mirror of
https://github.com/k2-fsa/icefall.git
synced 2025-08-09 01:52:41 +00:00
RNNLM rescore + Low-order density ratio (#1017)
* add rnnlm rescore + LODR * add LODR in decode.py * update RESULTS
This commit is contained in:
parent
2096e69bda
commit
45c13e90e4
@ -215,11 +215,12 @@ done
|
||||
We also support decoding with neural network LMs. After combining with language models, the WERs are
|
||||
| decoding method | chunk size | test-clean | test-other | comment | decoding mode |
|
||||
|----------------------|------------|------------|------------|---------------------|----------------------|
|
||||
| modified beam search | 320ms | 3.11 | 7.93 | --epoch 30 --avg 9 | simulated streaming |
|
||||
| modified beam search + RNNLM shallow fusion | 320ms | 2.58 | 6.65 | --epoch 30 --avg 9 | simulated streaming |
|
||||
| modified beam search + RNNLM nbest rescore | 320ms | 2.59 | 6.86 | --epoch 30 --avg 9 | simulated streaming |
|
||||
| `modified_beam_search` | 320ms | 3.11 | 7.93 | --epoch 30 --avg 9 | simulated streaming |
|
||||
| `modified_beam_search_lm_shallow_fusion` | 320ms | 2.58 | 6.65 | --epoch 30 --avg 9 | simulated streaming |
|
||||
| `modified_beam_search_lm_rescore` | 320ms | 2.59 | 6.86 | --epoch 30 --avg 9 | simulated streaming |
|
||||
| `modified_beam_search_lm_rescore_LODR` | 320ms | 2.52 | 6.73 | --epoch 30 --avg 9 | simulated streaming |
|
||||
|
||||
Please use the following command for RNNLM shallow fusion:
|
||||
Please use the following command for `modified_beam_search_lm_shallow_fusion`:
|
||||
```bash
|
||||
for lm_scale in $(seq 0.15 0.01 0.38); do
|
||||
for beam_size in 4 8 12; do
|
||||
@ -246,7 +247,7 @@ for lm_scale in $(seq 0.15 0.01 0.38); do
|
||||
done
|
||||
```
|
||||
|
||||
Please use the following command for RNNLM rescore:
|
||||
Please use the following command for `modified_beam_search_lm_rescore`:
|
||||
```bash
|
||||
./pruned_transducer_stateless7_streaming/decode.py \
|
||||
--epoch 30 \
|
||||
@ -268,7 +269,32 @@ Please use the following command for RNNLM rescore:
|
||||
--lm-vocab-size 500
|
||||
```
|
||||
|
||||
A well-trained RNNLM can be found here: <https://huggingface.co/ezerhouni/icefall-librispeech-rnn-lm/tree/main>.
|
||||
Please use the following command for `modified_beam_search_lm_rescore_LODR`:
|
||||
```bash
|
||||
./pruned_transducer_stateless7_streaming/decode.py \
|
||||
--epoch 30 \
|
||||
--avg 9 \
|
||||
--use-averaged-model True \
|
||||
--beam-size 8 \
|
||||
--exp-dir ./pruned_transducer_stateless7_streaming/exp \
|
||||
--max-duration 600 \
|
||||
--decode-chunk-len 32 \
|
||||
--decoding-method modified_beam_search_lm_rescore_LODR \
|
||||
--use-shallow-fusion 0 \
|
||||
--lm-type rnn \
|
||||
--lm-exp-dir rnn_lm/exp \
|
||||
--lm-epoch 99 \
|
||||
--lm-avg 1 \
|
||||
--rnn-lm-embedding-dim 2048 \
|
||||
--rnn-lm-hidden-dim 2048 \
|
||||
--rnn-lm-num-layers 3 \
|
||||
--lm-vocab-size 500 \
|
||||
--tokens-ngram 2 \
|
||||
--backoff-id 500
|
||||
```
|
||||
|
||||
A well-trained RNNLM can be found here: <https://huggingface.co/ezerhouni/icefall-librispeech-rnn-lm/tree/main>. The bi-gram used in LODR decoding
|
||||
can be found here: <https://huggingface.co/marcoyang/librispeech_bigram>.
|
||||
|
||||
|
||||
#### Smaller model
|
||||
|
@ -1244,7 +1244,7 @@ def modified_beam_search_lm_rescore(
|
||||
|
||||
# get the best hyp with different lm_scale
|
||||
for lm_scale in lm_scale_list:
|
||||
key = f"nnlm_scale_{lm_scale}"
|
||||
key = f"nnlm_scale_{lm_scale:.2f}"
|
||||
tot_scores = am_scores.values + lm_scores * lm_scale
|
||||
ragged_tot_scores = k2.RaggedTensor(shape=am_scores.shape, value=tot_scores)
|
||||
max_indexes = ragged_tot_scores.argmax().tolist()
|
||||
@ -1257,6 +1257,222 @@ def modified_beam_search_lm_rescore(
|
||||
return ans
|
||||
|
||||
|
||||
def modified_beam_search_lm_rescore_LODR(
|
||||
model: Transducer,
|
||||
encoder_out: torch.Tensor,
|
||||
encoder_out_lens: torch.Tensor,
|
||||
LM: LmScorer,
|
||||
LODR_lm: NgramLm,
|
||||
sp: spm.SentencePieceProcessor,
|
||||
lm_scale_list: List[int],
|
||||
beam: int = 4,
|
||||
temperature: float = 1.0,
|
||||
return_timestamps: bool = False,
|
||||
) -> Union[List[List[int]], DecodingResults]:
|
||||
"""Beam search in batch mode with --max-sym-per-frame=1 being hardcoded.
|
||||
Rescore the final results with RNNLM and return the one with the highest score
|
||||
|
||||
Args:
|
||||
model:
|
||||
The transducer model.
|
||||
encoder_out:
|
||||
Output from the encoder. Its shape is (N, T, C).
|
||||
encoder_out_lens:
|
||||
A 1-D tensor of shape (N,), containing number of valid frames in
|
||||
encoder_out before padding.
|
||||
beam:
|
||||
Number of active paths during the beam search.
|
||||
temperature:
|
||||
Softmax temperature.
|
||||
LM:
|
||||
A neural network language model
|
||||
return_timestamps:
|
||||
Whether to return timestamps.
|
||||
Returns:
|
||||
If return_timestamps is False, return the decoded result.
|
||||
Else, return a DecodingResults object containing
|
||||
decoded result and corresponding timestamps.
|
||||
"""
|
||||
assert encoder_out.ndim == 3, encoder_out.shape
|
||||
assert encoder_out.size(0) >= 1, encoder_out.size(0)
|
||||
|
||||
packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence(
|
||||
input=encoder_out,
|
||||
lengths=encoder_out_lens.cpu(),
|
||||
batch_first=True,
|
||||
enforce_sorted=False,
|
||||
)
|
||||
|
||||
blank_id = model.decoder.blank_id
|
||||
unk_id = getattr(model, "unk_id", blank_id)
|
||||
context_size = model.decoder.context_size
|
||||
device = next(model.parameters()).device
|
||||
|
||||
batch_size_list = packed_encoder_out.batch_sizes.tolist()
|
||||
N = encoder_out.size(0)
|
||||
assert torch.all(encoder_out_lens > 0), encoder_out_lens
|
||||
assert N == batch_size_list[0], (N, batch_size_list)
|
||||
|
||||
B = [HypothesisList() for _ in range(N)]
|
||||
for i in range(N):
|
||||
B[i].add(
|
||||
Hypothesis(
|
||||
ys=[blank_id] * context_size,
|
||||
log_prob=torch.zeros(1, dtype=torch.float32, device=device),
|
||||
timestamp=[],
|
||||
)
|
||||
)
|
||||
|
||||
encoder_out = model.joiner.encoder_proj(packed_encoder_out.data)
|
||||
|
||||
offset = 0
|
||||
finalized_B = []
|
||||
for (t, batch_size) in enumerate(batch_size_list):
|
||||
start = offset
|
||||
end = offset + batch_size
|
||||
current_encoder_out = encoder_out.data[start:end]
|
||||
current_encoder_out = current_encoder_out.unsqueeze(1).unsqueeze(1)
|
||||
# current_encoder_out's shape is (batch_size, 1, 1, encoder_out_dim)
|
||||
offset = end
|
||||
|
||||
finalized_B = B[batch_size:] + finalized_B
|
||||
B = B[:batch_size]
|
||||
|
||||
hyps_shape = get_hyps_shape(B).to(device)
|
||||
|
||||
A = [list(b) for b in B]
|
||||
B = [HypothesisList() for _ in range(batch_size)]
|
||||
|
||||
ys_log_probs = torch.cat(
|
||||
[hyp.log_prob.reshape(1, 1) for hyps in A for hyp in hyps]
|
||||
) # (num_hyps, 1)
|
||||
|
||||
decoder_input = torch.tensor(
|
||||
[hyp.ys[-context_size:] for hyps in A for hyp in hyps],
|
||||
device=device,
|
||||
dtype=torch.int64,
|
||||
) # (num_hyps, context_size)
|
||||
|
||||
decoder_out = model.decoder(decoder_input, need_pad=False).unsqueeze(1)
|
||||
decoder_out = model.joiner.decoder_proj(decoder_out)
|
||||
# decoder_out is of shape (num_hyps, 1, 1, joiner_dim)
|
||||
|
||||
# Note: For torch 1.7.1 and below, it requires a torch.int64 tensor
|
||||
# as index, so we use `to(torch.int64)` below.
|
||||
current_encoder_out = torch.index_select(
|
||||
current_encoder_out,
|
||||
dim=0,
|
||||
index=hyps_shape.row_ids(1).to(torch.int64),
|
||||
) # (num_hyps, 1, 1, encoder_out_dim)
|
||||
|
||||
logits = model.joiner(
|
||||
current_encoder_out,
|
||||
decoder_out,
|
||||
project_input=False,
|
||||
) # (num_hyps, 1, 1, vocab_size)
|
||||
|
||||
logits = logits.squeeze(1).squeeze(1) # (num_hyps, vocab_size)
|
||||
|
||||
log_probs = (logits / temperature).log_softmax(dim=-1) # (num_hyps, vocab_size)
|
||||
|
||||
log_probs.add_(ys_log_probs)
|
||||
|
||||
vocab_size = log_probs.size(-1)
|
||||
|
||||
log_probs = log_probs.reshape(-1)
|
||||
|
||||
row_splits = hyps_shape.row_splits(1) * vocab_size
|
||||
log_probs_shape = k2.ragged.create_ragged_shape2(
|
||||
row_splits=row_splits, cached_tot_size=log_probs.numel()
|
||||
)
|
||||
ragged_log_probs = k2.RaggedTensor(shape=log_probs_shape, value=log_probs)
|
||||
|
||||
for i in range(batch_size):
|
||||
topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam)
|
||||
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore")
|
||||
topk_hyp_indexes = (topk_indexes // vocab_size).tolist()
|
||||
topk_token_indexes = (topk_indexes % vocab_size).tolist()
|
||||
|
||||
for k in range(len(topk_hyp_indexes)):
|
||||
hyp_idx = topk_hyp_indexes[k]
|
||||
hyp = A[i][hyp_idx]
|
||||
|
||||
new_ys = hyp.ys[:]
|
||||
new_token = topk_token_indexes[k]
|
||||
new_timestamp = hyp.timestamp[:]
|
||||
if new_token not in (blank_id, unk_id):
|
||||
new_ys.append(new_token)
|
||||
new_timestamp.append(t)
|
||||
|
||||
new_log_prob = topk_log_probs[k]
|
||||
new_hyp = Hypothesis(
|
||||
ys=new_ys, log_prob=new_log_prob, timestamp=new_timestamp
|
||||
)
|
||||
B[i].add(new_hyp)
|
||||
|
||||
B = B + finalized_B
|
||||
|
||||
# get the am_scores for n-best list
|
||||
hyps_shape = get_hyps_shape(B)
|
||||
am_scores = torch.tensor([hyp.log_prob.item() for b in B for hyp in b])
|
||||
am_scores = k2.RaggedTensor(value=am_scores, shape=hyps_shape).to(device)
|
||||
|
||||
# now LM rescore
|
||||
# prepare input data to LM
|
||||
candidate_seqs = [hyp.ys[context_size:] for b in B for hyp in b]
|
||||
possible_seqs = k2.RaggedTensor(candidate_seqs)
|
||||
row_splits = possible_seqs.shape.row_splits(1)
|
||||
sentence_token_lengths = row_splits[1:] - row_splits[:-1]
|
||||
possible_seqs_with_sos = add_sos(possible_seqs, sos_id=1)
|
||||
possible_seqs_with_eos = add_eos(possible_seqs, eos_id=1)
|
||||
sentence_token_lengths += 1
|
||||
|
||||
x = possible_seqs_with_sos.pad(mode="constant", padding_value=blank_id)
|
||||
y = possible_seqs_with_eos.pad(mode="constant", padding_value=blank_id)
|
||||
x = x.to(device).to(torch.int64)
|
||||
y = y.to(device).to(torch.int64)
|
||||
sentence_token_lengths = sentence_token_lengths.to(device).to(torch.int64)
|
||||
|
||||
lm_scores = LM.lm(x=x, y=y, lengths=sentence_token_lengths)
|
||||
assert lm_scores.ndim == 2
|
||||
lm_scores = -1 * lm_scores.sum(dim=1)
|
||||
|
||||
# now LODR scores
|
||||
import math
|
||||
|
||||
LODR_scores = []
|
||||
for seq in candidate_seqs:
|
||||
tokens = " ".join(sp.id_to_piece(seq))
|
||||
LODR_scores.append(LODR_lm.score(tokens))
|
||||
LODR_scores = torch.tensor(LODR_scores).to(device) * math.log(
|
||||
10
|
||||
) # arpa scores are 10-based
|
||||
assert lm_scores.shape == LODR_scores.shape
|
||||
|
||||
ans = {}
|
||||
unsorted_indices = packed_encoder_out.unsorted_indices.tolist()
|
||||
|
||||
LODR_scale_list = [0.05 * i for i in range(1, 20)]
|
||||
# get the best hyp with different lm_scale and lodr_scale
|
||||
for lm_scale in lm_scale_list:
|
||||
for lodr_scale in LODR_scale_list:
|
||||
key = f"nnlm_scale_{lm_scale:.2f}_lodr_scale_{lodr_scale:.2f}"
|
||||
tot_scores = (
|
||||
am_scores.values / lm_scale + lm_scores - LODR_scores * lodr_scale
|
||||
)
|
||||
ragged_tot_scores = k2.RaggedTensor(shape=am_scores.shape, value=tot_scores)
|
||||
max_indexes = ragged_tot_scores.argmax().tolist()
|
||||
unsorted_hyps = [candidate_seqs[idx] for idx in max_indexes]
|
||||
hyps = []
|
||||
for idx in unsorted_indices:
|
||||
hyps.append(unsorted_hyps[idx])
|
||||
|
||||
ans[key] = hyps
|
||||
return ans
|
||||
|
||||
|
||||
def _deprecated_modified_beam_search(
|
||||
model: Transducer,
|
||||
encoder_out: torch.Tensor,
|
||||
|
@ -123,10 +123,13 @@ from beam_search import (
|
||||
greedy_search_batch,
|
||||
modified_beam_search,
|
||||
modified_beam_search_lm_rescore,
|
||||
modified_beam_search_lm_rescore_LODR,
|
||||
modified_beam_search_lm_shallow_fusion,
|
||||
modified_beam_search_LODR,
|
||||
)
|
||||
from train import add_model_arguments, get_params, get_transducer_model
|
||||
|
||||
from icefall import LmScorer, NgramLm
|
||||
from icefall.checkpoint import (
|
||||
average_checkpoints,
|
||||
average_checkpoints_with_averaged_model,
|
||||
@ -134,7 +137,6 @@ from icefall.checkpoint import (
|
||||
load_checkpoint,
|
||||
)
|
||||
from icefall.lexicon import Lexicon
|
||||
from icefall.lm_wrapper import LmScorer
|
||||
from icefall.utils import (
|
||||
AttributeDict,
|
||||
setup_logger,
|
||||
@ -336,6 +338,21 @@ def get_parser():
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tokens-ngram",
|
||||
type=int,
|
||||
default=2,
|
||||
help="""The order of the ngram lm.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--backoff-id",
|
||||
type=int,
|
||||
default=500,
|
||||
help="ID of the backoff symbol in the ngram LM",
|
||||
)
|
||||
|
||||
add_model_arguments(parser)
|
||||
|
||||
return parser
|
||||
@ -349,6 +366,8 @@ def decode_one_batch(
|
||||
word_table: Optional[k2.SymbolTable] = None,
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
LM: Optional[LmScorer] = None,
|
||||
ngram_lm=None,
|
||||
ngram_lm_scale: float = 0.0,
|
||||
) -> Dict[str, List[List[str]]]:
|
||||
"""Decode one batch and return the result in a dict. The dict has the
|
||||
following format:
|
||||
@ -483,6 +502,18 @@ def decode_one_batch(
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
elif params.decoding_method == "modified_beam_search_LODR":
|
||||
hyp_tokens = modified_beam_search_LODR(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam_size,
|
||||
LODR_lm=ngram_lm,
|
||||
LODR_lm_scale=ngram_lm_scale,
|
||||
LM=LM,
|
||||
)
|
||||
for hyp in sp.decode(hyp_tokens):
|
||||
hyps.append(hyp.split())
|
||||
elif params.decoding_method == "modified_beam_search_lm_rescore":
|
||||
lm_scale_list = [0.01 * i for i in range(10, 50)]
|
||||
ans_dict = modified_beam_search_lm_rescore(
|
||||
@ -493,6 +524,18 @@ def decode_one_batch(
|
||||
LM=LM,
|
||||
lm_scale_list=lm_scale_list,
|
||||
)
|
||||
elif params.decoding_method == "modified_beam_search_lm_rescore_LODR":
|
||||
lm_scale_list = [0.02 * i for i in range(2, 30)]
|
||||
ans_dict = modified_beam_search_lm_rescore_LODR(
|
||||
model=model,
|
||||
encoder_out=encoder_out,
|
||||
encoder_out_lens=encoder_out_lens,
|
||||
beam=params.beam_size,
|
||||
LM=LM,
|
||||
LODR_lm=ngram_lm,
|
||||
sp=sp,
|
||||
lm_scale_list=lm_scale_list,
|
||||
)
|
||||
else:
|
||||
batch_size = encoder_out.size(0)
|
||||
|
||||
@ -531,7 +574,10 @@ def decode_one_batch(
|
||||
key += f"_ngram_lm_scale_{params.ngram_lm_scale}"
|
||||
|
||||
return {key: hyps}
|
||||
elif params.decoding_method == "modified_beam_search_lm_rescore":
|
||||
elif params.decoding_method in (
|
||||
"modified_beam_search_lm_rescore",
|
||||
"modified_beam_search_lm_rescore_LODR",
|
||||
):
|
||||
ans = dict()
|
||||
assert ans_dict is not None
|
||||
for key, hyps in ans_dict.items():
|
||||
@ -550,6 +596,8 @@ def decode_dataset(
|
||||
word_table: Optional[k2.SymbolTable] = None,
|
||||
decoding_graph: Optional[k2.Fsa] = None,
|
||||
LM: Optional[LmScorer] = None,
|
||||
ngram_lm=None,
|
||||
ngram_lm_scale: float = 0.0,
|
||||
) -> Dict[str, List[Tuple[str, List[str], List[str]]]]:
|
||||
"""Decode dataset.
|
||||
|
||||
@ -568,6 +616,8 @@ def decode_dataset(
|
||||
The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used
|
||||
only when --decoding_method is fast_beam_search, fast_beam_search_nbest,
|
||||
fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG.
|
||||
ngram_lm:
|
||||
A n-gram LM to be used for LODR.
|
||||
Returns:
|
||||
Return a dict, whose key may be "greedy_search" if greedy search
|
||||
is used, or it may be "beam_7" if beam size of 7 is used.
|
||||
@ -600,6 +650,8 @@ def decode_dataset(
|
||||
word_table=word_table,
|
||||
batch=batch,
|
||||
LM=LM,
|
||||
ngram_lm=ngram_lm,
|
||||
ngram_lm_scale=ngram_lm_scale,
|
||||
)
|
||||
|
||||
for name, hyps in hyps_dict.items():
|
||||
@ -677,8 +729,10 @@ def main():
|
||||
"fast_beam_search_nbest_LG",
|
||||
"fast_beam_search_nbest_oracle",
|
||||
"modified_beam_search",
|
||||
"modified_beam_search_LODR",
|
||||
"modified_beam_search_lm_shallow_fusion",
|
||||
"modified_beam_search_lm_rescore",
|
||||
"modified_beam_search_lm_rescore_LODR",
|
||||
)
|
||||
params.res_dir = params.exp_dir / params.decoding_method
|
||||
|
||||
@ -822,7 +876,12 @@ def main():
|
||||
model.eval()
|
||||
|
||||
# only load the neural network LM if required
|
||||
if params.use_shallow_fusion or "lm" in params.decoding_method:
|
||||
if params.use_shallow_fusion or params.decoding_method in (
|
||||
"modified_beam_search_lm_rescore",
|
||||
"modified_beam_search_lm_rescore_LODR",
|
||||
"modified_beam_search_lm_shallow_fusion",
|
||||
"modified_beam_search_LODR",
|
||||
):
|
||||
LM = LmScorer(
|
||||
lm_type=params.lm_type,
|
||||
params=params,
|
||||
@ -834,6 +893,35 @@ def main():
|
||||
else:
|
||||
LM = None
|
||||
|
||||
# only load N-gram LM when needed
|
||||
if params.decoding_method == "modified_beam_search_lm_rescore_LODR":
|
||||
try:
|
||||
import kenlm
|
||||
except ImportError:
|
||||
print("Please install kenlm first. You can use")
|
||||
print(" pip install https://github.com/kpu/kenlm/archive/master.zip")
|
||||
print("to install it")
|
||||
import sys
|
||||
|
||||
sys.exit(-1)
|
||||
ngram_file_name = str(params.lang_dir / f"{params.tokens_ngram}gram.arpa")
|
||||
logging.info(f"lm filename: {ngram_file_name}")
|
||||
ngram_lm = kenlm.Model(ngram_file_name)
|
||||
|
||||
elif params.decoding_method == "modified_beam_search_LODR":
|
||||
lm_filename = f"{params.tokens_ngram}gram.fst.txt"
|
||||
logging.info(f"Loading token level lm: {lm_filename}")
|
||||
ngram_lm = NgramLm(
|
||||
str(params.lang_dir / lm_filename),
|
||||
backoff_id=params.backoff_id,
|
||||
is_binary=False,
|
||||
)
|
||||
logging.info(f"num states: {ngram_lm.lm.num_states}")
|
||||
ngram_lm_scale = params.ngram_lm_scale
|
||||
else:
|
||||
ngram_lm = None
|
||||
ngram_lm_scale = None
|
||||
|
||||
if "fast_beam_search" in params.decoding_method:
|
||||
if params.decoding_method == "fast_beam_search_nbest_LG":
|
||||
lexicon = Lexicon(params.lang_dir)
|
||||
@ -866,8 +954,10 @@ def main():
|
||||
|
||||
test_sets = ["test-clean", "test-other"]
|
||||
test_dl = [test_clean_dl, test_other_dl]
|
||||
import time
|
||||
|
||||
for test_set, test_dl in zip(test_sets, test_dl):
|
||||
start = time.time()
|
||||
results_dict = decode_dataset(
|
||||
dl=test_dl,
|
||||
params=params,
|
||||
@ -876,7 +966,10 @@ def main():
|
||||
word_table=word_table,
|
||||
decoding_graph=decoding_graph,
|
||||
LM=LM,
|
||||
ngram_lm=ngram_lm,
|
||||
ngram_lm_scale=ngram_lm_scale,
|
||||
)
|
||||
logging.info(f"Elasped time for {test_set}: {time.time() - start}")
|
||||
|
||||
save_results(
|
||||
params=params,
|
||||
|
Loading…
x
Reference in New Issue
Block a user