mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 10:02:22 +00:00
add gradio demo
This commit is contained in:
parent
72addd40f5
commit
47920c2336
@ -99,6 +99,12 @@ def set_batch_count(model: nn.Module, batch_count: float) -> None:
|
||||
|
||||
|
||||
def add_model_arguments(parser: argparse.ArgumentParser):
|
||||
parser.add_argument(
|
||||
"--remove-whisper-encoder-input-length-restriction",
|
||||
type=str2bool,
|
||||
default=True,
|
||||
help="replace whisper encoder forward method to remove input length restriction",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--llm-path-or-name",
|
||||
type=str,
|
||||
|
@ -7,26 +7,177 @@ import soundfile as sf
|
||||
|
||||
import gradio.processing_utils as processing_utils
|
||||
|
||||
from transformers import AutoModelForCausalLM
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, Qwen2Config
|
||||
from gradio_client import utils as client_utils
|
||||
|
||||
from argparse import ArgumentParser
|
||||
import whisper
|
||||
import torch
|
||||
from peft import LoraConfig, get_peft_model
|
||||
from whisper_encoder_forward_monkey_patch import replace_whisper_encoder_forward
|
||||
from model import SPEECH_LLM, EncoderProjector
|
||||
from train import DEFAULT_SPEECH_TOKEN, add_model_arguments
|
||||
|
||||
def _load_model_processor(args):
|
||||
from cosyvoice.cli.cosyvoice import CosyVoice
|
||||
|
||||
# Check if flash-attn2 flag is enabled and load model accordingly
|
||||
if args.flash_attn2:
|
||||
# model = Qwen2_5OmniForConditionalGeneration.from_pretrained(args.checkpoint_path,
|
||||
# torch_dtype='auto',
|
||||
# attn_implementation='flash_attention_2',
|
||||
# device_map=device_map)
|
||||
# else:
|
||||
# model = Qwen2_5OmniForConditionalGeneration.from_pretrained(args.checkpoint_path, device_map=device_map, torch_dtype='auto')
|
||||
def get_model(params, device="cuda"):
|
||||
"""Load and prepare the speech-to-speech model."""
|
||||
if params.remove_whisper_encoder_input_length_restriction:
|
||||
replace_whisper_encoder_forward()
|
||||
|
||||
# processor = Qwen2_5OmniProcessor.from_pretrained(args.checkpoint_path)
|
||||
return model, processor
|
||||
whisper_model = whisper.load_model(params.speech_encoder_path_or_name, "cpu")
|
||||
speech_encoder = whisper_model.encoder
|
||||
speech_encoder_dim = whisper_model.dims.n_audio_state
|
||||
tokenizer = AutoTokenizer.from_pretrained(params.llm_path_or_name)
|
||||
|
||||
def _launch_demo(args, model, processor):
|
||||
if params.use_flash_attn:
|
||||
attn_implementation = "flash_attention_2"
|
||||
else:
|
||||
attn_implementation = "eager"
|
||||
|
||||
llm = AutoModelForCausalLM.from_pretrained(
|
||||
params.llm_path_or_name,
|
||||
attn_implementation=attn_implementation,
|
||||
torch_dtype=torch.float16,
|
||||
)
|
||||
if params.use_lora:
|
||||
lora_config = LoraConfig(
|
||||
r=64,
|
||||
lora_alpha=16,
|
||||
target_modules=[
|
||||
"q_proj",
|
||||
"k_proj",
|
||||
"v_proj",
|
||||
"o_proj",
|
||||
"up_proj",
|
||||
"gate_proj",
|
||||
"down_proj",
|
||||
],
|
||||
task_type="CAUSAL_LM",
|
||||
)
|
||||
llm = get_peft_model(llm, lora_config)
|
||||
llm.print_trainable_parameters()
|
||||
|
||||
special_tokens_dict = {"additional_special_tokens": [DEFAULT_SPEECH_TOKEN]}
|
||||
tokenizer.add_special_tokens(special_tokens_dict)
|
||||
llm.config.pad_token_id = tokenizer.convert_tokens_to_ids("<|endoftext|>")
|
||||
llm.config.bos_token_id = tokenizer.convert_tokens_to_ids("<|im_start|>")
|
||||
llm.config.eos_token_id = tokenizer.convert_tokens_to_ids("<|im_end|>")
|
||||
|
||||
llm.config.default_speech_token_id = tokenizer.convert_tokens_to_ids(
|
||||
DEFAULT_SPEECH_TOKEN
|
||||
)
|
||||
|
||||
encoder_projector = EncoderProjector(
|
||||
speech_encoder_dim, llm.config.hidden_size, params.encoder_projector_ds_rate
|
||||
)
|
||||
|
||||
codec_vocab_size = 4096 + 4
|
||||
config = Qwen2Config(
|
||||
vocab_size=codec_vocab_size,
|
||||
hidden_size=1024,
|
||||
num_hidden_layers=12,
|
||||
num_attention_heads=16,
|
||||
num_key_value_heads=16,
|
||||
intermediate_size=2048,
|
||||
max_position_embeddings=4096,
|
||||
)
|
||||
codec_lm = AutoModelForCausalLM.from_config(
|
||||
config=config,
|
||||
attn_implementation=attn_implementation,
|
||||
torch_dtype=torch.float16
|
||||
)
|
||||
codec_lm.resize_token_embeddings(codec_vocab_size)
|
||||
codec_lm.vocab_size = codec_vocab_size
|
||||
codec_lm.config.pad_token_id = codec_vocab_size - 1
|
||||
codec_lm.config.eos_token_id = codec_vocab_size - 2
|
||||
codec_lm.config.bos_token_id = codec_vocab_size - 3
|
||||
codec_lm.config.mask_token_id = codec_vocab_size - 4
|
||||
|
||||
model = SPEECH_LLM(
|
||||
speech_encoder,
|
||||
llm,
|
||||
encoder_projector,
|
||||
codec_lm,
|
||||
codec_lm_padding_side= "left" if params.use_flash_attn else "right",
|
||||
)
|
||||
|
||||
checkpoint = torch.load(
|
||||
f"{params.checkpoint_path}", map_location="cpu"
|
||||
)
|
||||
model.load_state_dict(checkpoint, strict=False)
|
||||
|
||||
model.to(device)
|
||||
model.eval()
|
||||
return model, tokenizer
|
||||
|
||||
|
||||
def audio_decode_cosyvoice(audio_tokens, codec_decoder):
|
||||
"""
|
||||
Generate audio from tokens with optional tone and prompt embedding.
|
||||
|
||||
Args:
|
||||
audio_tokens (list): List of audio tokens to be processed.
|
||||
codec_decoder: Codec decoder for generating audio.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Generated audio waveform.
|
||||
"""
|
||||
flow_embedding = codec_decoder.frontend.spk2info['中文女']['embedding']
|
||||
flow_prompt_speech_token = torch.zeros(1, 0, dtype=torch.int32)
|
||||
prompt_speech_feat = torch.zeros(1, 0, 80)
|
||||
tts_mel, _ = codec_decoder.model.flow.inference(token=audio_tokens.to(codec_decoder.model.device),
|
||||
token_len=torch.tensor([audio_tokens.shape[1]], dtype=torch.int32).to(codec_decoder.model.device),
|
||||
prompt_token=flow_prompt_speech_token.to(codec_decoder.model.device),
|
||||
prompt_token_len=torch.tensor([flow_prompt_speech_token.shape[1]], dtype=torch.int32).to(codec_decoder.model.device),
|
||||
prompt_feat=prompt_speech_feat.to(codec_decoder.model.device),
|
||||
prompt_feat_len=torch.tensor([prompt_speech_feat.shape[1]], dtype=torch.int32).to(codec_decoder.model.device),
|
||||
embedding=flow_embedding.to(codec_decoder.model.device),
|
||||
flow_cache=torch.zeros(1, 80, 0, 2).to(codec_decoder.model.device),)
|
||||
|
||||
|
||||
audio_hat, _ = codec_decoder.model.hift.inference(speech_feat=tts_mel, cache_source=torch.zeros(1, 1, 0))
|
||||
|
||||
return audio_hat
|
||||
|
||||
def preprocess(
|
||||
messages,
|
||||
tokenizer,
|
||||
):
|
||||
"""Preprocesses the data for supervised fine-tuning."""
|
||||
texts = []
|
||||
TEMPLATE = "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content']}}{% if loop.last %}{{''}}{% else %}{{ '<|im_end|>\n' }}{% endif %}{% endfor %}"
|
||||
for i, msg in enumerate(messages):
|
||||
texts.append(
|
||||
tokenizer.apply_chat_template(
|
||||
msg,
|
||||
tokenize=True,
|
||||
add_generation_prompt=False,
|
||||
chat_template=TEMPLATE,
|
||||
padding="longest",
|
||||
truncation=False,
|
||||
)
|
||||
)
|
||||
max_len_texts = max([len(text) for text in texts])
|
||||
if tokenizer.padding_side == "right":
|
||||
texts = [
|
||||
text + [tokenizer.pad_token_id] * (max_len_texts - len(text))
|
||||
for text in texts
|
||||
]
|
||||
else:
|
||||
texts = [
|
||||
[tokenizer.pad_token_id] * (max_len_texts - len(text)) + text
|
||||
for text in texts
|
||||
]
|
||||
|
||||
input_ids = torch.tensor(texts, dtype=torch.int)
|
||||
|
||||
attention_mask = input_ids.ne(tokenizer.pad_token_id)
|
||||
|
||||
return input_ids, attention_mask
|
||||
|
||||
|
||||
def _launch_demo(args, model, tokenizer, token2wav_model):
|
||||
|
||||
def format_history(history: list):
|
||||
messages = []
|
||||
@ -36,42 +187,58 @@ def _launch_demo(args, model, processor):
|
||||
elif item["role"] == "user" and (isinstance(item["content"], list) or
|
||||
isinstance(item["content"], tuple)):
|
||||
file_path = item["content"][0]
|
||||
|
||||
# TODO: check if the file_path's transcript is already in the history
|
||||
mime_type = client_utils.get_mimetype(file_path)
|
||||
if mime_type.startswith("audio"):
|
||||
messages.append({
|
||||
"role":
|
||||
item['role'],
|
||||
"content": [{
|
||||
"type": "audio",
|
||||
"audio": file_path,
|
||||
}]
|
||||
"content": item["content"][1] # append audio transcript here
|
||||
})
|
||||
print('predict history: ', messages)
|
||||
messages = messages[-2:] # TODO: WAR: add history later
|
||||
return messages
|
||||
|
||||
def predict(messages):
|
||||
print('predict history: ', messages)
|
||||
def decode(
|
||||
model,
|
||||
token2wav_model,
|
||||
tokenizer,
|
||||
feature,
|
||||
messages,
|
||||
):
|
||||
"""Decode one
|
||||
Returns:
|
||||
pass
|
||||
"""
|
||||
|
||||
text = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
|
||||
dtype = torch.float32
|
||||
device = model.llm.device
|
||||
|
||||
audios = [msg['content'][0]['audio'] for msg in messages if msg['role'] == 'user' and isinstance(msg['content'], list) and msg['content'][0]['type'] == 'audio']
|
||||
feature = feature.to(device, dtype=dtype).transpose(1, 2)
|
||||
assert feature.shape[2] == 80
|
||||
|
||||
inputs = processor(text=text, audio=audios, return_tensors="pt", padding=True)
|
||||
inputs = inputs.to(model.device).to(model.dtype)
|
||||
input_ids, attention_mask = preprocess([messages], tokenizer)
|
||||
|
||||
text_ids, audio = model.generate(**inputs)
|
||||
generated_ids, audio_tokens = model.decode_with_speech_output(
|
||||
feature, input_ids.to(device, dtype=torch.long), attention_mask.to(device)
|
||||
)
|
||||
|
||||
response = processor.batch_decode(text_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
||||
response = response[0].split("\n")[-1]
|
||||
yield {"type": "text", "data": response}
|
||||
hyps = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
|
||||
yield {"type": "text", "data": hyps}
|
||||
|
||||
audio_tokens = [token for token in audio_tokens if token < 4096]
|
||||
audio_tokens = torch.tensor(audio_tokens, dtype=torch.int32).unsqueeze(0)
|
||||
audio_hat = audio_decode_cosyvoice(audio_tokens, token2wav_model)
|
||||
audio = audio_hat.squeeze(0).cpu().numpy()
|
||||
# sf.write(f'{wav_name}.wav', audio_hat.squeeze(0).cpu().numpy(), 22050)
|
||||
audio = np.array(audio * 32767).astype(np.int16)
|
||||
wav_io = io.BytesIO()
|
||||
sf.write(wav_io, audio, samplerate=24000, format="WAV")
|
||||
sf.write(wav_io, audio, samplerate=22050, format="WAV")
|
||||
wav_io.seek(0)
|
||||
wav_bytes = wav_io.getvalue()
|
||||
audio_path = processing_utils.save_bytes_to_cache(
|
||||
wav_bytes, "audio.wav", cache_dir=demo.GRADIO_CACHE)
|
||||
|
||||
yield {"type": "audio", "data": audio_path}
|
||||
|
||||
def media_predict(audio, history):
|
||||
@ -83,18 +250,21 @@ def _launch_demo(args, model, processor):
|
||||
gr.update(visible=True), # stop_btn
|
||||
)
|
||||
|
||||
files = [audio]
|
||||
|
||||
for f in files:
|
||||
if f:
|
||||
history.append({"role": "user", "content": (f, )})
|
||||
|
||||
assert audio is not None
|
||||
# get audio transcript here
|
||||
history.append({"role": "user", "content": f"{DEFAULT_SPEECH_TOKEN}"})
|
||||
history.append({"role": "assistant", "content": ""})
|
||||
formatted_history = format_history(history=history)
|
||||
|
||||
# audio_transcript = get_audio_transcript(audio)
|
||||
audio_transcript = "audio transcript"
|
||||
history[-2]["content"] = (audio, audio_transcript)
|
||||
fbank = whisper.log_mel_spectrogram(audio, model.llm.device)
|
||||
print('fbank: ', fbank.shape)
|
||||
assert fbank.ndim == 3
|
||||
|
||||
history.append({"role": "assistant", "content": ""})
|
||||
|
||||
for chunk in predict(formatted_history):
|
||||
# history.append({"role": "assistant", "content": ""})
|
||||
for chunk in decode(model, token2wav_model, tokenizer, fbank, formatted_history):
|
||||
if chunk["type"] == "text":
|
||||
history[-1]["content"] = chunk["data"]
|
||||
yield (
|
||||
@ -123,10 +293,9 @@ def _launch_demo(args, model, processor):
|
||||
with gr.Column(scale=1):
|
||||
microphone = gr.Audio(sources=['microphone'],
|
||||
type="filepath")
|
||||
submit_btn = gr.Button(get_text("Submit", "提交"),
|
||||
variant="primary")
|
||||
stop_btn = gr.Button(get_text("Stop", "停止"), visible=False)
|
||||
clear_btn = gr.Button(get_text("Clear History", "清除历史"))
|
||||
submit_btn = gr.Button("Submit", variant="primary")
|
||||
stop_btn = gr.Button("Stop", visible=False)
|
||||
clear_btn = gr.Button("Clear History")
|
||||
with gr.Column(scale=2):
|
||||
media_chatbot = gr.Chatbot(height=650, type="messages")
|
||||
|
||||
@ -169,7 +338,10 @@ def _get_args():
|
||||
type=str,
|
||||
default=None,
|
||||
help='Checkpoint name or path, default to %(default)r')
|
||||
|
||||
parser.add_argument('--token2wav-path',
|
||||
type=str,
|
||||
default=None,
|
||||
help='Token2Wav path, default to %(default)r')
|
||||
parser.add_argument('--flash-attn2',
|
||||
action='store_true',
|
||||
default=False,
|
||||
@ -184,11 +356,12 @@ def _get_args():
|
||||
help='Automatically launch the interface in a new tab on the default browser.')
|
||||
parser.add_argument('--server-port', type=int, default=7860, help='Demo server port.')
|
||||
parser.add_argument('--server-name', type=str, default='127.0.0.1', help='Demo server name.')
|
||||
|
||||
add_model_arguments(parser)
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = _get_args()
|
||||
model, processor = _load_model_processor(args)
|
||||
_launch_demo(args, model, processor)
|
||||
model, tokenizer = get_model(args)
|
||||
cosyvoice = CosyVoice(args.token2wav_path, load_jit=False, load_trt=False, fp16=False)
|
||||
_launch_demo(args, model, tokenizer, cosyvoice)
|
Loading…
x
Reference in New Issue
Block a user