless2/decode.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./pruned_transducer_stateless2/exp \
|
||||||
|
--max-duration 100 \
|
||||||
|
--decoding-method beam_search \
|
||||||
|
--beam-size 4
|
||||||
|
|
||||||
|
(3) modified beam search
|
||||||
|
./pruned_transducer_stateless2/decode.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./pruned_transducer_stateless2/exp \
|
||||||
|
--max-duration 100 \
|
||||||
|
--decoding-method modified_beam_search \
|
||||||
|
--beam-size 4
|
||||||
|
|
||||||
|
(4) fast beam search
|
||||||
|
./pruned_transducer_stateless2/decode.py \
|
||||||
|
--epoch 28 \
|
||||||
|
--avg 15 \
|
||||||
|
--exp-dir ./pruned_transducer_stateless2/exp \
|
||||||
|
--max-duration 1500 \
|
||||||
|
--decoding-method fast_beam_search \
|
||||||
|
--beam 4 \
|
||||||
|
--max-contexts 4 \
|
||||||
|
--max-states 8
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from collections import defaultdict
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Dict, List, Optional, Tuple
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import sentencepiece as spm
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from asr_datamodule import GigaSpeechAsrDataModule
|
||||||
|
from beam_search import (
|
||||||
|
beam_search,
|
||||||
|
fast_beam_search,
|
||||||
|
greedy_search,
|
||||||
|
greedy_search_batch,
|
||||||
|
modified_beam_search,
|
||||||
|
)
|
||||||
|
from gigaspeech_scoring import asr_text_post_processing
|
||||||
|
from train import get_params, get_transducer_model
|
||||||
|
|
||||||
|
from icefall.checkpoint import (
|
||||||
|
average_checkpoints,
|
||||||
|
find_checkpoints,
|
||||||
|
load_checkpoint,
|
||||||
|
)
|
||||||
|
from icefall.utils import (
|
||||||
|
AttributeDict,
|
||||||
|
setup_logger,
|
||||||
|
store_transcripts,
|
||||||
|
write_error_stats,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--epoch",
|
||||||
|
type=int,
|
||||||
|
default=29,
|
||||||
|
help="It specifies the checkpoint to use for decoding."
|
||||||
|
"Note: Epoch counts from 0.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--avg",
|
||||||
|
type=int,
|
||||||
|
default=8,
|
||||||
|
help="Number of checkpoints to average. Automatically select "
|
||||||
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
|
"'--epoch'. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--avg-last-n",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="""If positive, --epoch and --avg are ignored and it
|
||||||
|
will use the last n checkpoints exp_dir/checkpoint-xxx.pt
|
||||||
|
where xxx is the number of processed batches while
|
||||||
|
saving that checkpoint.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=str,
|
||||||
|
default="pruned_transducer_stateless2/exp",
|
||||||
|
help="The experiment dir",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--bpe-model",
|
||||||
|
type=str,
|
||||||
|
default="data/lang_bpe_500/bpe.model",
|
||||||
|
help="Path to the BPE model",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--decoding-method",
|
||||||
|
type=str,
|
||||||
|
default="greedy_search",
|
||||||
|
help="""Possible values are:
|
||||||
|
- greedy_search
|
||||||
|
- beam_search
|
||||||
|
- modified_beam_search
|
||||||
|
- fast_beam_search
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--beam-size",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="""An interger indicating how many candidates we will keep for each
|
||||||
|
frame. Used only when --decoding-method is beam_search or
|
||||||
|
modified_beam_search.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--beam",
|
||||||
|
type=float,
|
||||||
|
default=4,
|
||||||
|
help="""A floating point value to calculate the cutoff score during beam
|
||||||
|
search (i.e., `cutoff = max-score - beam`), which is the same as the
|
||||||
|
`beam` in Kaldi.
|
||||||
|
Used only when --decoding-method is fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-contexts",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="""Used only when --decoding-method is
|
||||||
|
fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-states",
|
||||||
|
type=int,
|
||||||
|
default=8,
|
||||||
|
help="""Used only when --decoding-method is
|
||||||
|
fast_beam_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--context-size",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The context size in the decoder. 1 means bigram; "
|
||||||
|
"2 means tri-gram",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--max-sym-per-frame",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help="""Maximum number of symbols per frame.
|
||||||
|
Used only when --decoding_method is greedy_search""",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def post_processing(
|
||||||
|
results: List[Tuple[List[str], List[str]]],
|
||||||
|
) -> List[Tuple[List[str], List[str]]]:
|
||||||
|
new_results = []
|
||||||
|
for ref, hyp in results:
|
||||||
|
new_ref = asr_text_post_processing(" ".join(ref)).split()
|
||||||
|
new_hyp = asr_text_post_processing(" ".join(hyp)).split()
|
||||||
|
new_results.append((new_ref, new_hyp))
|
||||||
|
return new_results
|
||||||
|
|
||||||
|
|
||||||
|
def decode_one_batch(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
sp: spm.SentencePieceProcessor,
|
||||||
|
batch: dict,
|
||||||
|
decoding_graph: Optional[k2.Fsa] = None,
|
||||||
|
) -> Dict[str, List[List[str]]]:
|
||||||
|
"""Decode one batch and return the result in a dict. The dict has the
|
||||||
|
following format:
|
||||||
|
|
||||||
|
- key: It indicates the setting used for decoding. For example,
|
||||||
|
if greedy_search is used, it would be "greedy_search"
|
||||||
|
If beam search with a beam size of 7 is used, it would be
|
||||||
|
"beam_7"
|
||||||
|
- value: It contains the decoding result. `len(value)` equals to
|
||||||
|
batch size. `value[i]` is the decoding result for the i-th
|
||||||
|
utterance in the given batch.
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It's the return value of :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
sp:
|
||||||
|
The BPE model.
|
||||||
|
batch:
|
||||||
|
It is the return value from iterating
|
||||||
|
`lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation
|
||||||
|
for the format of the `batch`.
|
||||||
|
decoding_graph:
|
||||||
|
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||||
|
only when --decoding_method is fast_beam_search.
|
||||||
|
Returns:
|
||||||
|
Return the decoding result. See above description for the format of
|
||||||
|
the returned dict.
|
||||||
|
"""
|
||||||
|
device = model.device
|
||||||
|
feature = batch["inputs"]
|
||||||
|
assert feature.ndim == 3
|
||||||
|
|
||||||
|
feature = feature.to(device)
|
||||||
|
# at entry, feature is (N, T, C)
|
||||||
|
|
||||||
|
supervisions = batch["supervisions"]
|
||||||
|
feature_lens = supervisions["num_frames"].to(device)
|
||||||
|
|
||||||
|
encoder_out, encoder_out_lens = model.encoder(
|
||||||
|
x=feature, x_lens=feature_lens
|
||||||
|
)
|
||||||
|
hyps = []
|
||||||
|
|
||||||
|
if params.decoding_method == "fast_beam_search":
|
||||||
|
hyp_tokens = fast_beam_search(
|
||||||
|
model=model,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
encoder_out_lens=encoder_out_lens,
|
||||||
|
beam=params.beam,
|
||||||
|
max_contexts=params.max_contexts,
|
||||||
|
max_states=params.max_states,
|
||||||
|
)
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(hyp.split())
|
||||||
|
elif (
|
||||||
|
params.decoding_method == "greedy_search"
|
||||||
|
and params.max_sym_per_frame == 1
|
||||||
|
):
|
||||||
|
hyp_tokens = greedy_search_batch(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
)
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(hyp.split())
|
||||||
|
elif params.decoding_method == "modified_beam_search":
|
||||||
|
hyp_tokens = modified_beam_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out,
|
||||||
|
beam=params.beam_size,
|
||||||
|
)
|
||||||
|
for hyp in sp.decode(hyp_tokens):
|
||||||
|
hyps.append(hyp.split())
|
||||||
|
else:
|
||||||
|
batch_size = encoder_out.size(0)
|
||||||
|
|
||||||
|
for i in range(batch_size):
|
||||||
|
# fmt: off
|
||||||
|
encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]]
|
||||||
|
# fmt: on
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
hyp = greedy_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out_i,
|
||||||
|
max_sym_per_frame=params.max_sym_per_frame,
|
||||||
|
)
|
||||||
|
elif params.decoding_method == "beam_search":
|
||||||
|
hyp = beam_search(
|
||||||
|
model=model,
|
||||||
|
encoder_out=encoder_out_i,
|
||||||
|
beam=params.beam_size,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
raise ValueError(
|
||||||
|
f"Unsupported decoding method: {params.decoding_method}"
|
||||||
|
)
|
||||||
|
hyps.append(sp.decode(hyp).split())
|
||||||
|
|
||||||
|
if params.decoding_method == "greedy_search":
|
||||||
|
return {"greedy_search": hyps}
|
||||||
|
elif params.decoding_method == "fast_beam_search":
|
||||||
|
return {
|
||||||
|
(
|
||||||
|
f"beam_{params.beam}_"
|
||||||
|
f"max_contexts_{params.max_contexts}_"
|
||||||
|
f"max_states_{params.max_states}"
|
||||||
|
): hyps
|
||||||
|
}
|
||||||
|
else:
|
||||||
|
return {f"beam_size_{params.beam_size}": hyps}
|
||||||
|
|
||||||
|
|
||||||
|
def decode_dataset(
|
||||||
|
dl: torch.utils.data.DataLoader,
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
sp: spm.SentencePieceProcessor,
|
||||||
|
decoding_graph: Optional[k2.Fsa] = None,
|
||||||
|
) -> Dict[str, List[Tuple[List[str], List[str]]]]:
|
||||||
|
"""Decode dataset.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
dl:
|
||||||
|
PyTorch's dataloader containing the dataset to decode.
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The neural model.
|
||||||
|
sp:
|
||||||
|
The BPE model.
|
||||||
|
decoding_graph:
|
||||||
|
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||||
|
only when --decoding_method is fast_beam_search.
|
||||||
|
Returns:
|
||||||
|
Return a dict, whose key may be "greedy_search" if greedy search
|
||||||
|
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||||
|
Its value is a list of tuples. Each tuple contains two elements:
|
||||||
|
The first is the reference transcript, and the second is the
|
||||||
|
predicted result.
|
||||||
|
"""
|
||||||
|
num_cuts = 0
|
||||||
|
|
||||||
|
try:
|
||||||
|
num_batches = len(dl)
|
||||||
|
except TypeError:
|
||||||
|
num_batches = "?"
|
||||||
|
|
||||||
|
log_interval = 100
|
||||||
|
|
||||||
|
results = defaultdict(list)
|
||||||
|
for batch_idx, batch in enumerate(dl):
|
||||||
|
texts = batch["supervisions"]["text"]
|
||||||
|
|
||||||
|
hyps_dict = decode_one_batch(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
sp=sp,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
batch=batch,
|
||||||
|
)
|
||||||
|
|
||||||
|
for name, hyps in hyps_dict.items():
|
||||||
|
this_batch = []
|
||||||
|
assert len(hyps) == len(texts)
|
||||||
|
for hyp_words, ref_text in zip(hyps, texts):
|
||||||
|
ref_words = ref_text.split()
|
||||||
|
this_batch.append((ref_words, hyp_words))
|
||||||
|
|
||||||
|
results[name].extend(this_batch)
|
||||||
|
|
||||||
|
num_cuts += len(texts)
|
||||||
|
|
||||||
|
if batch_idx % log_interval == 0:
|
||||||
|
batch_str = f"{batch_idx}/{num_batches}"
|
||||||
|
|
||||||
|
logging.info(
|
||||||
|
f"batch {batch_str}, cuts processed until now is {num_cuts}"
|
||||||
|
)
|
||||||
|
return results
|
||||||
|
|
||||||
|
|
||||||
|
def save_results(
|
||||||
|
params: AttributeDict,
|
||||||
|
test_set_name: str,
|
||||||
|
results_dict: Dict[str, List[Tuple[List[int], List[int]]]],
|
||||||
|
):
|
||||||
|
test_set_wers = dict()
|
||||||
|
for key, results in results_dict.items():
|
||||||
|
recog_path = (
|
||||||
|
params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
results = post_processing(results)
|
||||||
|
store_transcripts(filename=recog_path, texts=results)
|
||||||
|
logging.info(f"The transcripts are stored in {recog_path}")
|
||||||
|
|
||||||
|
# The following prints out WERs, per-word error statistics and aligned
|
||||||
|
# ref/hyp pairs.
|
||||||
|
errs_filename = (
|
||||||
|
params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
with open(errs_filename, "w") as f:
|
||||||
|
wer = write_error_stats(
|
||||||
|
f, f"{test_set_name}-{key}", results, enable_log=True
|
||||||
|
)
|
||||||
|
test_set_wers[key] = wer
|
||||||
|
|
||||||
|
logging.info("Wrote detailed error stats to {}".format(errs_filename))
|
||||||
|
|
||||||
|
test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1])
|
||||||
|
errs_info = (
|
||||||
|
params.res_dir
|
||||||
|
/ f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt"
|
||||||
|
)
|
||||||
|
with open(errs_info, "w") as f:
|
||||||
|
print("settings\tWER", file=f)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
print("{}\t{}".format(key, val), file=f)
|
||||||
|
|
||||||
|
s = "\nFor {}, WER of different settings are:\n".format(test_set_name)
|
||||||
|
note = "\tbest for {}".format(test_set_name)
|
||||||
|
for key, val in test_set_wers:
|
||||||
|
s += "{}\t{}{}\n".format(key, val, note)
|
||||||
|
note = ""
|
||||||
|
logging.info(s)
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
GigaSpeechAsrDataModule.add_arguments(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
args.exp_dir = Path(args.exp_dir)
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
assert params.decoding_method in (
|
||||||
|
"greedy_search",
|
||||||
|
"beam_search",
|
||||||
|
"fast_beam_search",
|
||||||
|
"modified_beam_search",
|
||||||
|
)
|
||||||
|
params.res_dir = params.exp_dir / params.decoding_method
|
||||||
|
|
||||||
|
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"
|
||||||
|
if "fast_beam_search" in params.decoding_method:
|
||||||
|
params.suffix += f"-beam-{params.beam}"
|
||||||
|
params.suffix += f"-max-contexts-{params.max_contexts}"
|
||||||
|
params.suffix += f"-max-states-{params.max_states}"
|
||||||
|
elif "beam_search" in params.decoding_method:
|
||||||
|
params.suffix += f"-beam-{params.beam_size}"
|
||||||
|
else:
|
||||||
|
params.suffix += f"-context-{params.context_size}"
|
||||||
|
params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}"
|
||||||
|
|
||||||
|
setup_logger(f"{params.res_dir}/log-decode-{params.suffix}")
|
||||||
|
logging.info("Decoding started")
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"Device: {device}")
|
||||||
|
|
||||||
|
sp = spm.SentencePieceProcessor()
|
||||||
|
sp.load(params.bpe_model)
|
||||||
|
|
||||||
|
# <blk> is defined in local/train_bpe_model.py
|
||||||
|
params.blank_id = sp.piece_to_id("<blk>")
|
||||||
|
params.vocab_size = sp.get_piece_size()
|
||||||
|
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
logging.info("About to create model")
|
||||||
|
model = get_transducer_model(params)
|
||||||
|
|
||||||
|
if params.avg_last_n > 0:
|
||||||
|
filenames = find_checkpoints(params.exp_dir)[: params.avg_last_n]
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
elif params.avg == 1:
|
||||||
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||||
|
else:
|
||||||
|
start = params.epoch - params.avg + 1
|
||||||
|
filenames = []
|
||||||
|
for i in range(start, params.epoch + 1):
|
||||||
|
if start >= 0:
|
||||||
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
|
||||||
|
model.to(device)
|
||||||
|
model.eval()
|
||||||
|
model.device = device
|
||||||
|
|
||||||
|
if params.decoding_method == "fast_beam_search":
|
||||||
|
decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device)
|
||||||
|
else:
|
||||||
|
decoding_graph = None
|
||||||
|
|
||||||
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
|
logging.info(f"Number of model parameters: {num_param}")
|
||||||
|
|
||||||
|
gigaspeech = GigaSpeechAsrDataModule(args)
|
||||||
|
|
||||||
|
dev_cuts = gigaspeech.dev_cuts()
|
||||||
|
test_cuts = gigaspeech.test_cuts()
|
||||||
|
|
||||||
|
dev_dl = gigaspeech.test_dataloaders(dev_cuts)
|
||||||
|
test_dl = gigaspeech.test_dataloaders(test_cuts)
|
||||||
|
|
||||||
|
test_sets = ["dev", "test"]
|
||||||
|
test_dls = [dev_dl, test_dl]
|
||||||
|
|
||||||
|
for test_set, test_dl in zip(test_sets, test_dls):
|
||||||
|
results_dict = decode_dataset(
|
||||||
|
dl=test_dl,
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
sp=sp,
|
||||||
|
decoding_graph=decoding_graph,
|
||||||
|
)
|
||||||
|
|
||||||
|
save_results(
|
||||||
|
params=params,
|
||||||
|
test_set_name=test_set,
|
||||||
|
results_dict=results_dict,
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Done!")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
103
egs/gigaspeech/ASR/pruned_transducer_stateless2/decoder.py
Normal file
103
egs/gigaspeech/ASR/pruned_transducer_stateless2/decoder.py
Normal file
@ -0,0 +1,103 @@
|
|||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
from scaling import ScaledConv1d, ScaledEmbedding
|
||||||
|
|
||||||
|
|
||||||
|
class Decoder(nn.Module):
|
||||||
|
"""This class modifies the stateless decoder from the following paper:
|
||||||
|
|
||||||
|
RNN-transducer with stateless prediction network
|
||||||
|
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9054419
|
||||||
|
|
||||||
|
It removes the recurrent connection from the decoder, i.e., the prediction
|
||||||
|
network. Different from the above paper, it adds an extra Conv1d
|
||||||
|
right after the embedding layer.
|
||||||
|
|
||||||
|
TODO: Implement https://arxiv.org/pdf/2109.07513.pdf
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
vocab_size: int,
|
||||||
|
decoder_dim: int,
|
||||||
|
blank_id: int,
|
||||||
|
context_size: int,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
vocab_size:
|
||||||
|
Number of tokens of the modeling unit including blank.
|
||||||
|
decoder_dim:
|
||||||
|
Dimension of the input embedding, and of the decoder output.
|
||||||
|
blank_id:
|
||||||
|
The ID of the blank symbol.
|
||||||
|
context_size:
|
||||||
|
Number of previous words to use to predict the next word.
|
||||||
|
1 means bigram; 2 means trigram. n means (n+1)-gram.
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.embedding = ScaledEmbedding(
|
||||||
|
num_embeddings=vocab_size,
|
||||||
|
embedding_dim=decoder_dim,
|
||||||
|
padding_idx=blank_id,
|
||||||
|
)
|
||||||
|
self.blank_id = blank_id
|
||||||
|
|
||||||
|
assert context_size >= 1, context_size
|
||||||
|
self.context_size = context_size
|
||||||
|
self.vocab_size = vocab_size
|
||||||
|
if context_size > 1:
|
||||||
|
self.conv = ScaledConv1d(
|
||||||
|
in_channels=decoder_dim,
|
||||||
|
out_channels=decoder_dim,
|
||||||
|
kernel_size=context_size,
|
||||||
|
padding=0,
|
||||||
|
groups=decoder_dim,
|
||||||
|
bias=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, y: torch.Tensor, need_pad: bool = True) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
y:
|
||||||
|
A 2-D tensor of shape (N, U).
|
||||||
|
need_pad:
|
||||||
|
True to left pad the input. Should be True during training.
|
||||||
|
False to not pad the input. Should be False during inference.
|
||||||
|
Returns:
|
||||||
|
Return a tensor of shape (N, U, decoder_dim).
|
||||||
|
"""
|
||||||
|
y = y.to(torch.int64)
|
||||||
|
embedding_out = self.embedding(y)
|
||||||
|
if self.context_size > 1:
|
||||||
|
embedding_out = embedding_out.permute(0, 2, 1)
|
||||||
|
if need_pad is True:
|
||||||
|
embedding_out = F.pad(
|
||||||
|
embedding_out, pad=(self.context_size - 1, 0)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
# During inference time, there is no need to do extra padding
|
||||||
|
# as we only need one output
|
||||||
|
assert embedding_out.size(-1) == self.context_size
|
||||||
|
embedding_out = self.conv(embedding_out)
|
||||||
|
embedding_out = embedding_out.permute(0, 2, 1)
|
||||||
|
embedding_out = F.relu(embedding_out)
|
||||||
|
return embedding_out
|
@ -0,0 +1,43 @@
|
|||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from typing import Tuple
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
|
||||||
|
|
||||||
|
class EncoderInterface(nn.Module):
|
||||||
|
def forward(
|
||||||
|
self, x: torch.Tensor, x_lens: torch.Tensor
|
||||||
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
x:
|
||||||
|
A tensor of shape (batch_size, input_seq_len, num_features)
|
||||||
|
containing the input features.
|
||||||
|
x_lens:
|
||||||
|
A tensor of shape (batch_size,) containing the number of frames
|
||||||
|
in `x` before padding.
|
||||||
|
Returns:
|
||||||
|
Return a tuple containing two tensors:
|
||||||
|
- encoder_out, a tensor of (batch_size, out_seq_len, output_dim)
|
||||||
|
containing unnormalized probabilities, i.e., the output of a
|
||||||
|
linear layer.
|
||||||
|
- encoder_out_lens, a tensor of shape (batch_size,) containing
|
||||||
|
the number of frames in `encoder_out` before padding.
|
||||||
|
"""
|
||||||
|
raise NotImplementedError("Please implement it in a subclass")
|
182
egs/gigaspeech/ASR/pruned_transducer_stateless2/export.py
Executable file
182
egs/gigaspeech/ASR/pruned_transducer_stateless2/export.py
Executable file
@ -0,0 +1,182 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
#
|
||||||
|
# Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
# This script converts several saved checkpoints
|
||||||
|
# to a single one using model averaging.
|
||||||
|
"""
|
||||||
|
Usage:
|
||||||
|
./pruned_transducer_stateless2/export.py \
|
||||||
|
--exp-dir ./pruned_transducer_stateless2/exp \
|
||||||
|
--bpe-model data/lang_bpe_500/bpe.model \
|
||||||
|
--epoch 20 \
|
||||||
|
--avg 10
|
||||||
|
|
||||||
|
It will generate a file exp_dir/pretrained.pt
|
||||||
|
|
||||||
|
To use the generated file with `pruned_transducer_stateless2/decode.py`,
|
||||||
|
you can do:
|
||||||
|
|
||||||
|
cd /path/to/exp_dir
|
||||||
|
ln -s pretrained.pt epoch-9999.pt
|
||||||
|
|
||||||
|
cd /path/to/egs/librispeech/ASR
|
||||||
|
./pruned_transducer_stateless2/decode.py \
|
||||||
|
--exp-dir ./pruned_transducer_stateless2/exp \
|
||||||
|
--epoch 9999 \
|
||||||
|
--avg 1 \
|
||||||
|
--max-duration 100 \
|
||||||
|
--bpe-model data/lang_bpe_500/bpe.model
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import sentencepiece as spm
|
||||||
|
import torch
|
||||||
|
from train import get_params, get_transducer_model
|
||||||
|
|
||||||
|
from icefall.checkpoint import average_checkpoints, load_checkpoint
|
||||||
|
from icefall.utils import str2bool
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--epoch",
|
||||||
|
type=int,
|
||||||
|
default=28,
|
||||||
|
help="It specifies the checkpoint to use for decoding."
|
||||||
|
"Note: Epoch counts from 0.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--avg",
|
||||||
|
type=int,
|
||||||
|
default=15,
|
||||||
|
help="Number of checkpoints to average. Automatically select "
|
||||||
|
"consecutive checkpoints before the checkpoint specified by "
|
||||||
|
"'--epoch'. ",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=str,
|
||||||
|
default="pruned_transducer_stateless2/exp",
|
||||||
|
help="""It specifies the directory where all training related
|
||||||
|
files, e.g., checkpoints, log, etc, are saved
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--bpe-model",
|
||||||
|
type=str,
|
||||||
|
default="data/lang_bpe_500/bpe.model",
|
||||||
|
help="Path to the BPE model",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--jit",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="""True to save a model after applying torch.jit.script.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--context-size",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The context size in the decoder. 1 means bigram; "
|
||||||
|
"2 means tri-gram",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
args = get_parser().parse_args()
|
||||||
|
args.exp_dir = Path(args.exp_dir)
|
||||||
|
|
||||||
|
assert args.jit is False, "Support torchscript will be added later"
|
||||||
|
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", 0)
|
||||||
|
|
||||||
|
logging.info(f"device: {device}")
|
||||||
|
|
||||||
|
sp = spm.SentencePieceProcessor()
|
||||||
|
sp.load(params.bpe_model)
|
||||||
|
|
||||||
|
# <blk> is defined in local/train_bpe_model.py
|
||||||
|
params.blank_id = sp.piece_to_id("<blk>")
|
||||||
|
params.vocab_size = sp.get_piece_size()
|
||||||
|
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
logging.info("About to create model")
|
||||||
|
model = get_transducer_model(params)
|
||||||
|
|
||||||
|
model.to(device)
|
||||||
|
|
||||||
|
if params.avg == 1:
|
||||||
|
load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model)
|
||||||
|
else:
|
||||||
|
start = params.epoch - params.avg + 1
|
||||||
|
filenames = []
|
||||||
|
for i in range(start, params.epoch + 1):
|
||||||
|
if start >= 0:
|
||||||
|
filenames.append(f"{params.exp_dir}/epoch-{i}.pt")
|
||||||
|
logging.info(f"averaging {filenames}")
|
||||||
|
model.to(device)
|
||||||
|
model.load_state_dict(average_checkpoints(filenames, device=device))
|
||||||
|
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
model.to("cpu")
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
if params.jit:
|
||||||
|
logging.info("Using torch.jit.script")
|
||||||
|
model = torch.jit.script(model)
|
||||||
|
filename = params.exp_dir / "cpu_jit.pt"
|
||||||
|
model.save(str(filename))
|
||||||
|
logging.info(f"Saved to {filename}")
|
||||||
|
else:
|
||||||
|
logging.info("Not using torch.jit.script")
|
||||||
|
# Save it using a format so that it can be loaded
|
||||||
|
# by :func:`load_checkpoint`
|
||||||
|
filename = params.exp_dir / "pretrained.pt"
|
||||||
|
torch.save({"model": model.state_dict()}, str(filename))
|
||||||
|
logging.info(f"Saved to {filename}")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
formatter = (
|
||||||
|
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.basicConfig(format=formatter, level=logging.INFO)
|
||||||
|
main()
|
@ -0,0 +1 @@
|
|||||||
|
../conformer_ctc/gigaspeech_scoring.py
|
67
egs/gigaspeech/ASR/pruned_transducer_stateless2/joiner.py
Normal file
67
egs/gigaspeech/ASR/pruned_transducer_stateless2/joiner.py
Normal file
@ -0,0 +1,67 @@
|
|||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from scaling import ScaledLinear
|
||||||
|
|
||||||
|
|
||||||
|
class Joiner(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
encoder_dim: int,
|
||||||
|
decoder_dim: int,
|
||||||
|
joiner_dim: int,
|
||||||
|
vocab_size: int,
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.encoder_proj = ScaledLinear(encoder_dim, joiner_dim)
|
||||||
|
self.decoder_proj = ScaledLinear(decoder_dim, joiner_dim)
|
||||||
|
self.output_linear = ScaledLinear(joiner_dim, vocab_size)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
encoder_out: torch.Tensor,
|
||||||
|
decoder_out: torch.Tensor,
|
||||||
|
project_input: bool = True,
|
||||||
|
) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
encoder_out:
|
||||||
|
Output from the encoder. Its shape is (N, T, s_range, C).
|
||||||
|
decoder_out:
|
||||||
|
Output from the decoder. Its shape is (N, T, s_range, C).
|
||||||
|
project_input:
|
||||||
|
If true, apply input projections encoder_proj and decoder_proj.
|
||||||
|
If this is false, it is the user's responsibility to do this
|
||||||
|
manually.
|
||||||
|
Returns:
|
||||||
|
Return a tensor of shape (N, T, s_range, C).
|
||||||
|
"""
|
||||||
|
assert encoder_out.ndim == decoder_out.ndim == 4
|
||||||
|
assert encoder_out.shape[:-1] == decoder_out.shape[:-1]
|
||||||
|
|
||||||
|
if project_input:
|
||||||
|
logit = self.encoder_proj(encoder_out) + self.decoder_proj(
|
||||||
|
decoder_out
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
logit = encoder_out + decoder_out
|
||||||
|
|
||||||
|
logit = self.output_linear(torch.tanh(logit))
|
||||||
|
|
||||||
|
return logit
|
193
egs/gigaspeech/ASR/pruned_transducer_stateless2/model.py
Normal file
193
egs/gigaspeech/ASR/pruned_transducer_stateless2/model.py
Normal file
@ -0,0 +1,193 @@
|
|||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang, Wei Kang)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from encoder_interface import EncoderInterface
|
||||||
|
from scaling import ScaledLinear
|
||||||
|
|
||||||
|
from icefall.utils import add_sos
|
||||||
|
|
||||||
|
|
||||||
|
class Transducer(nn.Module):
|
||||||
|
"""It implements https://arxiv.org/pdf/1211.3711.pdf
|
||||||
|
"Sequence Transduction with Recurrent Neural Networks"
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
encoder: EncoderInterface,
|
||||||
|
decoder: nn.Module,
|
||||||
|
joiner: nn.Module,
|
||||||
|
encoder_dim: int,
|
||||||
|
decoder_dim: int,
|
||||||
|
joiner_dim: int,
|
||||||
|
vocab_size: int,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
encoder:
|
||||||
|
It is the transcription network in the paper. Its accepts
|
||||||
|
two inputs: `x` of (N, T, encoder_dim) and `x_lens` of shape (N,).
|
||||||
|
It returns two tensors: `logits` of shape (N, T, encoder_dm) and
|
||||||
|
`logit_lens` of shape (N,).
|
||||||
|
decoder:
|
||||||
|
It is the prediction network in the paper. Its input shape
|
||||||
|
is (N, U) and its output shape is (N, U, decoder_dim).
|
||||||
|
It should contain one attribute: `blank_id`.
|
||||||
|
joiner:
|
||||||
|
It has two inputs with shapes: (N, T, encoder_dim) and (N, U, decoder_dim).
|
||||||
|
Its output shape is (N, T, U, vocab_size). Note that its output contains
|
||||||
|
unnormalized probs, i.e., not processed by log-softmax.
|
||||||
|
"""
|
||||||
|
super().__init__()
|
||||||
|
assert isinstance(encoder, EncoderInterface), type(encoder)
|
||||||
|
assert hasattr(decoder, "blank_id")
|
||||||
|
|
||||||
|
self.encoder = encoder
|
||||||
|
self.decoder = decoder
|
||||||
|
self.joiner = joiner
|
||||||
|
|
||||||
|
self.simple_am_proj = ScaledLinear(
|
||||||
|
encoder_dim, vocab_size, initial_speed=0.5
|
||||||
|
)
|
||||||
|
self.simple_lm_proj = ScaledLinear(decoder_dim, vocab_size)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
x: torch.Tensor,
|
||||||
|
x_lens: torch.Tensor,
|
||||||
|
y: k2.RaggedTensor,
|
||||||
|
prune_range: int = 5,
|
||||||
|
am_scale: float = 0.0,
|
||||||
|
lm_scale: float = 0.0,
|
||||||
|
warmup: float = 1.0,
|
||||||
|
) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
x:
|
||||||
|
A 3-D tensor of shape (N, T, C).
|
||||||
|
x_lens:
|
||||||
|
A 1-D tensor of shape (N,). It contains the number of frames in `x`
|
||||||
|
before padding.
|
||||||
|
y:
|
||||||
|
A ragged tensor with 2 axes [utt][label]. It contains labels of each
|
||||||
|
utterance.
|
||||||
|
prune_range:
|
||||||
|
The prune range for rnnt loss, it means how many symbols(context)
|
||||||
|
we are considering for each frame to compute the loss.
|
||||||
|
am_scale:
|
||||||
|
The scale to smooth the loss with am (output of encoder network)
|
||||||
|
part
|
||||||
|
lm_scale:
|
||||||
|
The scale to smooth the loss with lm (output of predictor network)
|
||||||
|
part
|
||||||
|
warmup:
|
||||||
|
A value warmup >= 0 that determines which modules are active, values
|
||||||
|
warmup > 1 "are fully warmed up" and all modules will be active.
|
||||||
|
Returns:
|
||||||
|
Return the transducer loss.
|
||||||
|
|
||||||
|
Note:
|
||||||
|
Regarding am_scale & lm_scale, it will make the loss-function one of
|
||||||
|
the form:
|
||||||
|
lm_scale * lm_probs + am_scale * am_probs +
|
||||||
|
(1-lm_scale-am_scale) * combined_probs
|
||||||
|
"""
|
||||||
|
assert x.ndim == 3, x.shape
|
||||||
|
assert x_lens.ndim == 1, x_lens.shape
|
||||||
|
assert y.num_axes == 2, y.num_axes
|
||||||
|
|
||||||
|
assert x.size(0) == x_lens.size(0) == y.dim0
|
||||||
|
|
||||||
|
encoder_out, x_lens = self.encoder(x, x_lens, warmup=warmup)
|
||||||
|
assert torch.all(x_lens > 0)
|
||||||
|
|
||||||
|
# Now for the decoder, i.e., the prediction network
|
||||||
|
row_splits = y.shape.row_splits(1)
|
||||||
|
y_lens = row_splits[1:] - row_splits[:-1]
|
||||||
|
|
||||||
|
blank_id = self.decoder.blank_id
|
||||||
|
sos_y = add_sos(y, sos_id=blank_id)
|
||||||
|
|
||||||
|
# sos_y_padded: [B, S + 1], start with SOS.
|
||||||
|
sos_y_padded = sos_y.pad(mode="constant", padding_value=blank_id)
|
||||||
|
|
||||||
|
# decoder_out: [B, S + 1, decoder_dim]
|
||||||
|
decoder_out = self.decoder(sos_y_padded)
|
||||||
|
|
||||||
|
# Note: y does not start with SOS
|
||||||
|
# y_padded : [B, S]
|
||||||
|
y_padded = y.pad(mode="constant", padding_value=0)
|
||||||
|
|
||||||
|
y_padded = y_padded.to(torch.int64)
|
||||||
|
boundary = torch.zeros(
|
||||||
|
(x.size(0), 4), dtype=torch.int64, device=x.device
|
||||||
|
)
|
||||||
|
boundary[:, 2] = y_lens
|
||||||
|
boundary[:, 3] = x_lens
|
||||||
|
|
||||||
|
lm = self.simple_lm_proj(decoder_out)
|
||||||
|
am = self.simple_am_proj(encoder_out)
|
||||||
|
|
||||||
|
with torch.cuda.amp.autocast(enabled=False):
|
||||||
|
simple_loss, (px_grad, py_grad) = k2.rnnt_loss_smoothed(
|
||||||
|
lm=lm.float(),
|
||||||
|
am=am.float(),
|
||||||
|
symbols=y_padded,
|
||||||
|
termination_symbol=blank_id,
|
||||||
|
lm_only_scale=lm_scale,
|
||||||
|
am_only_scale=am_scale,
|
||||||
|
boundary=boundary,
|
||||||
|
reduction="sum",
|
||||||
|
return_grad=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
# ranges : [B, T, prune_range]
|
||||||
|
ranges = k2.get_rnnt_prune_ranges(
|
||||||
|
px_grad=px_grad,
|
||||||
|
py_grad=py_grad,
|
||||||
|
boundary=boundary,
|
||||||
|
s_range=prune_range,
|
||||||
|
)
|
||||||
|
|
||||||
|
# am_pruned : [B, T, prune_range, encoder_dim]
|
||||||
|
# lm_pruned : [B, T, prune_range, decoder_dim]
|
||||||
|
am_pruned, lm_pruned = k2.do_rnnt_pruning(
|
||||||
|
am=self.joiner.encoder_proj(encoder_out),
|
||||||
|
lm=self.joiner.decoder_proj(decoder_out),
|
||||||
|
ranges=ranges,
|
||||||
|
)
|
||||||
|
|
||||||
|
# logits : [B, T, prune_range, vocab_size]
|
||||||
|
|
||||||
|
# project_input=False since we applied the decoder's input projections
|
||||||
|
# prior to do_rnnt_pruning (this is an optimization for speed).
|
||||||
|
logits = self.joiner(am_pruned, lm_pruned, project_input=False)
|
||||||
|
|
||||||
|
with torch.cuda.amp.autocast(enabled=False):
|
||||||
|
pruned_loss = k2.rnnt_loss_pruned(
|
||||||
|
logits=logits.float(),
|
||||||
|
symbols=y_padded,
|
||||||
|
ranges=ranges,
|
||||||
|
termination_symbol=blank_id,
|
||||||
|
boundary=boundary,
|
||||||
|
reduction="sum",
|
||||||
|
)
|
||||||
|
|
||||||
|
return (simple_loss, pruned_loss)
|
331
egs/gigaspeech/ASR/pruned_transducer_stateless2/optim.py
Normal file
331
egs/gigaspeech/ASR/pruned_transducer_stateless2/optim.py
Normal file
@ -0,0 +1,331 @@
|
|||||||
|
# Copyright 2022 Xiaomi Corp. (authors: Daniel Povey)
|
||||||
|
#
|
||||||
|
# See ../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
from typing import List, Optional, Union
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from torch.optim import Optimizer
|
||||||
|
|
||||||
|
|
||||||
|
class Eve(Optimizer):
|
||||||
|
r"""
|
||||||
|
Implements Eve algorithm. This is a modified version of AdamW with a special
|
||||||
|
way of setting the weight-decay / shrinkage-factor, which is designed to make the
|
||||||
|
rms of the parameters approach a particular target_rms (default: 0.1). This is
|
||||||
|
for use with networks with 'scaled' versions of modules (see scaling.py), which
|
||||||
|
will be close to invariant to the absolute scale on the parameter matrix.
|
||||||
|
|
||||||
|
The original Adam algorithm was proposed in `Adam: A Method for Stochastic Optimization`_.
|
||||||
|
The AdamW variant was proposed in `Decoupled Weight Decay Regularization`_.
|
||||||
|
Eve is unpublished so far.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
params (iterable): iterable of parameters to optimize or dicts defining
|
||||||
|
parameter groups
|
||||||
|
lr (float, optional): learning rate (default: 1e-3)
|
||||||
|
betas (Tuple[float, float], optional): coefficients used for computing
|
||||||
|
running averages of gradient and its square (default: (0.9, 0.999))
|
||||||
|
eps (float, optional): term added to the denominator to improve
|
||||||
|
numerical stability (default: 1e-8)
|
||||||
|
weight_decay (float, optional): weight decay coefficient (default: 3e-4;
|
||||||
|
this value means that the weight would decay significantly after
|
||||||
|
about 3k minibatches. Is not multiplied by learning rate, but
|
||||||
|
is conditional on RMS-value of parameter being > target_rms.
|
||||||
|
target_rms (float, optional): target root-mean-square value of
|
||||||
|
parameters, if they fall below this we will stop applying weight decay.
|
||||||
|
|
||||||
|
|
||||||
|
.. _Adam\: A Method for Stochastic Optimization:
|
||||||
|
https://arxiv.org/abs/1412.6980
|
||||||
|
.. _Decoupled Weight Decay Regularization:
|
||||||
|
https://arxiv.org/abs/1711.05101
|
||||||
|
.. _On the Convergence of Adam and Beyond:
|
||||||
|
https://openreview.net/forum?id=ryQu7f-RZ
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
params,
|
||||||
|
lr=1e-3,
|
||||||
|
betas=(0.9, 0.98),
|
||||||
|
eps=1e-8,
|
||||||
|
weight_decay=1e-3,
|
||||||
|
target_rms=0.1,
|
||||||
|
):
|
||||||
|
|
||||||
|
if not 0.0 <= lr:
|
||||||
|
raise ValueError("Invalid learning rate: {}".format(lr))
|
||||||
|
if not 0.0 <= eps:
|
||||||
|
raise ValueError("Invalid epsilon value: {}".format(eps))
|
||||||
|
if not 0.0 <= betas[0] < 1.0:
|
||||||
|
raise ValueError(
|
||||||
|
"Invalid beta parameter at index 0: {}".format(betas[0])
|
||||||
|
)
|
||||||
|
if not 0.0 <= betas[1] < 1.0:
|
||||||
|
raise ValueError(
|
||||||
|
"Invalid beta parameter at index 1: {}".format(betas[1])
|
||||||
|
)
|
||||||
|
if not 0 <= weight_decay <= 0.1:
|
||||||
|
raise ValueError(
|
||||||
|
"Invalid weight_decay value: {}".format(weight_decay)
|
||||||
|
)
|
||||||
|
if not 0 < target_rms <= 10.0:
|
||||||
|
raise ValueError("Invalid target_rms value: {}".format(target_rms))
|
||||||
|
defaults = dict(
|
||||||
|
lr=lr,
|
||||||
|
betas=betas,
|
||||||
|
eps=eps,
|
||||||
|
weight_decay=weight_decay,
|
||||||
|
target_rms=target_rms,
|
||||||
|
)
|
||||||
|
super(Eve, self).__init__(params, defaults)
|
||||||
|
|
||||||
|
def __setstate__(self, state):
|
||||||
|
super(Eve, self).__setstate__(state)
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def step(self, closure=None):
|
||||||
|
"""Performs a single optimization step.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
closure (callable, optional): A closure that reevaluates the model
|
||||||
|
and returns the loss.
|
||||||
|
"""
|
||||||
|
loss = None
|
||||||
|
if closure is not None:
|
||||||
|
with torch.enable_grad():
|
||||||
|
loss = closure()
|
||||||
|
|
||||||
|
for group in self.param_groups:
|
||||||
|
for p in group["params"]:
|
||||||
|
if p.grad is None:
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Perform optimization step
|
||||||
|
grad = p.grad
|
||||||
|
if grad.is_sparse:
|
||||||
|
raise RuntimeError(
|
||||||
|
"AdamW does not support sparse gradients"
|
||||||
|
)
|
||||||
|
|
||||||
|
state = self.state[p]
|
||||||
|
|
||||||
|
# State initialization
|
||||||
|
if len(state) == 0:
|
||||||
|
state["step"] = 0
|
||||||
|
# Exponential moving average of gradient values
|
||||||
|
state["exp_avg"] = torch.zeros_like(
|
||||||
|
p, memory_format=torch.preserve_format
|
||||||
|
)
|
||||||
|
# Exponential moving average of squared gradient values
|
||||||
|
state["exp_avg_sq"] = torch.zeros_like(
|
||||||
|
p, memory_format=torch.preserve_format
|
||||||
|
)
|
||||||
|
|
||||||
|
exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"]
|
||||||
|
|
||||||
|
beta1, beta2 = group["betas"]
|
||||||
|
|
||||||
|
state["step"] += 1
|
||||||
|
bias_correction1 = 1 - beta1 ** state["step"]
|
||||||
|
bias_correction2 = 1 - beta2 ** state["step"]
|
||||||
|
|
||||||
|
# Decay the first and second moment running average coefficient
|
||||||
|
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
|
||||||
|
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
|
||||||
|
denom = (exp_avg_sq.sqrt() * (bias_correction2 ** -0.5)).add_(
|
||||||
|
group["eps"]
|
||||||
|
)
|
||||||
|
|
||||||
|
step_size = group["lr"] / bias_correction1
|
||||||
|
target_rms = group["target_rms"]
|
||||||
|
weight_decay = group["weight_decay"]
|
||||||
|
|
||||||
|
if p.numel() > 1:
|
||||||
|
# avoid applying this weight-decay on "scaling factors"
|
||||||
|
# (which are scalar).
|
||||||
|
is_above_target_rms = p.norm() > (
|
||||||
|
target_rms * (p.numel() ** 0.5)
|
||||||
|
)
|
||||||
|
p.mul_(1 - (weight_decay * is_above_target_rms))
|
||||||
|
p.addcdiv_(exp_avg, denom, value=-step_size)
|
||||||
|
|
||||||
|
return loss
|
||||||
|
|
||||||
|
|
||||||
|
class LRScheduler(object):
|
||||||
|
"""
|
||||||
|
Base-class for learning rate schedulers where the learning-rate depends on both the
|
||||||
|
batch and the epoch.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, optimizer: Optimizer, verbose: bool = False):
|
||||||
|
# Attach optimizer
|
||||||
|
if not isinstance(optimizer, Optimizer):
|
||||||
|
raise TypeError(
|
||||||
|
"{} is not an Optimizer".format(type(optimizer).__name__)
|
||||||
|
)
|
||||||
|
self.optimizer = optimizer
|
||||||
|
self.verbose = verbose
|
||||||
|
|
||||||
|
for group in optimizer.param_groups:
|
||||||
|
group.setdefault("initial_lr", group["lr"])
|
||||||
|
|
||||||
|
self.base_lrs = [
|
||||||
|
group["initial_lr"] for group in optimizer.param_groups
|
||||||
|
]
|
||||||
|
|
||||||
|
self.epoch = 0
|
||||||
|
self.batch = 0
|
||||||
|
|
||||||
|
def state_dict(self):
|
||||||
|
"""Returns the state of the scheduler as a :class:`dict`.
|
||||||
|
|
||||||
|
It contains an entry for every variable in self.__dict__ which
|
||||||
|
is not the optimizer.
|
||||||
|
"""
|
||||||
|
return {
|
||||||
|
"base_lrs": self.base_lrs,
|
||||||
|
"epoch": self.epoch,
|
||||||
|
"batch": self.batch,
|
||||||
|
}
|
||||||
|
|
||||||
|
def load_state_dict(self, state_dict):
|
||||||
|
"""Loads the schedulers state.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
state_dict (dict): scheduler state. Should be an object returned
|
||||||
|
from a call to :meth:`state_dict`.
|
||||||
|
"""
|
||||||
|
self.__dict__.update(state_dict)
|
||||||
|
|
||||||
|
def get_last_lr(self) -> List[float]:
|
||||||
|
"""Return last computed learning rate by current scheduler. Will be a list of float."""
|
||||||
|
return self._last_lr
|
||||||
|
|
||||||
|
def get_lr(self):
|
||||||
|
# Compute list of learning rates from self.epoch and self.batch and
|
||||||
|
# self.base_lrs; this must be overloaded by the user.
|
||||||
|
# e.g. return [some_formula(self.batch, self.epoch, base_lr) for base_lr in self.base_lrs ]
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
def step_batch(self, batch: Optional[int] = None) -> None:
|
||||||
|
# Step the batch index, or just set it. If `batch` is specified, it
|
||||||
|
# must be the batch index from the start of training, i.e. summed over
|
||||||
|
# all epochs.
|
||||||
|
# You can call this in any order; if you don't provide 'batch', it should
|
||||||
|
# of course be called once per batch.
|
||||||
|
if batch is not None:
|
||||||
|
self.batch = batch
|
||||||
|
else:
|
||||||
|
self.batch = self.batch + 1
|
||||||
|
self._set_lrs()
|
||||||
|
|
||||||
|
def step_epoch(self, epoch: Optional[int] = None):
|
||||||
|
# Step the epoch index, or just set it. If you provide the 'epoch' arg,
|
||||||
|
# you should call this at the start of the epoch; if you don't provide the 'epoch'
|
||||||
|
# arg, you should call it at the end of the epoch.
|
||||||
|
if epoch is not None:
|
||||||
|
self.epoch = epoch
|
||||||
|
else:
|
||||||
|
self.epoch = self.epoch + 1
|
||||||
|
self._set_lrs()
|
||||||
|
|
||||||
|
def _set_lrs(self):
|
||||||
|
values = self.get_lr()
|
||||||
|
assert len(values) == len(self.optimizer.param_groups)
|
||||||
|
|
||||||
|
for i, data in enumerate(zip(self.optimizer.param_groups, values)):
|
||||||
|
param_group, lr = data
|
||||||
|
param_group["lr"] = lr
|
||||||
|
self.print_lr(self.verbose, i, lr)
|
||||||
|
self._last_lr = [group["lr"] for group in self.optimizer.param_groups]
|
||||||
|
|
||||||
|
def print_lr(self, is_verbose, group, lr):
|
||||||
|
"""Display the current learning rate."""
|
||||||
|
if is_verbose:
|
||||||
|
print(
|
||||||
|
f"Epoch={self.epoch}, batch={self.batch}: adjusting learning rate"
|
||||||
|
f" of group {group} to {lr:.4e}."
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class Eden(LRScheduler):
|
||||||
|
"""
|
||||||
|
Eden scheduler.
|
||||||
|
lr = initial_lr * (((batch**2 + lr_batches**2) / lr_batches**2) ** -0.25 *
|
||||||
|
(((epoch**2 + lr_epochs**2) / lr_epochs**2) ** -0.25))
|
||||||
|
|
||||||
|
E.g. suggest initial-lr = 0.003 (passed to optimizer).
|
||||||
|
|
||||||
|
Args:
|
||||||
|
optimizer: the optimizer to change the learning rates on
|
||||||
|
lr_batches: the number of batches after which we start significantly
|
||||||
|
decreasing the learning rate, suggest 5000.
|
||||||
|
lr_epochs: the number of epochs after which we start significantly
|
||||||
|
decreasing the learning rate, suggest 6 if you plan to do e.g.
|
||||||
|
20 to 40 epochs, but may need smaller number if dataset is huge
|
||||||
|
and you will do few epochs.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
optimizer: Optimizer,
|
||||||
|
lr_batches: Union[int, float],
|
||||||
|
lr_epochs: Union[int, float],
|
||||||
|
verbose: bool = False,
|
||||||
|
):
|
||||||
|
super(Eden, self).__init__(optimizer, verbose)
|
||||||
|
self.lr_batches = lr_batches
|
||||||
|
self.lr_epochs = lr_epochs
|
||||||
|
|
||||||
|
def get_lr(self):
|
||||||
|
factor = (
|
||||||
|
(self.batch ** 2 + self.lr_batches ** 2) / self.lr_batches ** 2
|
||||||
|
) ** -0.25 * (
|
||||||
|
((self.epoch ** 2 + self.lr_epochs ** 2) / self.lr_epochs ** 2)
|
||||||
|
** -0.25
|
||||||
|
)
|
||||||
|
return [x * factor for x in self.base_lrs]
|
||||||
|
|
||||||
|
|
||||||
|
def _test_eden():
|
||||||
|
m = torch.nn.Linear(100, 100)
|
||||||
|
optim = Eve(m.parameters(), lr=0.003)
|
||||||
|
|
||||||
|
scheduler = Eden(optim, lr_batches=30, lr_epochs=2, verbose=True)
|
||||||
|
|
||||||
|
for epoch in range(10):
|
||||||
|
scheduler.step_epoch(epoch) # sets epoch to `epoch`
|
||||||
|
|
||||||
|
for step in range(20):
|
||||||
|
x = torch.randn(200, 100).detach()
|
||||||
|
x.requires_grad = True
|
||||||
|
y = m(x)
|
||||||
|
dy = torch.randn(200, 100).detach()
|
||||||
|
f = (y * dy).sum()
|
||||||
|
f.backward()
|
||||||
|
|
||||||
|
optim.step()
|
||||||
|
scheduler.step_batch()
|
||||||
|
optim.zero_grad()
|
||||||
|
print("last lr = ", scheduler.get_last_lr())
|
||||||
|
print("state dict = ", scheduler.state_dict())
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
_test_eden()
|
702
egs/gigaspeech/ASR/pruned_transducer_stateless2/scaling.py
Normal file
702
egs/gigaspeech/ASR/pruned_transducer_stateless2/scaling.py
Normal file
@ -0,0 +1,702 @@
|
|||||||
|
# Copyright 2022 Xiaomi Corp. (authors: Daniel Povey)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
import collections
|
||||||
|
from itertools import repeat
|
||||||
|
from typing import Optional, Tuple
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from torch import Tensor
|
||||||
|
|
||||||
|
|
||||||
|
def _ntuple(n):
|
||||||
|
def parse(x):
|
||||||
|
if isinstance(x, collections.Iterable):
|
||||||
|
return x
|
||||||
|
return tuple(repeat(x, n))
|
||||||
|
|
||||||
|
return parse
|
||||||
|
|
||||||
|
|
||||||
|
_single = _ntuple(1)
|
||||||
|
_pair = _ntuple(2)
|
||||||
|
|
||||||
|
|
||||||
|
class ActivationBalancerFunction(torch.autograd.Function):
|
||||||
|
@staticmethod
|
||||||
|
def forward(
|
||||||
|
ctx,
|
||||||
|
x: Tensor,
|
||||||
|
channel_dim: int,
|
||||||
|
min_positive: float, # e.g. 0.05
|
||||||
|
max_positive: float, # e.g. 0.95
|
||||||
|
max_factor: float, # e.g. 0.01
|
||||||
|
min_abs: float, # e.g. 0.2
|
||||||
|
max_abs: float, # e.g. 100.0
|
||||||
|
) -> Tensor:
|
||||||
|
if x.requires_grad:
|
||||||
|
if channel_dim < 0:
|
||||||
|
channel_dim += x.ndim
|
||||||
|
sum_dims = [d for d in range(x.ndim) if d != channel_dim]
|
||||||
|
xgt0 = x > 0
|
||||||
|
proportion_positive = torch.mean(
|
||||||
|
xgt0.to(x.dtype), dim=sum_dims, keepdim=True
|
||||||
|
)
|
||||||
|
factor1 = (
|
||||||
|
(min_positive - proportion_positive).relu()
|
||||||
|
* (max_factor / min_positive)
|
||||||
|
if min_positive != 0.0
|
||||||
|
else 0.0
|
||||||
|
)
|
||||||
|
factor2 = (
|
||||||
|
(proportion_positive - max_positive).relu()
|
||||||
|
* (max_factor / (max_positive - 1.0))
|
||||||
|
if max_positive != 1.0
|
||||||
|
else 0.0
|
||||||
|
)
|
||||||
|
factor = factor1 + factor2
|
||||||
|
if isinstance(factor, float):
|
||||||
|
factor = torch.zeros_like(proportion_positive)
|
||||||
|
|
||||||
|
mean_abs = torch.mean(x.abs(), dim=sum_dims, keepdim=True)
|
||||||
|
below_threshold = mean_abs < min_abs
|
||||||
|
above_threshold = mean_abs > max_abs
|
||||||
|
|
||||||
|
ctx.save_for_backward(
|
||||||
|
factor, xgt0, below_threshold, above_threshold
|
||||||
|
)
|
||||||
|
ctx.max_factor = max_factor
|
||||||
|
ctx.sum_dims = sum_dims
|
||||||
|
return x
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def backward(
|
||||||
|
ctx, x_grad: Tensor
|
||||||
|
) -> Tuple[Tensor, None, None, None, None, None, None]:
|
||||||
|
factor, xgt0, below_threshold, above_threshold = ctx.saved_tensors
|
||||||
|
dtype = x_grad.dtype
|
||||||
|
scale_factor = (
|
||||||
|
(below_threshold.to(dtype) - above_threshold.to(dtype))
|
||||||
|
* (xgt0.to(dtype) - 0.5)
|
||||||
|
* (ctx.max_factor * 2.0)
|
||||||
|
)
|
||||||
|
|
||||||
|
neg_delta_grad = x_grad.abs() * (factor + scale_factor)
|
||||||
|
return x_grad - neg_delta_grad, None, None, None, None, None, None
|
||||||
|
|
||||||
|
|
||||||
|
class BasicNorm(torch.nn.Module):
|
||||||
|
"""
|
||||||
|
This is intended to be a simpler, and hopefully cheaper, replacement for
|
||||||
|
LayerNorm. The observation this is based on, is that Transformer-type
|
||||||
|
networks, especially with pre-norm, sometimes seem to set one of the
|
||||||
|
feature dimensions to a large constant value (e.g. 50), which "defeats"
|
||||||
|
the LayerNorm because the output magnitude is then not strongly dependent
|
||||||
|
on the other (useful) features. Presumably the weight and bias of the
|
||||||
|
LayerNorm are required to allow it to do this.
|
||||||
|
|
||||||
|
So the idea is to introduce this large constant value as an explicit
|
||||||
|
parameter, that takes the role of the "eps" in LayerNorm, so the network
|
||||||
|
doesn't have to do this trick. We make the "eps" learnable.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
num_channels: the number of channels, e.g. 512.
|
||||||
|
channel_dim: the axis/dimension corresponding to the channel,
|
||||||
|
interprted as an offset from the input's ndim if negative.
|
||||||
|
shis is NOT the num_channels; it should typically be one of
|
||||||
|
{-2, -1, 0, 1, 2, 3}.
|
||||||
|
eps: the initial "epsilon" that we add as ballast in:
|
||||||
|
scale = ((input_vec**2).mean() + epsilon)**-0.5
|
||||||
|
Note: our epsilon is actually large, but we keep the name
|
||||||
|
to indicate the connection with conventional LayerNorm.
|
||||||
|
learn_eps: if true, we learn epsilon; if false, we keep it
|
||||||
|
at the initial value.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
num_channels: int,
|
||||||
|
channel_dim: int = -1, # CAUTION: see documentation.
|
||||||
|
eps: float = 0.25,
|
||||||
|
learn_eps: bool = True,
|
||||||
|
) -> None:
|
||||||
|
super(BasicNorm, self).__init__()
|
||||||
|
self.num_channels = num_channels
|
||||||
|
self.channel_dim = channel_dim
|
||||||
|
if learn_eps:
|
||||||
|
self.eps = nn.Parameter(torch.tensor(eps).log().detach())
|
||||||
|
else:
|
||||||
|
self.register_buffer("eps", torch.tensor(eps).log().detach())
|
||||||
|
|
||||||
|
def forward(self, x: Tensor) -> Tensor:
|
||||||
|
assert x.shape[self.channel_dim] == self.num_channels
|
||||||
|
scales = (
|
||||||
|
torch.mean(x ** 2, dim=self.channel_dim, keepdim=True)
|
||||||
|
+ self.eps.exp()
|
||||||
|
) ** -0.5
|
||||||
|
return x * scales
|
||||||
|
|
||||||
|
|
||||||
|
class ScaledLinear(nn.Linear):
|
||||||
|
"""
|
||||||
|
A modified version of nn.Linear where the parameters are scaled before
|
||||||
|
use, via:
|
||||||
|
weight = self.weight * self.weight_scale.exp()
|
||||||
|
bias = self.bias * self.bias_scale.exp()
|
||||||
|
|
||||||
|
Args:
|
||||||
|
Accepts the standard args and kwargs that nn.Linear accepts
|
||||||
|
e.g. in_features, out_features, bias=False.
|
||||||
|
|
||||||
|
initial_scale: you can override this if you want to increase
|
||||||
|
or decrease the initial magnitude of the module's output
|
||||||
|
(affects the initialization of weight_scale and bias_scale).
|
||||||
|
Another option, if you want to do something like this, is
|
||||||
|
to re-initialize the parameters.
|
||||||
|
initial_speed: this affects how fast the parameter will
|
||||||
|
learn near the start of training; you can set it to a
|
||||||
|
value less than one if you suspect that a module
|
||||||
|
is contributing to instability near the start of training.
|
||||||
|
Nnote: regardless of the use of this option, it's best to
|
||||||
|
use schedulers like Noam that have a warm-up period.
|
||||||
|
Alternatively you can set it to more than 1 if you want it to
|
||||||
|
initially train faster. Must be greater than 0.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
*args,
|
||||||
|
initial_scale: float = 1.0,
|
||||||
|
initial_speed: float = 1.0,
|
||||||
|
**kwargs
|
||||||
|
):
|
||||||
|
super(ScaledLinear, self).__init__(*args, **kwargs)
|
||||||
|
initial_scale = torch.tensor(initial_scale).log()
|
||||||
|
self.weight_scale = nn.Parameter(initial_scale.clone().detach())
|
||||||
|
if self.bias is not None:
|
||||||
|
self.bias_scale = nn.Parameter(initial_scale.clone().detach())
|
||||||
|
else:
|
||||||
|
self.register_parameter("bias_scale", None)
|
||||||
|
|
||||||
|
self._reset_parameters(
|
||||||
|
initial_speed
|
||||||
|
) # Overrides the reset_parameters in nn.Linear
|
||||||
|
|
||||||
|
def _reset_parameters(self, initial_speed: float):
|
||||||
|
std = 0.1 / initial_speed
|
||||||
|
a = (3 ** 0.5) * std
|
||||||
|
nn.init.uniform_(self.weight, -a, a)
|
||||||
|
if self.bias is not None:
|
||||||
|
nn.init.constant_(self.bias, 0.0)
|
||||||
|
fan_in = self.weight.shape[1] * self.weight[0][0].numel()
|
||||||
|
scale = fan_in ** -0.5 # 1/sqrt(fan_in)
|
||||||
|
with torch.no_grad():
|
||||||
|
self.weight_scale += torch.tensor(scale / std).log()
|
||||||
|
|
||||||
|
def get_weight(self):
|
||||||
|
return self.weight * self.weight_scale.exp()
|
||||||
|
|
||||||
|
def get_bias(self):
|
||||||
|
return None if self.bias is None else self.bias * self.bias_scale.exp()
|
||||||
|
|
||||||
|
def forward(self, input: Tensor) -> Tensor:
|
||||||
|
return torch.nn.functional.linear(
|
||||||
|
input, self.get_weight(), self.get_bias()
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class ScaledConv1d(nn.Conv1d):
|
||||||
|
# See docs for ScaledLinear
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
*args,
|
||||||
|
initial_scale: float = 1.0,
|
||||||
|
initial_speed: float = 1.0,
|
||||||
|
**kwargs
|
||||||
|
):
|
||||||
|
super(ScaledConv1d, self).__init__(*args, **kwargs)
|
||||||
|
initial_scale = torch.tensor(initial_scale).log()
|
||||||
|
self.weight_scale = nn.Parameter(initial_scale.clone().detach())
|
||||||
|
if self.bias is not None:
|
||||||
|
self.bias_scale = nn.Parameter(initial_scale.clone().detach())
|
||||||
|
else:
|
||||||
|
self.register_parameter("bias_scale", None)
|
||||||
|
self._reset_parameters(
|
||||||
|
initial_speed
|
||||||
|
) # Overrides the reset_parameters in base class
|
||||||
|
|
||||||
|
def _reset_parameters(self, initial_speed: float):
|
||||||
|
std = 0.1 / initial_speed
|
||||||
|
a = (3 ** 0.5) * std
|
||||||
|
nn.init.uniform_(self.weight, -a, a)
|
||||||
|
if self.bias is not None:
|
||||||
|
nn.init.constant_(self.bias, 0.0)
|
||||||
|
fan_in = self.weight.shape[1] * self.weight[0][0].numel()
|
||||||
|
scale = fan_in ** -0.5 # 1/sqrt(fan_in)
|
||||||
|
with torch.no_grad():
|
||||||
|
self.weight_scale += torch.tensor(scale / std).log()
|
||||||
|
|
||||||
|
def get_weight(self):
|
||||||
|
return self.weight * self.weight_scale.exp()
|
||||||
|
|
||||||
|
def get_bias(self):
|
||||||
|
return None if self.bias is None else self.bias * self.bias_scale.exp()
|
||||||
|
|
||||||
|
def forward(self, input: Tensor) -> Tensor:
|
||||||
|
F = torch.nn.functional
|
||||||
|
if self.padding_mode != "zeros":
|
||||||
|
return F.conv1d(
|
||||||
|
F.pad(
|
||||||
|
input,
|
||||||
|
self._reversed_padding_repeated_twice,
|
||||||
|
mode=self.padding_mode,
|
||||||
|
),
|
||||||
|
self.get_weight(),
|
||||||
|
self.get_bias(),
|
||||||
|
self.stride,
|
||||||
|
_single(0),
|
||||||
|
self.dilation,
|
||||||
|
self.groups,
|
||||||
|
)
|
||||||
|
return F.conv1d(
|
||||||
|
input,
|
||||||
|
self.get_weight(),
|
||||||
|
self.get_bias(),
|
||||||
|
self.stride,
|
||||||
|
self.padding,
|
||||||
|
self.dilation,
|
||||||
|
self.groups,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class ScaledConv2d(nn.Conv2d):
|
||||||
|
# See docs for ScaledLinear
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
*args,
|
||||||
|
initial_scale: float = 1.0,
|
||||||
|
initial_speed: float = 1.0,
|
||||||
|
**kwargs
|
||||||
|
):
|
||||||
|
super(ScaledConv2d, self).__init__(*args, **kwargs)
|
||||||
|
initial_scale = torch.tensor(initial_scale).log()
|
||||||
|
self.weight_scale = nn.Parameter(initial_scale.clone().detach())
|
||||||
|
if self.bias is not None:
|
||||||
|
self.bias_scale = nn.Parameter(initial_scale.clone().detach())
|
||||||
|
else:
|
||||||
|
self.register_parameter("bias_scale", None)
|
||||||
|
self._reset_parameters(
|
||||||
|
initial_speed
|
||||||
|
) # Overrides the reset_parameters in base class
|
||||||
|
|
||||||
|
def _reset_parameters(self, initial_speed: float):
|
||||||
|
std = 0.1 / initial_speed
|
||||||
|
a = (3 ** 0.5) * std
|
||||||
|
nn.init.uniform_(self.weight, -a, a)
|
||||||
|
if self.bias is not None:
|
||||||
|
nn.init.constant_(self.bias, 0.0)
|
||||||
|
fan_in = self.weight.shape[1] * self.weight[0][0].numel()
|
||||||
|
scale = fan_in ** -0.5 # 1/sqrt(fan_in)
|
||||||
|
with torch.no_grad():
|
||||||
|
self.weight_scale += torch.tensor(scale / std).log()
|
||||||
|
|
||||||
|
def get_weight(self):
|
||||||
|
return self.weight * self.weight_scale.exp()
|
||||||
|
|
||||||
|
def get_bias(self):
|
||||||
|
return None if self.bias is None else self.bias * self.bias_scale.exp()
|
||||||
|
|
||||||
|
def _conv_forward(self, input, weight):
|
||||||
|
F = torch.nn.functional
|
||||||
|
if self.padding_mode != "zeros":
|
||||||
|
return F.conv2d(
|
||||||
|
F.pad(
|
||||||
|
input,
|
||||||
|
self._reversed_padding_repeated_twice,
|
||||||
|
mode=self.padding_mode,
|
||||||
|
),
|
||||||
|
weight,
|
||||||
|
self.get_bias(),
|
||||||
|
self.stride,
|
||||||
|
_pair(0),
|
||||||
|
self.dilation,
|
||||||
|
self.groups,
|
||||||
|
)
|
||||||
|
return F.conv2d(
|
||||||
|
input,
|
||||||
|
weight,
|
||||||
|
self.get_bias(),
|
||||||
|
self.stride,
|
||||||
|
self.padding,
|
||||||
|
self.dilation,
|
||||||
|
self.groups,
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, input: Tensor) -> Tensor:
|
||||||
|
return self._conv_forward(input, self.get_weight())
|
||||||
|
|
||||||
|
|
||||||
|
class ActivationBalancer(torch.nn.Module):
|
||||||
|
"""
|
||||||
|
Modifies the backpropped derivatives of a function to try to encourage, for
|
||||||
|
each channel, that it is positive at least a proportion `threshold` of the
|
||||||
|
time. It does this by multiplying negative derivative values by up to
|
||||||
|
(1+max_factor), and positive derivative values by up to (1-max_factor),
|
||||||
|
interpolated from 1 at the threshold to those extremal values when none
|
||||||
|
of the inputs are positive.
|
||||||
|
|
||||||
|
|
||||||
|
Args:
|
||||||
|
channel_dim: the dimension/axis corresponding to the channel, e.g.
|
||||||
|
-1, 0, 1, 2; will be interpreted as an offset from x.ndim if negative.
|
||||||
|
min_positive: the minimum, per channel, of the proportion of the time
|
||||||
|
that (x > 0), below which we start to modify the derivatives.
|
||||||
|
max_positive: the maximum, per channel, of the proportion of the time
|
||||||
|
that (x > 0), above which we start to modify the derivatives.
|
||||||
|
max_factor: the maximum factor by which we modify the derivatives for
|
||||||
|
either the sign constraint or the magnitude constraint;
|
||||||
|
e.g. with max_factor=0.02, the the derivatives would be multiplied by
|
||||||
|
values in the range [0.98..1.02].
|
||||||
|
min_abs: the minimum average-absolute-value per channel, which
|
||||||
|
we allow, before we start to modify the derivatives to prevent
|
||||||
|
this.
|
||||||
|
max_abs: the maximum average-absolute-value per channel, which
|
||||||
|
we allow, before we start to modify the derivatives to prevent
|
||||||
|
this.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
channel_dim: int,
|
||||||
|
min_positive: float = 0.05,
|
||||||
|
max_positive: float = 0.95,
|
||||||
|
max_factor: float = 0.01,
|
||||||
|
min_abs: float = 0.2,
|
||||||
|
max_abs: float = 100.0,
|
||||||
|
):
|
||||||
|
super(ActivationBalancer, self).__init__()
|
||||||
|
self.channel_dim = channel_dim
|
||||||
|
self.min_positive = min_positive
|
||||||
|
self.max_positive = max_positive
|
||||||
|
self.max_factor = max_factor
|
||||||
|
self.min_abs = min_abs
|
||||||
|
self.max_abs = max_abs
|
||||||
|
|
||||||
|
def forward(self, x: Tensor) -> Tensor:
|
||||||
|
return ActivationBalancerFunction.apply(
|
||||||
|
x,
|
||||||
|
self.channel_dim,
|
||||||
|
self.min_positive,
|
||||||
|
self.max_positive,
|
||||||
|
self.max_factor,
|
||||||
|
self.min_abs,
|
||||||
|
self.max_abs,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class DoubleSwishFunction(torch.autograd.Function):
|
||||||
|
"""
|
||||||
|
double_swish(x) = x * torch.sigmoid(x-1)
|
||||||
|
This is a definition, originally motivated by its close numerical
|
||||||
|
similarity to swish(swish(x)), where swish(x) = x * sigmoid(x).
|
||||||
|
|
||||||
|
Memory-efficient derivative computation:
|
||||||
|
double_swish(x) = x * s, where s(x) = torch.sigmoid(x-1)
|
||||||
|
double_swish'(x) = d/dx double_swish(x) = x * s'(x) + x' * s(x) = x * s'(x) + s(x).
|
||||||
|
Now, s'(x) = s(x) * (1-s(x)).
|
||||||
|
double_swish'(x) = x * s'(x) + s(x).
|
||||||
|
= x * s(x) * (1-s(x)) + s(x).
|
||||||
|
= double_swish(x) * (1-s(x)) + s(x)
|
||||||
|
... so we just need to remember s(x) but not x itself.
|
||||||
|
"""
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def forward(ctx, x: Tensor) -> Tensor:
|
||||||
|
x = x.detach()
|
||||||
|
s = torch.sigmoid(x - 1.0)
|
||||||
|
y = x * s
|
||||||
|
ctx.save_for_backward(s, y)
|
||||||
|
return y
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def backward(ctx, y_grad: Tensor) -> Tensor:
|
||||||
|
s, y = ctx.saved_tensors
|
||||||
|
return (y * (1 - s) + s) * y_grad
|
||||||
|
|
||||||
|
|
||||||
|
class DoubleSwish(torch.nn.Module):
|
||||||
|
def forward(self, x: Tensor) -> Tensor:
|
||||||
|
"""Return double-swish activation function which is an approximation to Swish(Swish(x)),
|
||||||
|
that we approximate closely with x * sigmoid(x-1).
|
||||||
|
"""
|
||||||
|
return DoubleSwishFunction.apply(x)
|
||||||
|
|
||||||
|
|
||||||
|
class ScaledEmbedding(nn.Module):
|
||||||
|
r"""This is a modified version of nn.Embedding that introduces a learnable scale
|
||||||
|
on the parameters. Note: due to how we initialize it, it's best used with
|
||||||
|
schedulers like Noam that have a warmup period.
|
||||||
|
|
||||||
|
It is a simple lookup table that stores embeddings of a fixed dictionary and size.
|
||||||
|
|
||||||
|
This module is often used to store word embeddings and retrieve them using indices.
|
||||||
|
The input to the module is a list of indices, and the output is the corresponding
|
||||||
|
word embeddings.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
num_embeddings (int): size of the dictionary of embeddings
|
||||||
|
embedding_dim (int): the size of each embedding vector
|
||||||
|
padding_idx (int, optional): If given, pads the output with the embedding vector at :attr:`padding_idx`
|
||||||
|
(initialized to zeros) whenever it encounters the index.
|
||||||
|
max_norm (float, optional): If given, each embedding vector with norm larger than :attr:`max_norm`
|
||||||
|
is renormalized to have norm :attr:`max_norm`.
|
||||||
|
norm_type (float, optional): The p of the p-norm to compute for the :attr:`max_norm` option. Default ``2``.
|
||||||
|
scale_grad_by_freq (boolean, optional): If given, this will scale gradients by the inverse of frequency of
|
||||||
|
the words in the mini-batch. Default ``False``.
|
||||||
|
sparse (bool, optional): If ``True``, gradient w.r.t. :attr:`weight` matrix will be a sparse tensor.
|
||||||
|
See Notes for more details regarding sparse gradients.
|
||||||
|
|
||||||
|
initial_speed (float, optional): This affects how fast the parameter will
|
||||||
|
learn near the start of training; you can set it to a value less than
|
||||||
|
one if you suspect that a module is contributing to instability near
|
||||||
|
the start of training. Nnote: regardless of the use of this option,
|
||||||
|
it's best to use schedulers like Noam that have a warm-up period.
|
||||||
|
Alternatively you can set it to more than 1 if you want it to
|
||||||
|
initially train faster. Must be greater than 0.
|
||||||
|
|
||||||
|
|
||||||
|
Attributes:
|
||||||
|
weight (Tensor): the learnable weights of the module of shape (num_embeddings, embedding_dim)
|
||||||
|
initialized from :math:`\mathcal{N}(0, 1)`
|
||||||
|
|
||||||
|
Shape:
|
||||||
|
- Input: :math:`(*)`, LongTensor of arbitrary shape containing the indices to extract
|
||||||
|
- Output: :math:`(*, H)`, where `*` is the input shape and :math:`H=\text{embedding\_dim}`
|
||||||
|
|
||||||
|
.. note::
|
||||||
|
Keep in mind that only a limited number of optimizers support
|
||||||
|
sparse gradients: currently it's :class:`optim.SGD` (`CUDA` and `CPU`),
|
||||||
|
:class:`optim.SparseAdam` (`CUDA` and `CPU`) and :class:`optim.Adagrad` (`CPU`)
|
||||||
|
|
||||||
|
.. note::
|
||||||
|
With :attr:`padding_idx` set, the embedding vector at
|
||||||
|
:attr:`padding_idx` is initialized to all zeros. However, note that this
|
||||||
|
vector can be modified afterwards, e.g., using a customized
|
||||||
|
initialization method, and thus changing the vector used to pad the
|
||||||
|
output. The gradient for this vector from :class:`~torch.nn.Embedding`
|
||||||
|
is always zero.
|
||||||
|
|
||||||
|
Examples::
|
||||||
|
|
||||||
|
>>> # an Embedding module containing 10 tensors of size 3
|
||||||
|
>>> embedding = nn.Embedding(10, 3)
|
||||||
|
>>> # a batch of 2 samples of 4 indices each
|
||||||
|
>>> input = torch.LongTensor([[1,2,4,5],[4,3,2,9]])
|
||||||
|
>>> embedding(input)
|
||||||
|
tensor([[[-0.0251, -1.6902, 0.7172],
|
||||||
|
[-0.6431, 0.0748, 0.6969],
|
||||||
|
[ 1.4970, 1.3448, -0.9685],
|
||||||
|
[-0.3677, -2.7265, -0.1685]],
|
||||||
|
|
||||||
|
[[ 1.4970, 1.3448, -0.9685],
|
||||||
|
[ 0.4362, -0.4004, 0.9400],
|
||||||
|
[-0.6431, 0.0748, 0.6969],
|
||||||
|
[ 0.9124, -2.3616, 1.1151]]])
|
||||||
|
|
||||||
|
|
||||||
|
>>> # example with padding_idx
|
||||||
|
>>> embedding = nn.Embedding(10, 3, padding_idx=0)
|
||||||
|
>>> input = torch.LongTensor([[0,2,0,5]])
|
||||||
|
>>> embedding(input)
|
||||||
|
tensor([[[ 0.0000, 0.0000, 0.0000],
|
||||||
|
[ 0.1535, -2.0309, 0.9315],
|
||||||
|
[ 0.0000, 0.0000, 0.0000],
|
||||||
|
[-0.1655, 0.9897, 0.0635]]])
|
||||||
|
|
||||||
|
"""
|
||||||
|
__constants__ = [
|
||||||
|
"num_embeddings",
|
||||||
|
"embedding_dim",
|
||||||
|
"padding_idx",
|
||||||
|
"scale_grad_by_freq",
|
||||||
|
"sparse",
|
||||||
|
]
|
||||||
|
|
||||||
|
num_embeddings: int
|
||||||
|
embedding_dim: int
|
||||||
|
padding_idx: int
|
||||||
|
scale_grad_by_freq: bool
|
||||||
|
weight: Tensor
|
||||||
|
sparse: bool
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
num_embeddings: int,
|
||||||
|
embedding_dim: int,
|
||||||
|
padding_idx: Optional[int] = None,
|
||||||
|
scale_grad_by_freq: bool = False,
|
||||||
|
sparse: bool = False,
|
||||||
|
initial_speed: float = 1.0,
|
||||||
|
) -> None:
|
||||||
|
super(ScaledEmbedding, self).__init__()
|
||||||
|
self.num_embeddings = num_embeddings
|
||||||
|
self.embedding_dim = embedding_dim
|
||||||
|
if padding_idx is not None:
|
||||||
|
if padding_idx > 0:
|
||||||
|
assert (
|
||||||
|
padding_idx < self.num_embeddings
|
||||||
|
), "Padding_idx must be within num_embeddings"
|
||||||
|
elif padding_idx < 0:
|
||||||
|
assert (
|
||||||
|
padding_idx >= -self.num_embeddings
|
||||||
|
), "Padding_idx must be within num_embeddings"
|
||||||
|
padding_idx = self.num_embeddings + padding_idx
|
||||||
|
self.padding_idx = padding_idx
|
||||||
|
self.scale_grad_by_freq = scale_grad_by_freq
|
||||||
|
|
||||||
|
self.scale = nn.Parameter(torch.zeros(())) # see reset_parameters()
|
||||||
|
self.sparse = sparse
|
||||||
|
|
||||||
|
self.weight = nn.Parameter(torch.Tensor(num_embeddings, embedding_dim))
|
||||||
|
self.reset_parameters(initial_speed)
|
||||||
|
|
||||||
|
def reset_parameters(self, initial_speed: float = 1.0) -> None:
|
||||||
|
std = 0.1 / initial_speed
|
||||||
|
nn.init.normal_(self.weight, std=std)
|
||||||
|
nn.init.constant_(self.scale, torch.tensor(1.0 / std).log())
|
||||||
|
|
||||||
|
if self.padding_idx is not None:
|
||||||
|
with torch.no_grad():
|
||||||
|
self.weight[self.padding_idx].fill_(0)
|
||||||
|
|
||||||
|
def forward(self, input: Tensor) -> Tensor:
|
||||||
|
F = torch.nn.functional
|
||||||
|
scale = self.scale.exp()
|
||||||
|
if input.numel() < self.num_embeddings:
|
||||||
|
return (
|
||||||
|
F.embedding(
|
||||||
|
input,
|
||||||
|
self.weight,
|
||||||
|
self.padding_idx,
|
||||||
|
None,
|
||||||
|
2.0, # None, 2.0 relate to normalization
|
||||||
|
self.scale_grad_by_freq,
|
||||||
|
self.sparse,
|
||||||
|
)
|
||||||
|
* scale
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
return F.embedding(
|
||||||
|
input,
|
||||||
|
self.weight * scale,
|
||||||
|
self.padding_idx,
|
||||||
|
None,
|
||||||
|
2.0, # None, 2.0 relates to normalization
|
||||||
|
self.scale_grad_by_freq,
|
||||||
|
self.sparse,
|
||||||
|
)
|
||||||
|
|
||||||
|
def extra_repr(self) -> str:
|
||||||
|
s = "{num_embeddings}, {embedding_dim}, scale={scale}"
|
||||||
|
if self.padding_idx is not None:
|
||||||
|
s += ", padding_idx={padding_idx}"
|
||||||
|
if self.scale_grad_by_freq is not False:
|
||||||
|
s += ", scale_grad_by_freq={scale_grad_by_freq}"
|
||||||
|
if self.sparse is not False:
|
||||||
|
s += ", sparse=True"
|
||||||
|
return s.format(**self.__dict__)
|
||||||
|
|
||||||
|
|
||||||
|
def _test_activation_balancer_sign():
|
||||||
|
probs = torch.arange(0, 1, 0.01)
|
||||||
|
N = 1000
|
||||||
|
x = 1.0 * (torch.rand(probs.numel(), N) < probs.unsqueeze(-1))
|
||||||
|
x = x.detach()
|
||||||
|
x.requires_grad = True
|
||||||
|
m = ActivationBalancer(
|
||||||
|
channel_dim=0,
|
||||||
|
min_positive=0.05,
|
||||||
|
max_positive=0.95,
|
||||||
|
max_factor=0.2,
|
||||||
|
min_abs=0.0,
|
||||||
|
)
|
||||||
|
|
||||||
|
y_grad = torch.sign(torch.randn(probs.numel(), N))
|
||||||
|
|
||||||
|
y = m(x)
|
||||||
|
y.backward(gradient=y_grad)
|
||||||
|
print("_test_activation_balancer_sign: x = ", x)
|
||||||
|
print("_test_activation_balancer_sign: y grad = ", y_grad)
|
||||||
|
print("_test_activation_balancer_sign: x grad = ", x.grad)
|
||||||
|
|
||||||
|
|
||||||
|
def _test_activation_balancer_magnitude():
|
||||||
|
magnitudes = torch.arange(0, 1, 0.01)
|
||||||
|
N = 1000
|
||||||
|
x = torch.sign(torch.randn(magnitudes.numel(), N)) * magnitudes.unsqueeze(
|
||||||
|
-1
|
||||||
|
)
|
||||||
|
x = x.detach()
|
||||||
|
x.requires_grad = True
|
||||||
|
m = ActivationBalancer(
|
||||||
|
channel_dim=0,
|
||||||
|
min_positive=0.0,
|
||||||
|
max_positive=1.0,
|
||||||
|
max_factor=0.2,
|
||||||
|
min_abs=0.2,
|
||||||
|
max_abs=0.8,
|
||||||
|
)
|
||||||
|
|
||||||
|
y_grad = torch.sign(torch.randn(magnitudes.numel(), N))
|
||||||
|
|
||||||
|
y = m(x)
|
||||||
|
y.backward(gradient=y_grad)
|
||||||
|
print("_test_activation_balancer_magnitude: x = ", x)
|
||||||
|
print("_test_activation_balancer_magnitude: y grad = ", y_grad)
|
||||||
|
print("_test_activation_balancer_magnitude: x grad = ", x.grad)
|
||||||
|
|
||||||
|
|
||||||
|
def _test_basic_norm():
|
||||||
|
num_channels = 128
|
||||||
|
m = BasicNorm(num_channels=num_channels, channel_dim=1)
|
||||||
|
|
||||||
|
x = torch.randn(500, num_channels)
|
||||||
|
|
||||||
|
y = m(x)
|
||||||
|
|
||||||
|
assert y.shape == x.shape
|
||||||
|
x_rms = (x ** 2).mean().sqrt()
|
||||||
|
y_rms = (y ** 2).mean().sqrt()
|
||||||
|
print("x rms = ", x_rms)
|
||||||
|
print("y rms = ", y_rms)
|
||||||
|
assert y_rms < x_rms
|
||||||
|
assert y_rms > 0.5 * x_rms
|
||||||
|
|
||||||
|
|
||||||
|
def _test_double_swish_deriv():
|
||||||
|
x = torch.randn(10, 12, dtype=torch.double) * 0.5
|
||||||
|
x.requires_grad = True
|
||||||
|
m = DoubleSwish()
|
||||||
|
torch.autograd.gradcheck(m, x)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
_test_activation_balancer_sign()
|
||||||
|
_test_activation_balancer_magnitude()
|
||||||
|
_test_basic_norm()
|
||||||
|
_test_double_swish_deriv()
|
977
egs/gigaspeech/ASR/pruned_transducer_stateless2/train.py
Executable file
977
egs/gigaspeech/ASR/pruned_transducer_stateless2/train.py
Executable file
@ -0,0 +1,977 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang,
|
||||||
|
# Wei Kang
|
||||||
|
# Mingshuang Luo)
|
||||||
|
#
|
||||||
|
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""
|
||||||
|
Usage:
|
||||||
|
|
||||||
|
export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
||||||
|
|
||||||
|
./pruned_transducer_stateless2/train.py \
|
||||||
|
--world-size 4 \
|
||||||
|
--num-epochs 30 \
|
||||||
|
--start-epoch 0 \
|
||||||
|
--exp-dir pruned_transducer_stateless2/exp \
|
||||||
|
--full-libri 1 \
|
||||||
|
--max-duration 300
|
||||||
|
|
||||||
|
# For mix precision training:
|
||||||
|
|
||||||
|
./pruned_transducer_stateless2/train.py \
|
||||||
|
--world-size 4 \
|
||||||
|
--num-epochs 30 \
|
||||||
|
--start-epoch 0 \
|
||||||
|
--use_fp16 1 \
|
||||||
|
--exp-dir pruned_transducer_stateless2/exp \
|
||||||
|
--full-libri 1 \
|
||||||
|
--max-duration 550
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import warnings
|
||||||
|
from pathlib import Path
|
||||||
|
from shutil import copyfile
|
||||||
|
from typing import Any, Dict, Optional, Tuple, Union
|
||||||
|
|
||||||
|
import k2
|
||||||
|
import optim
|
||||||
|
import sentencepiece as spm
|
||||||
|
import torch
|
||||||
|
import torch.multiprocessing as mp
|
||||||
|
import torch.nn as nn
|
||||||
|
from asr_datamodule import GigaSpeechAsrDataModule
|
||||||
|
from conformer import Conformer
|
||||||
|
from decoder import Decoder
|
||||||
|
from joiner import Joiner
|
||||||
|
from lhotse.dataset.sampling.base import CutSampler
|
||||||
|
from lhotse.utils import fix_random_seed
|
||||||
|
from model import Transducer
|
||||||
|
from optim import Eden, Eve
|
||||||
|
from torch import Tensor
|
||||||
|
from torch.cuda.amp import GradScaler
|
||||||
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||||
|
from torch.utils.tensorboard import SummaryWriter
|
||||||
|
|
||||||
|
from icefall import diagnostics
|
||||||
|
from icefall.checkpoint import load_checkpoint, remove_checkpoints
|
||||||
|
from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
|
||||||
|
from icefall.checkpoint import save_checkpoint_with_global_batch_idx
|
||||||
|
from icefall.dist import cleanup_dist, setup_dist
|
||||||
|
from icefall.env import get_env_info
|
||||||
|
from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool
|
||||||
|
|
||||||
|
LRSchedulerType = Union[
|
||||||
|
torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
def get_parser():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--world-size",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help="Number of GPUs for DDP training.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--master-port",
|
||||||
|
type=int,
|
||||||
|
default=12354,
|
||||||
|
help="Master port to use for DDP training.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--tensorboard",
|
||||||
|
type=str2bool,
|
||||||
|
default=True,
|
||||||
|
help="Should various information be logged in tensorboard.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--num-epochs",
|
||||||
|
type=int,
|
||||||
|
default=30,
|
||||||
|
help="Number of epochs to train.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--start-epoch",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="""Resume training from from this epoch.
|
||||||
|
If it is positive, it will load checkpoint from
|
||||||
|
transducer_stateless2/exp/epoch-{start_epoch-1}.pt
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--start-batch",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="""If positive, --start-epoch is ignored and
|
||||||
|
it loads the checkpoint from exp-dir/checkpoint-{start_batch}.pt
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--exp-dir",
|
||||||
|
type=str,
|
||||||
|
default="pruned_transducer_stateless2/exp",
|
||||||
|
help="""The experiment dir.
|
||||||
|
It specifies the directory where all training related
|
||||||
|
files, e.g., checkpoints, log, etc, are saved
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--bpe-model",
|
||||||
|
type=str,
|
||||||
|
default="data/lang_bpe_500/bpe.model",
|
||||||
|
help="Path to the BPE model",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--initial-lr",
|
||||||
|
type=float,
|
||||||
|
default=0.003,
|
||||||
|
help="The initial learning rate. This value should not need to be changed.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--lr-batches",
|
||||||
|
type=float,
|
||||||
|
default=5000,
|
||||||
|
help="""Number of steps that affects how rapidly the learning rate decreases.
|
||||||
|
We suggest not to change this.""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--lr-epochs",
|
||||||
|
type=float,
|
||||||
|
default=6,
|
||||||
|
help="""Number of epochs that affects how rapidly the learning rate decreases.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--context-size",
|
||||||
|
type=int,
|
||||||
|
default=2,
|
||||||
|
help="The context size in the decoder. 1 means bigram; "
|
||||||
|
"2 means tri-gram",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--prune-range",
|
||||||
|
type=int,
|
||||||
|
default=5,
|
||||||
|
help="The prune range for rnnt loss, it means how many symbols(context)"
|
||||||
|
"we are using to compute the loss",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--lm-scale",
|
||||||
|
type=float,
|
||||||
|
default=0.25,
|
||||||
|
help="The scale to smooth the loss with lm "
|
||||||
|
"(output of prediction network) part.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--am-scale",
|
||||||
|
type=float,
|
||||||
|
default=0.0,
|
||||||
|
help="The scale to smooth the loss with am (output of encoder network)"
|
||||||
|
"part.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--simple-loss-scale",
|
||||||
|
type=float,
|
||||||
|
default=0.5,
|
||||||
|
help="To get pruning ranges, we will calculate a simple version"
|
||||||
|
"loss(joiner is just addition), this simple loss also uses for"
|
||||||
|
"training (as a regularization item). We will scale the simple loss"
|
||||||
|
"with this parameter before adding to the final loss.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--seed",
|
||||||
|
type=int,
|
||||||
|
default=42,
|
||||||
|
help="The seed for random generators intended for reproducibility",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--print-diagnostics",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="Accumulate stats on activations, print them and exit.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--save-every-n",
|
||||||
|
type=int,
|
||||||
|
default=8000,
|
||||||
|
help="""Save checkpoint after processing this number of batches"
|
||||||
|
periodically. We save checkpoint to exp-dir/ whenever
|
||||||
|
params.batch_idx_train % save_every_n == 0. The checkpoint filename
|
||||||
|
has the form: f'exp-dir/checkpoint-{params.batch_idx_train}.pt'
|
||||||
|
Note: It also saves checkpoint to `exp-dir/epoch-xxx.pt` at the
|
||||||
|
end of each epoch where `xxx` is the epoch number counting from 0.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--keep-last-k",
|
||||||
|
type=int,
|
||||||
|
default=20,
|
||||||
|
help="""Only keep this number of checkpoints on disk.
|
||||||
|
For instance, if it is 3, there are only 3 checkpoints
|
||||||
|
in the exp-dir with filenames `checkpoint-xxx.pt`.
|
||||||
|
It does not affect checkpoints with name `epoch-xxx.pt`.
|
||||||
|
""",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--use-fp16",
|
||||||
|
type=str2bool,
|
||||||
|
default=False,
|
||||||
|
help="Whether to use half precision training.",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def get_params() -> AttributeDict:
|
||||||
|
"""Return a dict containing training parameters.
|
||||||
|
|
||||||
|
All training related parameters that are not passed from the commandline
|
||||||
|
are saved in the variable `params`.
|
||||||
|
|
||||||
|
Commandline options are merged into `params` after they are parsed, so
|
||||||
|
you can also access them via `params`.
|
||||||
|
|
||||||
|
Explanation of options saved in `params`:
|
||||||
|
|
||||||
|
- best_train_loss: Best training loss so far. It is used to select
|
||||||
|
the model that has the lowest training loss. It is
|
||||||
|
updated during the training.
|
||||||
|
|
||||||
|
- best_valid_loss: Best validation loss so far. It is used to select
|
||||||
|
the model that has the lowest validation loss. It is
|
||||||
|
updated during the training.
|
||||||
|
|
||||||
|
- best_train_epoch: It is the epoch that has the best training loss.
|
||||||
|
|
||||||
|
- best_valid_epoch: It is the epoch that has the best validation loss.
|
||||||
|
|
||||||
|
- batch_idx_train: Used to writing statistics to tensorboard. It
|
||||||
|
contains number of batches trained so far across
|
||||||
|
epochs.
|
||||||
|
|
||||||
|
- log_interval: Print training loss if batch_idx % log_interval` is 0
|
||||||
|
|
||||||
|
- reset_interval: Reset statistics if batch_idx % reset_interval is 0
|
||||||
|
|
||||||
|
- valid_interval: Run validation if batch_idx % valid_interval is 0
|
||||||
|
|
||||||
|
- feature_dim: The model input dim. It has to match the one used
|
||||||
|
in computing features.
|
||||||
|
|
||||||
|
- subsampling_factor: The subsampling factor for the model.
|
||||||
|
|
||||||
|
- encoder_dim: Hidden dim for multi-head attention model.
|
||||||
|
|
||||||
|
- num_decoder_layers: Number of decoder layer of transformer decoder.
|
||||||
|
|
||||||
|
- warm_step: The warm_step for Noam optimizer.
|
||||||
|
"""
|
||||||
|
params = AttributeDict(
|
||||||
|
{
|
||||||
|
"best_train_loss": float("inf"),
|
||||||
|
"best_valid_loss": float("inf"),
|
||||||
|
"best_train_epoch": -1,
|
||||||
|
"best_valid_epoch": -1,
|
||||||
|
"batch_idx_train": 0,
|
||||||
|
"log_interval": 500,
|
||||||
|
"reset_interval": 2000,
|
||||||
|
"valid_interval": 20000,
|
||||||
|
# parameters for conformer
|
||||||
|
"feature_dim": 80,
|
||||||
|
"subsampling_factor": 4,
|
||||||
|
"encoder_dim": 512,
|
||||||
|
"nhead": 8,
|
||||||
|
"dim_feedforward": 2048,
|
||||||
|
"num_encoder_layers": 12,
|
||||||
|
# parameters for decoder
|
||||||
|
"decoder_dim": 512,
|
||||||
|
# parameters for joiner
|
||||||
|
"joiner_dim": 512,
|
||||||
|
# parameters for Noam
|
||||||
|
"model_warm_step": 20000, # arg given to model, not for lrate
|
||||||
|
"env_info": get_env_info(),
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
return params
|
||||||
|
|
||||||
|
|
||||||
|
def get_encoder_model(params: AttributeDict) -> nn.Module:
|
||||||
|
# TODO: We can add an option to switch between Conformer and Transformer
|
||||||
|
encoder = Conformer(
|
||||||
|
num_features=params.feature_dim,
|
||||||
|
subsampling_factor=params.subsampling_factor,
|
||||||
|
d_model=params.encoder_dim,
|
||||||
|
nhead=params.nhead,
|
||||||
|
dim_feedforward=params.dim_feedforward,
|
||||||
|
num_encoder_layers=params.num_encoder_layers,
|
||||||
|
)
|
||||||
|
return encoder
|
||||||
|
|
||||||
|
|
||||||
|
def get_decoder_model(params: AttributeDict) -> nn.Module:
|
||||||
|
decoder = Decoder(
|
||||||
|
vocab_size=params.vocab_size,
|
||||||
|
decoder_dim=params.decoder_dim,
|
||||||
|
blank_id=params.blank_id,
|
||||||
|
context_size=params.context_size,
|
||||||
|
)
|
||||||
|
return decoder
|
||||||
|
|
||||||
|
|
||||||
|
def get_joiner_model(params: AttributeDict) -> nn.Module:
|
||||||
|
joiner = Joiner(
|
||||||
|
encoder_dim=params.encoder_dim,
|
||||||
|
decoder_dim=params.decoder_dim,
|
||||||
|
joiner_dim=params.joiner_dim,
|
||||||
|
vocab_size=params.vocab_size,
|
||||||
|
)
|
||||||
|
return joiner
|
||||||
|
|
||||||
|
|
||||||
|
def get_transducer_model(params: AttributeDict) -> nn.Module:
|
||||||
|
encoder = get_encoder_model(params)
|
||||||
|
decoder = get_decoder_model(params)
|
||||||
|
joiner = get_joiner_model(params)
|
||||||
|
|
||||||
|
model = Transducer(
|
||||||
|
encoder=encoder,
|
||||||
|
decoder=decoder,
|
||||||
|
joiner=joiner,
|
||||||
|
encoder_dim=params.encoder_dim,
|
||||||
|
decoder_dim=params.decoder_dim,
|
||||||
|
joiner_dim=params.joiner_dim,
|
||||||
|
vocab_size=params.vocab_size,
|
||||||
|
)
|
||||||
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
def load_checkpoint_if_available(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
optimizer: Optional[torch.optim.Optimizer] = None,
|
||||||
|
scheduler: Optional[LRSchedulerType] = None,
|
||||||
|
) -> Optional[Dict[str, Any]]:
|
||||||
|
"""Load checkpoint from file.
|
||||||
|
|
||||||
|
If params.start_batch is positive, it will load the checkpoint from
|
||||||
|
`params.exp_dir/checkpoint-{params.start_batch}.pt`. Otherwise, if
|
||||||
|
params.start_epoch is positive, it will load the checkpoint from
|
||||||
|
`params.start_epoch - 1`.
|
||||||
|
|
||||||
|
Apart from loading state dict for `model` and `optimizer` it also updates
|
||||||
|
`best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
|
||||||
|
and `best_valid_loss` in `params`.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
The return value of :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The training model.
|
||||||
|
optimizer:
|
||||||
|
The optimizer that we are using.
|
||||||
|
scheduler:
|
||||||
|
The scheduler that we are using.
|
||||||
|
Returns:
|
||||||
|
Return a dict containing previously saved training info.
|
||||||
|
"""
|
||||||
|
if params.start_batch > 0:
|
||||||
|
filename = params.exp_dir / f"checkpoint-{params.start_batch}.pt"
|
||||||
|
elif params.start_epoch > 0:
|
||||||
|
filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
|
||||||
|
else:
|
||||||
|
return None
|
||||||
|
|
||||||
|
assert filename.is_file(), f"{filename} does not exist!"
|
||||||
|
|
||||||
|
saved_params = load_checkpoint(
|
||||||
|
filename,
|
||||||
|
model=model,
|
||||||
|
optimizer=optimizer,
|
||||||
|
scheduler=scheduler,
|
||||||
|
)
|
||||||
|
|
||||||
|
keys = [
|
||||||
|
"best_train_epoch",
|
||||||
|
"best_valid_epoch",
|
||||||
|
"batch_idx_train",
|
||||||
|
"best_train_loss",
|
||||||
|
"best_valid_loss",
|
||||||
|
]
|
||||||
|
for k in keys:
|
||||||
|
params[k] = saved_params[k]
|
||||||
|
|
||||||
|
if params.start_batch > 0:
|
||||||
|
if "cur_epoch" in saved_params:
|
||||||
|
params["start_epoch"] = saved_params["cur_epoch"]
|
||||||
|
|
||||||
|
if "cur_batch_idx" in saved_params:
|
||||||
|
params["cur_batch_idx"] = saved_params["cur_batch_idx"]
|
||||||
|
|
||||||
|
return saved_params
|
||||||
|
|
||||||
|
|
||||||
|
def save_checkpoint(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
optimizer: Optional[torch.optim.Optimizer] = None,
|
||||||
|
scheduler: Optional[LRSchedulerType] = None,
|
||||||
|
sampler: Optional[CutSampler] = None,
|
||||||
|
scaler: Optional[GradScaler] = None,
|
||||||
|
rank: int = 0,
|
||||||
|
) -> None:
|
||||||
|
"""Save model, optimizer, scheduler and training stats to file.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The training model.
|
||||||
|
optimizer:
|
||||||
|
The optimizer used in the training.
|
||||||
|
sampler:
|
||||||
|
The sampler for the training dataset.
|
||||||
|
scaler:
|
||||||
|
The scaler used for mix precision training.
|
||||||
|
"""
|
||||||
|
if rank != 0:
|
||||||
|
return
|
||||||
|
filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
|
||||||
|
save_checkpoint_impl(
|
||||||
|
filename=filename,
|
||||||
|
model=model,
|
||||||
|
params=params,
|
||||||
|
optimizer=optimizer,
|
||||||
|
scheduler=scheduler,
|
||||||
|
sampler=sampler,
|
||||||
|
scaler=scaler,
|
||||||
|
rank=rank,
|
||||||
|
)
|
||||||
|
|
||||||
|
if params.best_train_epoch == params.cur_epoch:
|
||||||
|
best_train_filename = params.exp_dir / "best-train-loss.pt"
|
||||||
|
copyfile(src=filename, dst=best_train_filename)
|
||||||
|
|
||||||
|
if params.best_valid_epoch == params.cur_epoch:
|
||||||
|
best_valid_filename = params.exp_dir / "best-valid-loss.pt"
|
||||||
|
copyfile(src=filename, dst=best_valid_filename)
|
||||||
|
|
||||||
|
|
||||||
|
def compute_loss(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
sp: spm.SentencePieceProcessor,
|
||||||
|
batch: dict,
|
||||||
|
is_training: bool,
|
||||||
|
warmup: float = 1.0,
|
||||||
|
) -> Tuple[Tensor, MetricsTracker]:
|
||||||
|
"""
|
||||||
|
Compute CTC loss given the model and its inputs.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
Parameters for training. See :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The model for training. It is an instance of Conformer in our case.
|
||||||
|
batch:
|
||||||
|
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
|
||||||
|
for the content in it.
|
||||||
|
is_training:
|
||||||
|
True for training. False for validation. When it is True, this
|
||||||
|
function enables autograd during computation; when it is False, it
|
||||||
|
disables autograd.
|
||||||
|
warmup: a floating point value which increases throughout training;
|
||||||
|
values >= 1.0 are fully warmed up and have all modules present.
|
||||||
|
"""
|
||||||
|
device = model.device
|
||||||
|
feature = batch["inputs"]
|
||||||
|
# at entry, feature is (N, T, C)
|
||||||
|
assert feature.ndim == 3
|
||||||
|
feature = feature.to(device)
|
||||||
|
|
||||||
|
supervisions = batch["supervisions"]
|
||||||
|
feature_lens = supervisions["num_frames"].to(device)
|
||||||
|
|
||||||
|
texts = batch["supervisions"]["text"]
|
||||||
|
y = sp.encode(texts, out_type=int)
|
||||||
|
y = k2.RaggedTensor(y).to(device)
|
||||||
|
|
||||||
|
with torch.set_grad_enabled(is_training):
|
||||||
|
simple_loss, pruned_loss = model(
|
||||||
|
x=feature,
|
||||||
|
x_lens=feature_lens,
|
||||||
|
y=y,
|
||||||
|
prune_range=params.prune_range,
|
||||||
|
am_scale=params.am_scale,
|
||||||
|
lm_scale=params.lm_scale,
|
||||||
|
warmup=warmup,
|
||||||
|
)
|
||||||
|
# after the main warmup step, we keep pruned_loss_scale small
|
||||||
|
# for the same amount of time (model_warm_step), to avoid
|
||||||
|
# overwhelming the simple_loss and causing it to diverge,
|
||||||
|
# in case it had not fully learned the alignment yet.
|
||||||
|
pruned_loss_scale = (
|
||||||
|
0.0
|
||||||
|
if warmup < 1.0
|
||||||
|
else (0.1 if warmup > 1.0 and warmup < 2.0 else 1.0)
|
||||||
|
)
|
||||||
|
loss = (
|
||||||
|
params.simple_loss_scale * simple_loss
|
||||||
|
+ pruned_loss_scale * pruned_loss
|
||||||
|
)
|
||||||
|
|
||||||
|
assert loss.requires_grad == is_training
|
||||||
|
|
||||||
|
info = MetricsTracker()
|
||||||
|
with warnings.catch_warnings():
|
||||||
|
warnings.simplefilter("ignore")
|
||||||
|
info["frames"] = (
|
||||||
|
(feature_lens // params.subsampling_factor).sum().item()
|
||||||
|
)
|
||||||
|
|
||||||
|
# Note: We use reduction=sum while computing the loss.
|
||||||
|
info["loss"] = loss.detach().cpu().item()
|
||||||
|
info["simple_loss"] = simple_loss.detach().cpu().item()
|
||||||
|
info["pruned_loss"] = pruned_loss.detach().cpu().item()
|
||||||
|
|
||||||
|
return loss, info
|
||||||
|
|
||||||
|
|
||||||
|
def compute_validation_loss(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
sp: spm.SentencePieceProcessor,
|
||||||
|
valid_dl: torch.utils.data.DataLoader,
|
||||||
|
world_size: int = 1,
|
||||||
|
) -> MetricsTracker:
|
||||||
|
"""Run the validation process."""
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
tot_loss = MetricsTracker()
|
||||||
|
|
||||||
|
for batch_idx, batch in enumerate(valid_dl):
|
||||||
|
loss, loss_info = compute_loss(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
sp=sp,
|
||||||
|
batch=batch,
|
||||||
|
is_training=False,
|
||||||
|
)
|
||||||
|
assert loss.requires_grad is False
|
||||||
|
tot_loss = tot_loss + loss_info
|
||||||
|
|
||||||
|
if world_size > 1:
|
||||||
|
tot_loss.reduce(loss.device)
|
||||||
|
|
||||||
|
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||||||
|
if loss_value < params.best_valid_loss:
|
||||||
|
params.best_valid_epoch = params.cur_epoch
|
||||||
|
params.best_valid_loss = loss_value
|
||||||
|
|
||||||
|
return tot_loss
|
||||||
|
|
||||||
|
|
||||||
|
def train_one_epoch(
|
||||||
|
params: AttributeDict,
|
||||||
|
model: nn.Module,
|
||||||
|
optimizer: torch.optim.Optimizer,
|
||||||
|
scheduler: LRSchedulerType,
|
||||||
|
sp: spm.SentencePieceProcessor,
|
||||||
|
train_dl: torch.utils.data.DataLoader,
|
||||||
|
valid_dl: torch.utils.data.DataLoader,
|
||||||
|
scaler: GradScaler,
|
||||||
|
tb_writer: Optional[SummaryWriter] = None,
|
||||||
|
world_size: int = 1,
|
||||||
|
rank: int = 0,
|
||||||
|
) -> None:
|
||||||
|
"""Train the model for one epoch.
|
||||||
|
|
||||||
|
The training loss from the mean of all frames is saved in
|
||||||
|
`params.train_loss`. It runs the validation process every
|
||||||
|
`params.valid_interval` batches.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
params:
|
||||||
|
It is returned by :func:`get_params`.
|
||||||
|
model:
|
||||||
|
The model for training.
|
||||||
|
optimizer:
|
||||||
|
The optimizer we are using.
|
||||||
|
scheduler:
|
||||||
|
The learning rate scheduler, we call step() every step.
|
||||||
|
train_dl:
|
||||||
|
Dataloader for the training dataset.
|
||||||
|
valid_dl:
|
||||||
|
Dataloader for the validation dataset.
|
||||||
|
scaler:
|
||||||
|
The scaler used for mix precision training.
|
||||||
|
tb_writer:
|
||||||
|
Writer to write log messages to tensorboard.
|
||||||
|
world_size:
|
||||||
|
Number of nodes in DDP training. If it is 1, DDP is disabled.
|
||||||
|
rank:
|
||||||
|
The rank of the node in DDP training. If no DDP is used, it should
|
||||||
|
be set to 0.
|
||||||
|
"""
|
||||||
|
model.train()
|
||||||
|
|
||||||
|
tot_loss = MetricsTracker()
|
||||||
|
|
||||||
|
cur_batch_idx = params.get("cur_batch_idx", 0)
|
||||||
|
|
||||||
|
for batch_idx, batch in enumerate(train_dl):
|
||||||
|
if batch_idx < cur_batch_idx:
|
||||||
|
continue
|
||||||
|
cur_batch_idx = batch_idx
|
||||||
|
|
||||||
|
params.batch_idx_train += 1
|
||||||
|
batch_size = len(batch["supervisions"]["text"])
|
||||||
|
|
||||||
|
with torch.cuda.amp.autocast(enabled=params.use_fp16):
|
||||||
|
loss, loss_info = compute_loss(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
sp=sp,
|
||||||
|
batch=batch,
|
||||||
|
is_training=True,
|
||||||
|
warmup=(params.batch_idx_train / params.model_warm_step),
|
||||||
|
)
|
||||||
|
# summary stats
|
||||||
|
tot_loss = (tot_loss * (1 - 1 / params.reset_interval)) + loss_info
|
||||||
|
|
||||||
|
# NOTE: We use reduction==sum and loss is computed over utterances
|
||||||
|
# in the batch and there is no normalization to it so far.
|
||||||
|
scaler.scale(loss).backward()
|
||||||
|
scheduler.step_batch(params.batch_idx_train)
|
||||||
|
scaler.step(optimizer)
|
||||||
|
scaler.update()
|
||||||
|
optimizer.zero_grad()
|
||||||
|
|
||||||
|
if params.print_diagnostics and batch_idx == 5:
|
||||||
|
return
|
||||||
|
|
||||||
|
if (
|
||||||
|
params.batch_idx_train > 0
|
||||||
|
and params.batch_idx_train % params.save_every_n == 0
|
||||||
|
):
|
||||||
|
params.cur_batch_idx = batch_idx
|
||||||
|
save_checkpoint_with_global_batch_idx(
|
||||||
|
out_dir=params.exp_dir,
|
||||||
|
global_batch_idx=params.batch_idx_train,
|
||||||
|
model=model,
|
||||||
|
params=params,
|
||||||
|
optimizer=optimizer,
|
||||||
|
scheduler=scheduler,
|
||||||
|
sampler=train_dl.sampler,
|
||||||
|
scaler=scaler,
|
||||||
|
rank=rank,
|
||||||
|
)
|
||||||
|
del params.cur_batch_idx
|
||||||
|
remove_checkpoints(
|
||||||
|
out_dir=params.exp_dir,
|
||||||
|
topk=params.keep_last_k,
|
||||||
|
rank=rank,
|
||||||
|
)
|
||||||
|
|
||||||
|
if batch_idx % params.log_interval == 0:
|
||||||
|
cur_lr = scheduler.get_last_lr()[0]
|
||||||
|
logging.info(
|
||||||
|
f"Epoch {params.cur_epoch}, "
|
||||||
|
f"batch {batch_idx}, loss[{loss_info}], "
|
||||||
|
f"tot_loss[{tot_loss}], batch size: {batch_size}, "
|
||||||
|
f"lr: {cur_lr:.2e}"
|
||||||
|
)
|
||||||
|
|
||||||
|
if tb_writer is not None:
|
||||||
|
tb_writer.add_scalar(
|
||||||
|
"train/learning_rate", cur_lr, params.batch_idx_train
|
||||||
|
)
|
||||||
|
|
||||||
|
loss_info.write_summary(
|
||||||
|
tb_writer, "train/current_", params.batch_idx_train
|
||||||
|
)
|
||||||
|
tot_loss.write_summary(
|
||||||
|
tb_writer, "train/tot_", params.batch_idx_train
|
||||||
|
)
|
||||||
|
|
||||||
|
if batch_idx > 0 and batch_idx % params.valid_interval == 0:
|
||||||
|
logging.info("Computing validation loss")
|
||||||
|
valid_info = compute_validation_loss(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
sp=sp,
|
||||||
|
valid_dl=valid_dl,
|
||||||
|
world_size=world_size,
|
||||||
|
)
|
||||||
|
model.train()
|
||||||
|
logging.info(f"Epoch {params.cur_epoch}, validation: {valid_info}")
|
||||||
|
if tb_writer is not None:
|
||||||
|
valid_info.write_summary(
|
||||||
|
tb_writer, "train/valid_", params.batch_idx_train
|
||||||
|
)
|
||||||
|
|
||||||
|
loss_value = tot_loss["loss"] / tot_loss["frames"]
|
||||||
|
params.train_loss = loss_value
|
||||||
|
if params.train_loss < params.best_train_loss:
|
||||||
|
params.best_train_epoch = params.cur_epoch
|
||||||
|
params.best_train_loss = params.train_loss
|
||||||
|
|
||||||
|
|
||||||
|
def run(rank, world_size, args):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
rank:
|
||||||
|
It is a value between 0 and `world_size-1`, which is
|
||||||
|
passed automatically by `mp.spawn()` in :func:`main`.
|
||||||
|
The node with rank 0 is responsible for saving checkpoint.
|
||||||
|
world_size:
|
||||||
|
Number of GPUs for DDP training.
|
||||||
|
args:
|
||||||
|
The return value of get_parser().parse_args()
|
||||||
|
"""
|
||||||
|
params = get_params()
|
||||||
|
params.update(vars(args))
|
||||||
|
|
||||||
|
fix_random_seed(params.seed)
|
||||||
|
if world_size > 1:
|
||||||
|
setup_dist(rank, world_size, params.master_port)
|
||||||
|
|
||||||
|
setup_logger(f"{params.exp_dir}/log/log-train")
|
||||||
|
logging.info("Training started")
|
||||||
|
|
||||||
|
if args.tensorboard and rank == 0:
|
||||||
|
tb_writer = SummaryWriter(log_dir=f"{params.exp_dir}/tensorboard")
|
||||||
|
else:
|
||||||
|
tb_writer = None
|
||||||
|
|
||||||
|
device = torch.device("cpu")
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda", rank)
|
||||||
|
logging.info(f"Device: {device}")
|
||||||
|
|
||||||
|
sp = spm.SentencePieceProcessor()
|
||||||
|
sp.load(params.bpe_model)
|
||||||
|
|
||||||
|
# <blk> is defined in local/train_bpe_model.py
|
||||||
|
params.blank_id = sp.piece_to_id("<blk>")
|
||||||
|
params.vocab_size = sp.get_piece_size()
|
||||||
|
|
||||||
|
logging.info(params)
|
||||||
|
|
||||||
|
logging.info("About to create model")
|
||||||
|
model = get_transducer_model(params)
|
||||||
|
|
||||||
|
num_param = sum([p.numel() for p in model.parameters()])
|
||||||
|
logging.info(f"Number of model parameters: {num_param}")
|
||||||
|
|
||||||
|
checkpoints = load_checkpoint_if_available(params=params, model=model)
|
||||||
|
|
||||||
|
model.to(device)
|
||||||
|
if world_size > 1:
|
||||||
|
logging.info("Using DDP")
|
||||||
|
model = DDP(model, device_ids=[rank])
|
||||||
|
model.device = device
|
||||||
|
|
||||||
|
optimizer = Eve(model.parameters(), lr=params.initial_lr)
|
||||||
|
|
||||||
|
scheduler = Eden(optimizer, params.lr_batches, params.lr_epochs)
|
||||||
|
|
||||||
|
if checkpoints and "optimizer" in checkpoints:
|
||||||
|
logging.info("Loading optimizer state dict")
|
||||||
|
optimizer.load_state_dict(checkpoints["optimizer"])
|
||||||
|
|
||||||
|
if (
|
||||||
|
checkpoints
|
||||||
|
and "scheduler" in checkpoints
|
||||||
|
and checkpoints["scheduler"] is not None
|
||||||
|
):
|
||||||
|
logging.info("Loading scheduler state dict")
|
||||||
|
scheduler.load_state_dict(checkpoints["scheduler"])
|
||||||
|
|
||||||
|
if params.print_diagnostics:
|
||||||
|
opts = diagnostics.TensorDiagnosticOptions(
|
||||||
|
2 ** 22
|
||||||
|
) # allow 4 megabytes per sub-module
|
||||||
|
diagnostic = diagnostics.attach_diagnostics(model, opts)
|
||||||
|
|
||||||
|
gigaspeech = GigaSpeechAsrDataModule(args)
|
||||||
|
|
||||||
|
train_cuts = gigaspeech.train_cuts()
|
||||||
|
|
||||||
|
if params.start_batch > 0 and checkpoints and "sampler" in checkpoints:
|
||||||
|
# We only load the sampler's state dict when it loads a checkpoint
|
||||||
|
# saved in the middle of an epoch
|
||||||
|
sampler_state_dict = checkpoints["sampler"]
|
||||||
|
else:
|
||||||
|
sampler_state_dict = None
|
||||||
|
|
||||||
|
train_dl = gigaspeech.train_dataloaders(
|
||||||
|
train_cuts, sampler_state_dict=sampler_state_dict
|
||||||
|
)
|
||||||
|
|
||||||
|
valid_cuts = gigaspeech.dev_cuts()
|
||||||
|
valid_dl = gigaspeech.valid_dataloaders(valid_cuts)
|
||||||
|
|
||||||
|
if not params.print_diagnostics:
|
||||||
|
scan_pessimistic_batches_for_oom(
|
||||||
|
model=model,
|
||||||
|
train_dl=train_dl,
|
||||||
|
optimizer=optimizer,
|
||||||
|
sp=sp,
|
||||||
|
params=params,
|
||||||
|
)
|
||||||
|
|
||||||
|
scaler = GradScaler(enabled=params.use_fp16)
|
||||||
|
if checkpoints and "grad_scaler" in checkpoints:
|
||||||
|
logging.info("Loading grad scaler state dict")
|
||||||
|
scaler.load_state_dict(checkpoints["grad_scaler"])
|
||||||
|
|
||||||
|
for epoch in range(params.start_epoch, params.num_epochs):
|
||||||
|
scheduler.step_epoch(epoch)
|
||||||
|
fix_random_seed(params.seed + epoch)
|
||||||
|
train_dl.sampler.set_epoch(epoch)
|
||||||
|
|
||||||
|
if tb_writer is not None:
|
||||||
|
tb_writer.add_scalar("train/epoch", epoch, params.batch_idx_train)
|
||||||
|
|
||||||
|
params.cur_epoch = epoch
|
||||||
|
|
||||||
|
train_one_epoch(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
optimizer=optimizer,
|
||||||
|
scheduler=scheduler,
|
||||||
|
sp=sp,
|
||||||
|
train_dl=train_dl,
|
||||||
|
valid_dl=valid_dl,
|
||||||
|
scaler=scaler,
|
||||||
|
tb_writer=tb_writer,
|
||||||
|
world_size=world_size,
|
||||||
|
rank=rank,
|
||||||
|
)
|
||||||
|
|
||||||
|
if params.print_diagnostics:
|
||||||
|
diagnostic.print_diagnostics()
|
||||||
|
break
|
||||||
|
|
||||||
|
save_checkpoint(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
optimizer=optimizer,
|
||||||
|
scheduler=scheduler,
|
||||||
|
sampler=train_dl.sampler,
|
||||||
|
scaler=scaler,
|
||||||
|
rank=rank,
|
||||||
|
)
|
||||||
|
|
||||||
|
logging.info("Done!")
|
||||||
|
|
||||||
|
if world_size > 1:
|
||||||
|
torch.distributed.barrier()
|
||||||
|
cleanup_dist()
|
||||||
|
|
||||||
|
|
||||||
|
def scan_pessimistic_batches_for_oom(
|
||||||
|
model: nn.Module,
|
||||||
|
train_dl: torch.utils.data.DataLoader,
|
||||||
|
optimizer: torch.optim.Optimizer,
|
||||||
|
sp: spm.SentencePieceProcessor,
|
||||||
|
params: AttributeDict,
|
||||||
|
):
|
||||||
|
from lhotse.dataset import find_pessimistic_batches
|
||||||
|
|
||||||
|
logging.info(
|
||||||
|
"Sanity check -- see if any of the batches in epoch 0 would cause OOM."
|
||||||
|
)
|
||||||
|
batches, crit_values = find_pessimistic_batches(train_dl.sampler)
|
||||||
|
for criterion, cuts in batches.items():
|
||||||
|
batch = train_dl.dataset[cuts]
|
||||||
|
try:
|
||||||
|
# warmup = 0.0 is so that the derivs for the pruned loss stay zero
|
||||||
|
# (i.e. are not remembered by the decaying-average in adam), because
|
||||||
|
# we want to avoid these params being subject to shrinkage in adam.
|
||||||
|
with torch.cuda.amp.autocast(enabled=params.use_fp16):
|
||||||
|
loss, _ = compute_loss(
|
||||||
|
params=params,
|
||||||
|
model=model,
|
||||||
|
sp=sp,
|
||||||
|
batch=batch,
|
||||||
|
is_training=True,
|
||||||
|
warmup=0.0,
|
||||||
|
)
|
||||||
|
loss.backward()
|
||||||
|
optimizer.step()
|
||||||
|
optimizer.zero_grad()
|
||||||
|
except RuntimeError as e:
|
||||||
|
if "CUDA out of memory" in str(e):
|
||||||
|
logging.error(
|
||||||
|
"Your GPU ran out of memory with the current "
|
||||||
|
"max_duration setting. We recommend decreasing "
|
||||||
|
"max_duration and trying again.\n"
|
||||||
|
f"Failing criterion: {criterion} "
|
||||||
|
f"(={crit_values[criterion]}) ..."
|
||||||
|
)
|
||||||
|
raise
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
parser = get_parser()
|
||||||
|
GigaSpeechAsrDataModule.add_arguments(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
args.exp_dir = Path(args.exp_dir)
|
||||||
|
|
||||||
|
world_size = args.world_size
|
||||||
|
assert world_size >= 1
|
||||||
|
if world_size > 1:
|
||||||
|
mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True)
|
||||||
|
else:
|
||||||
|
run(rank=0, world_size=1, args=args)
|
||||||
|
|
||||||
|
|
||||||
|
torch.set_num_threads(1)
|
||||||
|
torch.set_num_interop_threads(1)
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
Loading…
x
Reference in New Issue
Block a user