RNNLM rescore + Low-order density ratio (#1017)

* add rnnlm rescore + LODR

* add LODR in decode.py

* update RESULTS
This commit is contained in:
marcoyang1998 2023-04-24 15:00:02 +08:00 committed by GitHub
parent 2096e69bda
commit 45c13e90e4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 345 additions and 10 deletions

View File

@ -215,11 +215,12 @@ done
We also support decoding with neural network LMs. After combining with language models, the WERs are
| decoding method | chunk size | test-clean | test-other | comment | decoding mode |
|----------------------|------------|------------|------------|---------------------|----------------------|
| modified beam search | 320ms | 3.11 | 7.93 | --epoch 30 --avg 9 | simulated streaming |
| modified beam search + RNNLM shallow fusion | 320ms | 2.58 | 6.65 | --epoch 30 --avg 9 | simulated streaming |
| modified beam search + RNNLM nbest rescore | 320ms | 2.59 | 6.86 | --epoch 30 --avg 9 | simulated streaming |
| `modified_beam_search` | 320ms | 3.11 | 7.93 | --epoch 30 --avg 9 | simulated streaming |
| `modified_beam_search_lm_shallow_fusion` | 320ms | 2.58 | 6.65 | --epoch 30 --avg 9 | simulated streaming |
| `modified_beam_search_lm_rescore` | 320ms | 2.59 | 6.86 | --epoch 30 --avg 9 | simulated streaming |
| `modified_beam_search_lm_rescore_LODR` | 320ms | 2.52 | 6.73 | --epoch 30 --avg 9 | simulated streaming |
Please use the following command for RNNLM shallow fusion:
Please use the following command for `modified_beam_search_lm_shallow_fusion`:
```bash
for lm_scale in $(seq 0.15 0.01 0.38); do
for beam_size in 4 8 12; do
@ -246,7 +247,7 @@ for lm_scale in $(seq 0.15 0.01 0.38); do
done
```
Please use the following command for RNNLM rescore:
Please use the following command for `modified_beam_search_lm_rescore`:
```bash
./pruned_transducer_stateless7_streaming/decode.py \
--epoch 30 \
@ -268,7 +269,32 @@ Please use the following command for RNNLM rescore:
--lm-vocab-size 500
```
A well-trained RNNLM can be found here: <https://huggingface.co/ezerhouni/icefall-librispeech-rnn-lm/tree/main>.
Please use the following command for `modified_beam_search_lm_rescore_LODR`:
```bash
./pruned_transducer_stateless7_streaming/decode.py \
--epoch 30 \
--avg 9 \
--use-averaged-model True \
--beam-size 8 \
--exp-dir ./pruned_transducer_stateless7_streaming/exp \
--max-duration 600 \
--decode-chunk-len 32 \
--decoding-method modified_beam_search_lm_rescore_LODR \
--use-shallow-fusion 0 \
--lm-type rnn \
--lm-exp-dir rnn_lm/exp \
--lm-epoch 99 \
--lm-avg 1 \
--rnn-lm-embedding-dim 2048 \
--rnn-lm-hidden-dim 2048 \
--rnn-lm-num-layers 3 \
--lm-vocab-size 500 \
--tokens-ngram 2 \
--backoff-id 500
```
A well-trained RNNLM can be found here: <https://huggingface.co/ezerhouni/icefall-librispeech-rnn-lm/tree/main>. The bi-gram used in LODR decoding
can be found here: <https://huggingface.co/marcoyang/librispeech_bigram>.
#### Smaller model

View File

@ -1244,7 +1244,7 @@ def modified_beam_search_lm_rescore(
# get the best hyp with different lm_scale
for lm_scale in lm_scale_list:
key = f"nnlm_scale_{lm_scale}"
key = f"nnlm_scale_{lm_scale:.2f}"
tot_scores = am_scores.values + lm_scores * lm_scale
ragged_tot_scores = k2.RaggedTensor(shape=am_scores.shape, value=tot_scores)
max_indexes = ragged_tot_scores.argmax().tolist()
@ -1257,6 +1257,222 @@ def modified_beam_search_lm_rescore(
return ans
def modified_beam_search_lm_rescore_LODR(
model: Transducer,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
LM: LmScorer,
LODR_lm: NgramLm,
sp: spm.SentencePieceProcessor,
lm_scale_list: List[int],
beam: int = 4,
temperature: float = 1.0,
return_timestamps: bool = False,
) -> Union[List[List[int]], DecodingResults]:
"""Beam search in batch mode with --max-sym-per-frame=1 being hardcoded.
Rescore the final results with RNNLM and return the one with the highest score
Args:
model:
The transducer model.
encoder_out:
Output from the encoder. Its shape is (N, T, C).
encoder_out_lens:
A 1-D tensor of shape (N,), containing number of valid frames in
encoder_out before padding.
beam:
Number of active paths during the beam search.
temperature:
Softmax temperature.
LM:
A neural network language model
return_timestamps:
Whether to return timestamps.
Returns:
If return_timestamps is False, return the decoded result.
Else, return a DecodingResults object containing
decoded result and corresponding timestamps.
"""
assert encoder_out.ndim == 3, encoder_out.shape
assert encoder_out.size(0) >= 1, encoder_out.size(0)
packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence(
input=encoder_out,
lengths=encoder_out_lens.cpu(),
batch_first=True,
enforce_sorted=False,
)
blank_id = model.decoder.blank_id
unk_id = getattr(model, "unk_id", blank_id)
context_size = model.decoder.context_size
device = next(model.parameters()).device
batch_size_list = packed_encoder_out.batch_sizes.tolist()
N = encoder_out.size(0)
assert torch.all(encoder_out_lens > 0), encoder_out_lens
assert N == batch_size_list[0], (N, batch_size_list)
B = [HypothesisList() for _ in range(N)]
for i in range(N):
B[i].add(
Hypothesis(
ys=[blank_id] * context_size,
log_prob=torch.zeros(1, dtype=torch.float32, device=device),
timestamp=[],
)
)
encoder_out = model.joiner.encoder_proj(packed_encoder_out.data)
offset = 0
finalized_B = []
for (t, batch_size) in enumerate(batch_size_list):
start = offset
end = offset + batch_size
current_encoder_out = encoder_out.data[start:end]
current_encoder_out = current_encoder_out.unsqueeze(1).unsqueeze(1)
# current_encoder_out's shape is (batch_size, 1, 1, encoder_out_dim)
offset = end
finalized_B = B[batch_size:] + finalized_B
B = B[:batch_size]
hyps_shape = get_hyps_shape(B).to(device)
A = [list(b) for b in B]
B = [HypothesisList() for _ in range(batch_size)]
ys_log_probs = torch.cat(
[hyp.log_prob.reshape(1, 1) for hyps in A for hyp in hyps]
) # (num_hyps, 1)
decoder_input = torch.tensor(
[hyp.ys[-context_size:] for hyps in A for hyp in hyps],
device=device,
dtype=torch.int64,
) # (num_hyps, context_size)
decoder_out = model.decoder(decoder_input, need_pad=False).unsqueeze(1)
decoder_out = model.joiner.decoder_proj(decoder_out)
# decoder_out is of shape (num_hyps, 1, 1, joiner_dim)
# Note: For torch 1.7.1 and below, it requires a torch.int64 tensor
# as index, so we use `to(torch.int64)` below.
current_encoder_out = torch.index_select(
current_encoder_out,
dim=0,
index=hyps_shape.row_ids(1).to(torch.int64),
) # (num_hyps, 1, 1, encoder_out_dim)
logits = model.joiner(
current_encoder_out,
decoder_out,
project_input=False,
) # (num_hyps, 1, 1, vocab_size)
logits = logits.squeeze(1).squeeze(1) # (num_hyps, vocab_size)
log_probs = (logits / temperature).log_softmax(dim=-1) # (num_hyps, vocab_size)
log_probs.add_(ys_log_probs)
vocab_size = log_probs.size(-1)
log_probs = log_probs.reshape(-1)
row_splits = hyps_shape.row_splits(1) * vocab_size
log_probs_shape = k2.ragged.create_ragged_shape2(
row_splits=row_splits, cached_tot_size=log_probs.numel()
)
ragged_log_probs = k2.RaggedTensor(shape=log_probs_shape, value=log_probs)
for i in range(batch_size):
topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
topk_hyp_indexes = (topk_indexes // vocab_size).tolist()
topk_token_indexes = (topk_indexes % vocab_size).tolist()
for k in range(len(topk_hyp_indexes)):
hyp_idx = topk_hyp_indexes[k]
hyp = A[i][hyp_idx]
new_ys = hyp.ys[:]
new_token = topk_token_indexes[k]
new_timestamp = hyp.timestamp[:]
if new_token not in (blank_id, unk_id):
new_ys.append(new_token)
new_timestamp.append(t)
new_log_prob = topk_log_probs[k]
new_hyp = Hypothesis(
ys=new_ys, log_prob=new_log_prob, timestamp=new_timestamp
)
B[i].add(new_hyp)
B = B + finalized_B
# get the am_scores for n-best list
hyps_shape = get_hyps_shape(B)
am_scores = torch.tensor([hyp.log_prob.item() for b in B for hyp in b])
am_scores = k2.RaggedTensor(value=am_scores, shape=hyps_shape).to(device)
# now LM rescore
# prepare input data to LM
candidate_seqs = [hyp.ys[context_size:] for b in B for hyp in b]
possible_seqs = k2.RaggedTensor(candidate_seqs)
row_splits = possible_seqs.shape.row_splits(1)
sentence_token_lengths = row_splits[1:] - row_splits[:-1]
possible_seqs_with_sos = add_sos(possible_seqs, sos_id=1)
possible_seqs_with_eos = add_eos(possible_seqs, eos_id=1)
sentence_token_lengths += 1
x = possible_seqs_with_sos.pad(mode="constant", padding_value=blank_id)
y = possible_seqs_with_eos.pad(mode="constant", padding_value=blank_id)
x = x.to(device).to(torch.int64)
y = y.to(device).to(torch.int64)
sentence_token_lengths = sentence_token_lengths.to(device).to(torch.int64)
lm_scores = LM.lm(x=x, y=y, lengths=sentence_token_lengths)
assert lm_scores.ndim == 2
lm_scores = -1 * lm_scores.sum(dim=1)
# now LODR scores
import math
LODR_scores = []
for seq in candidate_seqs:
tokens = " ".join(sp.id_to_piece(seq))
LODR_scores.append(LODR_lm.score(tokens))
LODR_scores = torch.tensor(LODR_scores).to(device) * math.log(
10
) # arpa scores are 10-based
assert lm_scores.shape == LODR_scores.shape
ans = {}
unsorted_indices = packed_encoder_out.unsorted_indices.tolist()
LODR_scale_list = [0.05 * i for i in range(1, 20)]
# get the best hyp with different lm_scale and lodr_scale
for lm_scale in lm_scale_list:
for lodr_scale in LODR_scale_list:
key = f"nnlm_scale_{lm_scale:.2f}_lodr_scale_{lodr_scale:.2f}"
tot_scores = (
am_scores.values / lm_scale + lm_scores - LODR_scores * lodr_scale
)
ragged_tot_scores = k2.RaggedTensor(shape=am_scores.shape, value=tot_scores)
max_indexes = ragged_tot_scores.argmax().tolist()
unsorted_hyps = [candidate_seqs[idx] for idx in max_indexes]
hyps = []
for idx in unsorted_indices:
hyps.append(unsorted_hyps[idx])
ans[key] = hyps
return ans
def _deprecated_modified_beam_search(
model: Transducer,
encoder_out: torch.Tensor,

View File

@ -123,10 +123,13 @@ from beam_search import (
greedy_search_batch,
modified_beam_search,
modified_beam_search_lm_rescore,
modified_beam_search_lm_rescore_LODR,
modified_beam_search_lm_shallow_fusion,
modified_beam_search_LODR,
)
from train import add_model_arguments, get_params, get_transducer_model
from icefall import LmScorer, NgramLm
from icefall.checkpoint import (
average_checkpoints,
average_checkpoints_with_averaged_model,
@ -134,7 +137,6 @@ from icefall.checkpoint import (
load_checkpoint,
)
from icefall.lexicon import Lexicon
from icefall.lm_wrapper import LmScorer
from icefall.utils import (
AttributeDict,
setup_logger,
@ -336,6 +338,21 @@ def get_parser():
""",
)
parser.add_argument(
"--tokens-ngram",
type=int,
default=2,
help="""The order of the ngram lm.
""",
)
parser.add_argument(
"--backoff-id",
type=int,
default=500,
help="ID of the backoff symbol in the ngram LM",
)
add_model_arguments(parser)
return parser
@ -349,6 +366,8 @@ def decode_one_batch(
word_table: Optional[k2.SymbolTable] = None,
decoding_graph: Optional[k2.Fsa] = None,
LM: Optional[LmScorer] = None,
ngram_lm=None,
ngram_lm_scale: float = 0.0,
) -> Dict[str, List[List[str]]]:
"""Decode one batch and return the result in a dict. The dict has the
following format:
@ -483,6 +502,18 @@ def decode_one_batch(
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
elif params.decoding_method == "modified_beam_search_LODR":
hyp_tokens = modified_beam_search_LODR(
model=model,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam_size,
LODR_lm=ngram_lm,
LODR_lm_scale=ngram_lm_scale,
LM=LM,
)
for hyp in sp.decode(hyp_tokens):
hyps.append(hyp.split())
elif params.decoding_method == "modified_beam_search_lm_rescore":
lm_scale_list = [0.01 * i for i in range(10, 50)]
ans_dict = modified_beam_search_lm_rescore(
@ -493,6 +524,18 @@ def decode_one_batch(
LM=LM,
lm_scale_list=lm_scale_list,
)
elif params.decoding_method == "modified_beam_search_lm_rescore_LODR":
lm_scale_list = [0.02 * i for i in range(2, 30)]
ans_dict = modified_beam_search_lm_rescore_LODR(
model=model,
encoder_out=encoder_out,
encoder_out_lens=encoder_out_lens,
beam=params.beam_size,
LM=LM,
LODR_lm=ngram_lm,
sp=sp,
lm_scale_list=lm_scale_list,
)
else:
batch_size = encoder_out.size(0)
@ -531,7 +574,10 @@ def decode_one_batch(
key += f"_ngram_lm_scale_{params.ngram_lm_scale}"
return {key: hyps}
elif params.decoding_method == "modified_beam_search_lm_rescore":
elif params.decoding_method in (
"modified_beam_search_lm_rescore",
"modified_beam_search_lm_rescore_LODR",
):
ans = dict()
assert ans_dict is not None
for key, hyps in ans_dict.items():
@ -550,6 +596,8 @@ def decode_dataset(
word_table: Optional[k2.SymbolTable] = None,
decoding_graph: Optional[k2.Fsa] = None,
LM: Optional[LmScorer] = None,
ngram_lm=None,
ngram_lm_scale: float = 0.0,
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
"""Decode dataset.
@ -568,6 +616,8 @@ def decode_dataset(
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
only when --decoding_method is fast_beam_search, fast_beam_search_nbest,
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
ngram_lm:
A n-gram LM to be used for LODR.
Returns:
Return a dict, whose key may be "greedy_search" if greedy search
is used, or it may be "beam_7" if beam size of 7 is used.
@ -600,6 +650,8 @@ def decode_dataset(
word_table=word_table,
batch=batch,
LM=LM,
ngram_lm=ngram_lm,
ngram_lm_scale=ngram_lm_scale,
)
for name, hyps in hyps_dict.items():
@ -677,8 +729,10 @@ def main():
"fast_beam_search_nbest_LG",
"fast_beam_search_nbest_oracle",
"modified_beam_search",
"modified_beam_search_LODR",
"modified_beam_search_lm_shallow_fusion",
"modified_beam_search_lm_rescore",
"modified_beam_search_lm_rescore_LODR",
)
params.res_dir = params.exp_dir / params.decoding_method
@ -822,7 +876,12 @@ def main():
model.eval()
# only load the neural network LM if required
if params.use_shallow_fusion or "lm" in params.decoding_method:
if params.use_shallow_fusion or params.decoding_method in (
"modified_beam_search_lm_rescore",
"modified_beam_search_lm_rescore_LODR",
"modified_beam_search_lm_shallow_fusion",
"modified_beam_search_LODR",
):
LM = LmScorer(
lm_type=params.lm_type,
params=params,
@ -834,6 +893,35 @@ def main():
else:
LM = None
# only load N-gram LM when needed
if params.decoding_method == "modified_beam_search_lm_rescore_LODR":
try:
import kenlm
except ImportError:
print("Please install kenlm first. You can use")
print(" pip install https://github.com/kpu/kenlm/archive/master.zip")
print("to install it")
import sys
sys.exit(-1)
ngram_file_name = str(params.lang_dir / f"{params.tokens_ngram}gram.arpa")
logging.info(f"lm filename: {ngram_file_name}")
ngram_lm = kenlm.Model(ngram_file_name)
elif params.decoding_method == "modified_beam_search_LODR":
lm_filename = f"{params.tokens_ngram}gram.fst.txt"
logging.info(f"Loading token level lm: {lm_filename}")
ngram_lm = NgramLm(
str(params.lang_dir / lm_filename),
backoff_id=params.backoff_id,
is_binary=False,
)
logging.info(f"num states: {ngram_lm.lm.num_states}")
ngram_lm_scale = params.ngram_lm_scale
else:
ngram_lm = None
ngram_lm_scale = None
if "fast_beam_search" in params.decoding_method:
if params.decoding_method == "fast_beam_search_nbest_LG":
lexicon = Lexicon(params.lang_dir)
@ -866,8 +954,10 @@ def main():
test_sets = ["test-clean", "test-other"]
test_dl = [test_clean_dl, test_other_dl]
import time
for test_set, test_dl in zip(test_sets, test_dl):
start = time.time()
results_dict = decode_dataset(
dl=test_dl,
params=params,
@ -876,7 +966,10 @@ def main():
word_table=word_table,
decoding_graph=decoding_graph,
LM=LM,
ngram_lm=ngram_lm,
ngram_lm_scale=ngram_lm_scale,
)
logging.info(f"Elasped time for {test_set}: {time.time() - start}")
save_results(
params=params,