mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-27 02:34:21 +00:00
Update RESULT.md to include RNN-T Conformer.
This commit is contained in:
parent
d7eb94c4c9
commit
47b0f2ec2f
@ -72,6 +72,8 @@ The best WER we currently have is:
|
||||
|-----|------------|------------|
|
||||
| WER | 3.16 | 7.71 |
|
||||
|
||||
We provide a Colab notebook to run a pre-trained RNN-T conformer model: [](https://colab.research.google.com/drive/1_u6yK9jDkPwG_NLrZMN2XK7Aeq4suMO2?usp=sharing)
|
||||
|
||||
|
||||
### Aishell
|
||||
|
||||
|
@ -1,5 +1,51 @@
|
||||
## Results
|
||||
|
||||
### LibriSpeech BPE training results (RNN-T)
|
||||
|
||||
#### 2021-12-17
|
||||
|
||||
RNN-T + Conformer encoder
|
||||
|
||||
The best WER is
|
||||
|
||||
| | test-clean | test-other |
|
||||
|-----|------------|------------|
|
||||
| WER | 3.16 | 7.71 |
|
||||
|
||||
using `--epoch 26 --avg 12` during decoding.
|
||||
|
||||
The training command to reproduce the above WER is:
|
||||
|
||||
```
|
||||
export CUDA_VISIBLE_DEVICES="0,1,2,3"
|
||||
|
||||
./transducer/train.py \
|
||||
--world-size 4 \
|
||||
--num-epochs 30 \
|
||||
--start-epoch 0 \
|
||||
--exp-dir transducer/exp-lr-2.5-full \
|
||||
--full-libri 1 \
|
||||
--max-duration 250 \
|
||||
--lr-factor 2.5
|
||||
```
|
||||
|
||||
The decoding command is:
|
||||
|
||||
```
|
||||
epoch=26
|
||||
avg=12
|
||||
|
||||
./transducer/decode.py \
|
||||
--epoch $epoch \
|
||||
--avg $avg \
|
||||
--exp-dir transducer/exp-lr-2.5-full \
|
||||
--bpe-model ./data/lang_bpe_500/bpe.model \
|
||||
--max-duration 100
|
||||
```
|
||||
|
||||
You can find the tensorboard log at: <https://tensorboard.dev/experiment/PYIbeD6zRJez1ViXaRqqeg/>
|
||||
|
||||
|
||||
### LibriSpeech BPE training results (Conformer-CTC)
|
||||
|
||||
#### 2021-11-09
|
||||
|
@ -276,6 +276,8 @@ def main():
|
||||
hyp = beam_search(
|
||||
model=model, encoder_out=encoder_out_i, beam=params.beam_size
|
||||
)
|
||||
else:
|
||||
raise ValueError(f"Unsupported method: {params.method}")
|
||||
|
||||
hyps.append(sp.decode(hyp).split())
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user