Remove input feature batchnorm..

This commit is contained in:
Fangjun Kuang 2021-12-18 11:05:28 +08:00
parent 4eb5e7864a
commit 4635af633a
6 changed files with 0 additions and 29 deletions

View File

@ -56,7 +56,6 @@ class Conformer(Transformer):
cnn_module_kernel: int = 31, cnn_module_kernel: int = 31,
normalize_before: bool = True, normalize_before: bool = True,
vgg_frontend: bool = False, vgg_frontend: bool = False,
use_feat_batchnorm: bool = False,
) -> None: ) -> None:
super(Conformer, self).__init__( super(Conformer, self).__init__(
num_features=num_features, num_features=num_features,
@ -69,7 +68,6 @@ class Conformer(Transformer):
dropout=dropout, dropout=dropout,
normalize_before=normalize_before, normalize_before=normalize_before,
vgg_frontend=vgg_frontend, vgg_frontend=vgg_frontend,
use_feat_batchnorm=use_feat_batchnorm,
) )
self.encoder_pos = RelPositionalEncoding(d_model, dropout) self.encoder_pos = RelPositionalEncoding(d_model, dropout)
@ -107,11 +105,6 @@ class Conformer(Transformer):
- logit_lens, a tensor of shape (batch_size,) containing the number - logit_lens, a tensor of shape (batch_size,) containing the number
of frames in `logits` before padding. of frames in `logits` before padding.
""" """
if self.use_feat_batchnorm:
x = x.permute(0, 2, 1) # (N, T, C) -> (N, C, T)
x = self.feat_batchnorm(x)
x = x.permute(0, 2, 1) # (N, C, T) -> (N, T, C)
x = self.encoder_embed(x) x = self.encoder_embed(x)
x, pos_emb = self.encoder_pos(x) x, pos_emb = self.encoder_pos(x)
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C) x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)

View File

@ -129,7 +129,6 @@ def get_params() -> AttributeDict:
"dim_feedforward": 2048, "dim_feedforward": 2048,
"num_encoder_layers": 12, "num_encoder_layers": 12,
"vgg_frontend": False, "vgg_frontend": False,
"use_feat_batchnorm": True,
# decoder params # decoder params
"decoder_embedding_dim": 1024, "decoder_embedding_dim": 1024,
"num_decoder_layers": 4, "num_decoder_layers": 4,
@ -151,7 +150,6 @@ def get_encoder_model(params: AttributeDict):
dim_feedforward=params.dim_feedforward, dim_feedforward=params.dim_feedforward,
num_encoder_layers=params.num_encoder_layers, num_encoder_layers=params.num_encoder_layers,
vgg_frontend=params.vgg_frontend, vgg_frontend=params.vgg_frontend,
use_feat_batchnorm=params.use_feat_batchnorm,
) )
return encoder return encoder

View File

@ -119,7 +119,6 @@ def get_params() -> AttributeDict:
"dim_feedforward": 2048, "dim_feedforward": 2048,
"num_encoder_layers": 12, "num_encoder_layers": 12,
"vgg_frontend": False, "vgg_frontend": False,
"use_feat_batchnorm": True,
# decoder params # decoder params
"decoder_embedding_dim": 1024, "decoder_embedding_dim": 1024,
"num_decoder_layers": 4, "num_decoder_layers": 4,
@ -140,7 +139,6 @@ def get_encoder_model(params: AttributeDict):
dim_feedforward=params.dim_feedforward, dim_feedforward=params.dim_feedforward,
num_encoder_layers=params.num_encoder_layers, num_encoder_layers=params.num_encoder_layers,
vgg_frontend=params.vgg_frontend, vgg_frontend=params.vgg_frontend,
use_feat_batchnorm=params.use_feat_batchnorm,
) )
return encoder return encoder

View File

@ -116,7 +116,6 @@ def get_params() -> AttributeDict:
"dim_feedforward": 2048, "dim_feedforward": 2048,
"num_encoder_layers": 12, "num_encoder_layers": 12,
"vgg_frontend": False, "vgg_frontend": False,
"use_feat_batchnorm": True,
# decoder params # decoder params
"decoder_embedding_dim": 1024, "decoder_embedding_dim": 1024,
"num_decoder_layers": 4, "num_decoder_layers": 4,
@ -137,7 +136,6 @@ def get_encoder_model(params: AttributeDict):
dim_feedforward=params.dim_feedforward, dim_feedforward=params.dim_feedforward,
num_encoder_layers=params.num_encoder_layers, num_encoder_layers=params.num_encoder_layers,
vgg_frontend=params.vgg_frontend, vgg_frontend=params.vgg_frontend,
use_feat_batchnorm=params.use_feat_batchnorm,
) )
return encoder return encoder

View File

@ -171,9 +171,6 @@ def get_params() -> AttributeDict:
- subsampling_factor: The subsampling factor for the model. - subsampling_factor: The subsampling factor for the model.
- use_feat_batchnorm: Whether to do batch normalization for the
input features.
- attention_dim: Hidden dim for multi-head attention model. - attention_dim: Hidden dim for multi-head attention model.
- num_decoder_layers: Number of decoder layer of transformer decoder. - num_decoder_layers: Number of decoder layer of transformer decoder.
@ -199,7 +196,6 @@ def get_params() -> AttributeDict:
"dim_feedforward": 2048, "dim_feedforward": 2048,
"num_encoder_layers": 12, "num_encoder_layers": 12,
"vgg_frontend": False, "vgg_frontend": False,
"use_feat_batchnorm": True,
# decoder params # decoder params
"decoder_embedding_dim": 1024, "decoder_embedding_dim": 1024,
"num_decoder_layers": 4, "num_decoder_layers": 4,
@ -224,7 +220,6 @@ def get_encoder_model(params: AttributeDict):
dim_feedforward=params.dim_feedforward, dim_feedforward=params.dim_feedforward,
num_encoder_layers=params.num_encoder_layers, num_encoder_layers=params.num_encoder_layers,
vgg_frontend=params.vgg_frontend, vgg_frontend=params.vgg_frontend,
use_feat_batchnorm=params.use_feat_batchnorm,
) )
return encoder return encoder

View File

@ -39,7 +39,6 @@ class Transformer(EncoderInterface):
dropout: float = 0.1, dropout: float = 0.1,
normalize_before: bool = True, normalize_before: bool = True,
vgg_frontend: bool = False, vgg_frontend: bool = False,
use_feat_batchnorm: bool = False,
) -> None: ) -> None:
""" """
Args: Args:
@ -65,13 +64,8 @@ class Transformer(EncoderInterface):
If True, use pre-layer norm; False to use post-layer norm. If True, use pre-layer norm; False to use post-layer norm.
vgg_frontend: vgg_frontend:
True to use vgg style frontend for subsampling. True to use vgg style frontend for subsampling.
use_feat_batchnorm:
True to use batchnorm for the input layer.
""" """
super().__init__() super().__init__()
self.use_feat_batchnorm = use_feat_batchnorm
if use_feat_batchnorm:
self.feat_batchnorm = nn.BatchNorm1d(num_features)
self.num_features = num_features self.num_features = num_features
self.output_dim = output_dim self.output_dim = output_dim
@ -131,11 +125,6 @@ class Transformer(EncoderInterface):
- logit_lens, a tensor of shape (batch_size,) containing the number - logit_lens, a tensor of shape (batch_size,) containing the number
of frames in `logits` before padding. of frames in `logits` before padding.
""" """
if self.use_feat_batchnorm:
x = x.permute(0, 2, 1) # (N, T, C) -> (N, C, T)
x = self.feat_batchnorm(x)
x = x.permute(0, 2, 1) # (N, C, T) -> (N, T, C)
x = self.encoder_embed(x) x = self.encoder_embed(x)
x = self.encoder_pos(x) x = self.encoder_pos(x)
x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C) x = x.permute(1, 0, 2) # (N, T, C) -> (T, N, C)