diff --git a/egs/librispeech/ASR/pruned_transducer_stateless7/zipformer.py b/egs/librispeech/ASR/pruned_transducer_stateless7/zipformer.py index 71c04382b..7e6248249 100644 --- a/egs/librispeech/ASR/pruned_transducer_stateless7/zipformer.py +++ b/egs/librispeech/ASR/pruned_transducer_stateless7/zipformer.py @@ -388,6 +388,7 @@ class ZipformerEncoderLayer(nn.Module): # to work correctly. layer_skip_rate: FloatLike = ScheduledFloat((0.0, 0.5), (4000.0, 0.05), default=0), dynamic_skip_rate: FloatLike = ScheduledFloat((0.0, 0.2), (4000.0, 0.0), default=0), + nonlin_skip_rate: FloatLike = ScheduledFloat((0.0, 0.1), (20000, 0.0), default=0), const_attention_rate: FloatLike = ScheduledFloat((0.0, 0.25), (4000.0, 0.025), default=0), bypass_min: FloatLike = ScheduledFloat((0.0, 0.75), (20000.0, 0.2), default=0), bypass_max: FloatLike = 1.0, @@ -397,8 +398,12 @@ class ZipformerEncoderLayer(nn.Module): # probability of skipping the entire layer. self.layer_skip_rate = copy.deepcopy(layer_skip_rate) - # skip probability for dynamic modules (meaning: anything but feedforward) + # skip probability for dynamic modules (meaning: anything but feedforward). self.dynamic_skip_rate = copy.deepcopy(dynamic_skip_rate) + # an additional skip probability that applies to NoninAttentionModule to stop it from + # contributing too much early on. + self.nonlin_skip_rate = copy.deepcopy(nonlin_skip_rate) + # min and max for self.bypass_scale, applied with probability 0.5 to avoid grads # ever becoming zero. self.bypass_min = copy.deepcopy(bypass_min) @@ -521,7 +526,7 @@ class ZipformerEncoderLayer(nn.Module): first_attn_weights = first_attn_weights * (1.0 / first_attn_weights.sum(dim=-1, keepdim=True)) first_attn_weights = first_attn_weights.expand(3, -1, -1, -1) - if torch.jit.is_scripting() or use_self_attn: + if torch.jit.is_scripting() or (use_self_attn and random.random() >= float(self.nonlin_skip_rate)): src = src + self.nonlin_attention_module(src, first_attn_weights[0:1])